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Abstract

Background: The development of interactive rehabilitation technologies which rely on wearable-sensing for upper
body rehabilitation is attracting increasing research interest. This paper reviews related research with the aim:

1) To inventory and classify interactive wearable systems for movement and posture monitoring during upper body
rehabilitation, regarding the sensing technology, system measurements and feedback conditions; 2) To gauge the
wearability of the wearable systems; 3) To inventory the availability of clinical evidence supporting the effectiveness
of related technologies.

Method: A systematic literature search was conducted in the following search engines: PubMed, ACM, Scopus and
IEEE (January 2010-April 2016).

Results: Forty-five papers were included and discussed in a new cuboid taxonomy which consists of 3 dimensions:
sensing technology, feedback modalities and system measurements. Wearable sensor systems were developed for
persons in: 1) Neuro-rehabilitation: stroke (n = 21), spinal cord injury (n = 1), cerebral palsy (n = 2), Alzheimer (n=1);
2) Musculoskeletal impairment: ligament rehabilitation (n = 1), arthritis (n = 1), frozen shoulder (n = 1), bones trauma
(n=1); 3) Others: chronic pulmonary obstructive disease (n = 1), chronic pain rehabilitation (n = 1) and other general
rehabilitation (n = 14). Accelerometers and inertial measurement units (IMU) are the most frequently used technologies
(84% of the papers). They are mostly used in multiple sensor configurations to measure upper limb kinematics and/or
trunk posture. Sensors are placed mostly on the trunk, upper arm, the forearm, the wrist, and the finger. Typically
sensors are attachable rather than embedded in wearable devices and garments; although studies that embed
and integrate sensors are increasing in the last 4 years. 16 studies applied knowledge of result (KR) feedback, 14
studies applied knowledge of performance (KP) feedback and 15 studies applied both in various modalities. 16 studies
have conducted their evaluation with patients and reported usability tests, while only three of them conducted clinical
trials including one randomized clinical trial.

Conclusions: This review has shown that wearable systems are used mostly for the monitoring and provision of
feedback on posture and upper extremity movements in stroke rehabilitation. The results indicated that accelerometers
and IMUs are the most frequently used sensors, in most cases attached to the body through ad hoc contraptions for the
purpose of improving range of motion and movement performance during upper body rehabilitation. Systems featuring
sensors embedded in wearable appliances or garments are only beginning to emerge. Similarly, clinical evaluations are
scarce and are further needed to provide evidence on effectiveness and pave the path towards implementation
in clinical settings.
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Background

In musculoskeletal disorders, such as disorders of the
neck-shoulder complex or osteoporosis, and in neuro-
logical disorders such as stroke, the integration of pos-
ture awareness of the upper trunk and shoulder complex
as a stable basis for upper limb movement is an essential
component of rehabilitation [1-3]. Therefore feedback
on the posture of the trunk and shoulder complex and
feedback on upper limb movement may be supportive of
motor learning [4]. Although the pathological mecha-
nisms of posture deviation during static conditions
(standing, sitting) or during movement performance
(upper limb activities, posture during gait) are quite
different across the above mentioned patient populations
the corresponding therapeutic approaches share an
emphasis on increasing patient awareness of correct pos-
ture and movement patterns and the provision of cor-
rective feedback during functional task execution. In all
of the above patients, intrinsic feedback mechanisms
that inform the patient (e.g. proprioceptive cues) are
impaired [5-7] and extrinsic feedback is advocated to
relearn correct joint positions/posture during movement.
Traditionally extrinsic feedback is provided by a therapist,
so this way of learning is very time consuming and diffi-
cult to carry out independently, e.g. during home exer-
cises. Suitable rehabilitation technologies can potentially
play an instrumental role in extending training oppor-
tunities and improving training quality.

Posture monitoring and correction technologies pro-
viding accurate, and reliable feedback, may support
current rehabilitation activities [8, 9]. Ideally feedback is
given continuously for users with low proficiency levels,
and with fading frequency schedules for more advanced
users [8]. In broad terms, there are five kinds of moni-
toring methods available: 1) traditional mechanical sys-
tems (e.g. goniometer); 2) optical motion recognition
technologies [10]; 3) marker-less off body tracking systems
like depth camera-based movement detection systems
(e.g. Microsoft Kinect [11, 12]); 4) Robot-based solutions
[13, 14]; 5) wearable sensor-based systems [4]. Recently,
the miniaturization of devices, the evolution of sensing
and body area network technologies [15, 16] has triggered
the increasing influence of wearable rehabilitation tech-
nology, offering advantages over traditional rehabilitation
services [17, 18], such as: low cost, flexible application,
remote monitoring, comfort. Wearable sensing systems
open up the possibility of independent training, the
provision of feedback to the end-user as an active moni-
toring system, or even tele-rehabilitation.

A great number of wearable posture/motion monitoring
systems for rehabilitation have been reported in literature
in recent years, though very few have been used in clinical
studies. Some studies introduce innovative wearable sens-
ing technologies, e.g. Kortier et al. [19] developed a hand
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kinematics assessment glove based on attaching a
flexible PCB structure on the finger that contains in-
ertial and magnetic sensors. Tormene et al. [20] pro-
posed monitoring trunk movements by applying a
wearable conductive elastomer strain sensor. Studies
like this are primarily concerned with demonstrating
the accuracy and reliability of the technology they
introduce. Another body of research concerns evalu-
ations of existing rehabilitation technologies in terms
of their validity. For example, Uswatte et al. [21]
conducted a validation study of accelerometry for
monitoring arm activity of stroke patients. Bailey et
al. [22] proposed a study on a accelerometry-based
methodology for the assessment of bilateral upper
extremity activity. Lemmens et al. [23] report a proof
of principle for recognizing complex upper extremity
activities using body worn sensors.

There are a few examples of a literature that grows
fast. The need arises to classify related works and iden-
tify promising trends or open challenges in order to
guide future research. To address this need, there have
been several reviews of research on wearable systems for
rehabilitation, which take quite diverse perspectives on
this vibrant field. An early review by Patel et al. [16]
takes a very broad perspective that covers health and
wellness, rehabilitation and even prevention, reviewing
wearable and ambient technologies. Hadjidj et al. [24],
provide an non-systematic review of literature on wire-
less sensor technologies focusing on technical require-
ments. Some studies focus on physical activity monitoring
[25, 26] a technology domain that has had substantial
growth and impact, but which is not specific to re-
habilitation. Allet et al. [26] review wearable systems
for monitoring mobility related activities in chronic dis-
eases; this review covered mostly systems measuring
general physical activity and found no works reaching
the stage of clinical testing. Some studies provide an in-
depth overview of movement measurement and analysis
[27-29] technologies, though these are not necessarily
integrated in rehabilitation systems and are usually still
at the stage of proof of principle for a measurement
technique. Vargas et al. [30] reviewed inertial sensors
applied in human motion analysis, and concluded that
inertial sensors can offer a task-specific accurate and
reliable method for human motion studies. A couple of
recent surveys [31, 32] have reviewed e-textile tech-
nologies applied in rehabilitation, though one of their
main conclusions was to identify the distance separating
the requirements for applying textiles to rehabilitation
from the current state of the art. Also, they identify that
the potential of providing feedback to patients based on
textile sensing remains largely unexplored. Some studies
concentrated specifically about how feedback influences
therapy outcome [33-35], however the systems involved



Wang et al. Journal of NeuroEngineering and Rehabilitation (2017) 14:20

are not only wearable systems and all these reviews
date 6 years or longer. Wang et al. [9] reviewed wear-
able posture monitoring technology studies from 2008
to 2013 for upper-extremity rehabilitation, yet unlike
the present article, no systematic comparisons based
on technology, system usability, feedback and clinical
maturity were provided. In line with Fleury et al. [32]
they found that only a few studies report the integra-
tion of wearable sensing in complete systems support-
ing feedback to patients, and very few of those have
been tested by users with attention to the usability
and wearability. Given the limited nature of that sur-
vey, such a conclusion was tentative calling for a sys-
tematic survey to gauge the state of the art in upper
body rehabilitation technologies that integrate wear-
able sensors. The focus of the present survey is differ-
ent regarding to the sensor type and placement, and
rehabilitation objective. The present article contrib-
utes a different perspective to these surveys by critic-
ally reviewing and comparing systems comprising of
feedback to support upper body rehabilitation with
regard to their functionality and usability. In this review
we focus on interactive wearable systems that provide
feedback to end-users for rehabilitation. In addition, in
order to review the latest and most innovative techno-
logical solutions that shed a light on the state of the art
wearable solutions for rehabilitation, only articles pub-
lished later than 2010 are considered.

The translation from a technical tool towards a clinic-
ally usable system is not straightforward. Prerequisites
for therapists and patients to use technology supported
rehabilitation systems are the easy-to-use character of
the system, its added value to their habitual rehabilita-
tion programs and its credibility. Besides, it is of major
importance to design the system feedback as this
positively influences motivation and self-efficacy [8].
Advanced technologies provide increasing possible forms
of feedback and a growing number of studies used
interactive wearable systems to motivate patients in the
intensive and repetitive training.

As such, the purpose of this review is to provide an
overview of interactive wearable systems for upper body
rehabilitation. In particular, we aim to classify from the
following aspects:

1) To inventory and classify interactive wearable
systems for movement and posture monitoring
during upper body rehabilitation, regarding the
sensing technology, system measurements and
feedback conditions;

2) To gauge the wearability of the wearable systems;

3) To inventory the availability of clinical evidence
supporting the effectiveness of related
technologies.
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Method

Literature search strategy

A literature search was conducted in the following
four databases: PubMed, IEEE Xplore, ACM and
Scopus. Papers addressing the following aspects were
selected: rehabilitation, upper body, posture/motion
monitoring, and wearable systems. MeSh (Medical
Subject Heading) terms or Title/Abstract keywords
and their synonyms and spelling variations were
used in several combinations and modified for every
database. Articles published from January 2010 to
April 2016 were reviewed. The general search strat-
egy including the used search terms are listed in
Table 1 This search includes refereed journal papers
and peer reviewed articles published in conference
proceedings. Only English articles are included.

Study selection process

The article selection process consisted of following
steps using the PRISMA [36] guidelines (see Fig. 1):
1) A computerized search strategy was performed for
the period January 2010 until April 2016; 2) After re-
moval of duplicates, two independent reviewers (QW
and BY) screened titles and abstracts of the remaining
articles; 3) The same 2 independent reviewers read
the full texts and selected articles based on the inclu-
sion/exclusion criteria. In cases where a journal paper
covered the contents reported in the earlier confer-
ence publications, the journal paper was preferred
over the conference paper. In cases where the overlap
was only partial, multiple publications were used as
sources, but only counted as one in our statistics and
table entries. The consensus rates were 90.5 and 81%
respectively during the first and second review
rounds; disagreement was resolved by discussing rea-
sons for exclusion. When authors had published
several studies on same research initiative, only the

Table 1 Literature search strategy

“rehabilitation” OR “telerehabilitation” OR “motor
activity” OR “physical therapy” OR “telemedicine”
OR telemetry OR “motor learning”

Rehabilitation

AND
Upper body “upper body” OR “upper extremity” OR “spine”
OR "back” OR “arm hand” OR “shoulder” OR
“elbow” OR “wrist” OR “joint”
AND
Posture/movement ("monitor” OR “motion” OR “posture” OR
monitoring “sensing” NOT “walking”) OR (“acceleromet*”

OR “inertial sensor” OR “ sensor system” OR
“sensor network” OR gyroscope OR MEMS
OR IMU)

AND

wearable OR garment OR textiles OR wireless
OR mobile OR “smart phone”

Wearable systems
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'ﬁ Articles returned from database search (n =2181)
So‘;‘: PubMed: 644  |EEE: 755
E ACM: 540 Scopus:242
N
A
o Title and abstract screening Additional articles added
E (n=281) through other sources
o PubMed: 58  IEEE: 94 (n=18)
] ACM: 77 Scopus:52
— 3 Studies excluded (n=254)
~ Full-text studies screened on with reasons:
2
E inclusion and exclusion criteria not a wearable system for
:::0 (n=299) rehabilitation (n=77);
-« without feedback (n=86);
— not for upper body posture
— v monitoring (n=56);
S 45 full-text studies selected and for activity recognition (21);
3 analyzed robotic or exoskeleton system
= (14)
- J
Fig. 1 Prisma [36] flowchart of the results from the literature search

_

most recent studies were retained. In cases of
disagreement between the two reviewers, a third re-
viewer (WC/AT) decided whether the article should
be included or not.

Inclusion criteria were:
a) The articles concern a wearable system.
b) The system is intended for rehabilitation purposes
(in home and community settings).
¢) The study includes upper body training (upper
extremity, neck, spine).
d) The system described is a movement tracking or
posture monitoring system
e) The wearable systems provide feedback to the
end users of their training results or performance
g) Articles were published in the last 6 years
h) Articles were written in English

Exclusion criteria:
a) Prosthetics, coaching and information/educational
systems
b) Activity recognition systems
¢) Robotic system or exoskeleton
d) The study sticks adhesive sensors to human skin
directly
e) Reviews
f) Books

Data extraction process

Two researchers (QW and BY) extracted data inde-
pendently according to a predetermined template.
The extracted data included the technology used, the
sensor placement, the feedback, validation test level,
the wearability of the system, and its purpose (patient
category, posture or trunk rehabilitation). As for feed-
back, the researchers classified feedback according to
the feedback modality (knowledge of results feedback/
knowledge of performance feedback, concurrent/ter-
minal, vibrotactile/auditory/visual). With regard to the
level of validation, it was noted whether the paper
reports a technical performance evaluation, an empirical
usability test, or a clinical trial to assess the effectiveness
of the technology. In addition, this review follows the tax-
onomy of (WSN) for clinical rehabilitation applications
proposed by Hadjidj et al. [13] in 2013.

Results

Database search and paper lists

An overview of the results in the different stages of the
article selection process is shown in Fig. 1. From the 2181
articles that were identified with the search strategies, 45
papers are included in this review after the selection
process. The primary features of the surveyed systems are
summarized and compared in Table 2.
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Taxonomy structure

To better understand the emerging phenomenon and
classify the systems, a new cuboid taxonomy (shown in
Fig. 2) has been proposed, which consists of 3 dimensions:
sensing technology, feedback modalities and system mea-
surements. Each dimension pertains to a group of differ-
ent categories, and has no orientations. These dimensions
are key principles for interactive wearable systems for
upper body rehabilitation. One dimension is “sensing
technology”, it inventories the involved advanced sensing
techniques such as Acc/IMU, Flexible angular sensor, E-
textile and Others. “Feedback” is another dimension that
is essential for interaction between the user and the wear-
able systems. Feedback concerns different modalities,
namely Visual, Auditory, Haptic and Multi-modal modal-
ities. A third dimension is “measurement”. Every system
provided different measurements of upper body kinemat-
ics which is the basis of building a suitable application for
specific pathologies. In our taxonomy, “measurement” in-
cludes: Range of Motion, Amount of Use and Body seg-
ment Posture. All the 45 articles have been positioned
in the cuboid layers, and thereby the features of each
system are clearly visualized. Some systems overlap
multiple cells. Remarkably, most papers (n=28) are
located at the overlap cells of using Accelerometers
or IMU sensors and providing visual feedback. We
will discuss more details in following sections.

Status of included sensing technologies

Figure 3 summarizes the number of studies (horizontal
axis) and the different technologies that are used (verti-
cal axis). Some studies involved different technologies in
their system. The involved sensing techniques could be
classified into 4 categories:

Page 10 of 21

1) Acc/IMU: accelerometer, gyroscope, inertial
measurement unit (IMU);

2) Flexible angular sensor: flex sensor, optical linear
encoder (OLE);

3) E-textiles: electrical lead, knitted piezoresistive fabric
(KPF) sensor, stretch sensing fabric;

4) Others: tilt sensor, magnetometer, light dependent
resistor (LDR) sensor.

The accelerometer and IMU sensor are the most
frequently used technology within the included feedback
systems (used in 38 out of the 45 papers). An accelerom-
eter measures proper acceleration, a gyroscope measures
angular velocity, a magnetometer measures magnetic field,
and an IMU uses a combination of these three. Systems
based on accelerometer or IMU measurements normally
consist of several sensor nodes, and can measure kine-
matic parameters such as orientation, position, velocity,
as well as complex body posture and joint range of mo-
tion. Micro-electro-mechanical system (MEMS) tech-
nology has enabled the development of miniaturized
inertial sensors [17].

In 20 studies [3, 37, 40-44, 46, 48-51, 57, 60, 64,
71-74, 77] accelerometer(s) have been integrated:
eight of them proposed a single-accelerometer-based
system including the studies based on a smartphone
built-in sensor, three studies proposed the fusion of an
accelerometer with the gyroscope [41], optical linear
encoder (OLE) module [46] and flex sensor [48] respect-
ively, while other studies lean on accelerometer
combinations.

Eighteen studies [4, 39, 45, 52, 54-56, 59, 61, 65,
67-70, 75, 76, 78, 79] applied IMUs in their systems, three
[54, 59, 78] of them relied on a single sensor module.
Most systems used 2—4 sensors, but studies that aimed for

Measurement

) Range of motion

) Amount of Use

J Body Segment Posture

Others
E-textile

Flexible

Acc/Imu
Sensing Technology

Fig. 2 Taxonomy of interactive wearable systems regarding sensing technology, system measurement and feedback modalities

~N

Feedback
Multi-modal
Haptic

Auditory

Visual
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KPF sensor
Stretch sensing fabric
Electrical lead
Gyroscope

Tilt sensor

LDR sensor
Magnetometer
OLE

Flex sensor
IMU
Accelerometer

KPF = Knitted pezoresistive fabric

_

Fig. 3 Sensing technology overview. Abbreviations: OLE = Optical linear encoder, IMU = Inertial measurement unit, FSRs = Force sensitive sensor,

1

10 15 20 25

Number of studies

finger movement monitoring utilized more sensors [68,
69]. Hermanis et al. [70] proposed a novel system that
may acquire data from up to 200 sensors, and have dem-
onstrated a smart fabric which integrates 63 sensors in a
wearable sensor grid architecture. Two studies [49, 67]
used Wii remote as a sensing device and five studies
utilized smartphone built-in sensors [54, 59, 72, 77, 78]
supporting the growing trend for the use of smartphones
for rehabilitation.

A flexible angular sensor includes a flex sensor and
OLE strip. Deformation of the substrate of the flex sen-
sor leads to a resistance output correlated to the bend
radius. Ambar et al. [48] proposed a multi-sensor sys-
tem with a flex sensor, force sensitive sensor and accel-
erometer. OLE consists of an infra-red emitter and a
receiver which converts light information in to distance,
the infra-red light is reflected off the reflective code
strip [46]. Flexible angular sensor arrays have been used
on the finger for joint motion tracking. Luo et al. [39]
located multi-point OLE strips on different finger
segments while Saggio et al. [53] and Halic et al. [66]
utilized flex sensors.

Three studies used e-textiles as sensors in their systems.
Bhomer et al. [58] proposed a knitted garment based on
stretch sensors made of conductive yarn. Klaassen et al.
[75] applied “e-textile” goniometers based on knitted
piezoresistive fabrics (KPFs), integrated KPF strain and
KPF goniometers with IMU’s into a multi-modal sensing
system. Friedman et al. [47] located six electrical leads on
a glove, registering the electrical connection.

Besides, some researchers explored other metrics.
Rahman et al. [62] and Salim et al. [63] proposed a
glove-based motion detecting system by integrating
LDR sensors and tilt sensors separately.

System feedback
Feedback is important for rehabilitation training, for sup-
porting the motor learning process in musculoskeletal and

neurological pathologies [8, 33], and for sustaining
motivation during rehabilitation [7].

Feedback modalities
Table 3 classifies the different feedback modalities used
in the included studies.

Visual display is the most common (n=40) way to
provide feedback. With visual feedback, the users learn a
motor task by therapeutic intervention (training instruc-
tion that needs to be achieved) or from the patient him/
herself (to compare to the correct/desired movement).
In many simple tasks, the task-relevant variable has been
represented on a normal screen in a simple abstract
form of lines and curves [40, 48, 50, 60, 72, 77], gauges
[4, 64], bars [44, 63], or a combination for showing dif-
ferent parameters [65, 75, 79]. For feedback on simple
task performance, a numeric or graphic display might be
sufficient, since the small number of relevant variables
can be meaningfully and directly represented with high
information clarity. Besides simple abstract feedback, the
global feedback [8] about the posture and position could
be provided in a more natural way, which is classified as
natural visualizations [84]. The 3D representation could
be a virtual teacher/trainer [38, 41, 43, 56] or a 3D
model of a limb/hand [37, 53, 56, 68, 69]. To provide

Table 3 Systems Feedback
Feedback Modality

Reference

Visual Abstract (lines, curves, [4, 40, 44, 48, 50, 60,
gauges, bars, or point.) 63-65, 72, 75,77, 79]
3D model of limb or [37, 41, 43, 46, 53, 56,
human body or structure 68-70]
Game [42, 45, 59, 62, 66, 67]
Haptic Vibrotactile display [51,52,57,61]
Auditory Musical pattern [78]
Multi-modal [3, 38, 39, 47, 49, 54, 55,
58,71,73,74,76]
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quick and accurate feedback, some researches [46] have
applied a simplified 3D mechanical model instead of a
virtual human model to reduce the rendering time of
the image. To motivate the users to practice or train
longer, in several systems [42, 45, 59, 62, 67], the visual
displays are incorporated into a training game for
motor learning, 5 more studies [39, 47, 49, 74] also
involved sound or haptic feedback in their games.
Besides, some systems combine visual and other modal-
ities as multimodal feedback systems [38, 54, 55, 58, 71,
73, 76] with the aim of enhancing learning effectiveness
by reducing the cognitive load required for information
processing.

In a study by Fortino et al. [46], a virtual arm was
driven by the subject to reach a virtual ball in the
simulation environment, while the ball was controlled
to move in a predefined route to guide both the real
and virtual arm movements. Our results show that
virtual reality has been commonly used within the
included studies (three studies [37-39] in 2010, two
[45, 46] in 2011, one [56] in 2013, three [62, 67, 68]
in 2014 and one [69] in 2015). Further to using a
computer screen as a visual feedback display, the
emergence of smartphones is reflected on the num-
ber of the systems providing feedback on smart-
phones: 0 in 2010-2012, two [54, 58] in 2013, five [59,
60, 63, 64, 66] in 2014, four [70, 72—74] in 2015 and two
[76, 77] in 2016.

Vibrotactile displays have been applied in wearable
systems for giving information about navigation and
directional information [52]. Luster et al. [57], use
vibrotactile cues to provide positive reinforcement
when performance goals are met during training
practice in chronic stroke. The vibrotactile feedback
can be located at specific points of interest, such as
the forearm [52] or at C7 and T5 level of the spinal
column [76], but may also cover a large limb area.
Panchanathan et al. [61] developed a flexible vibro-
tactile strip that can be worn on the body for rich
haptic communication. In addition, actuators’ place-
ment for vibrotactile feedback needs to be consid-
ered. For example, Ding et al. [38] mentioned the
threshold distances for two vibrotactile actuators.
These strips may be combined to create wearable
two-dimensional haptic feedback. The capability of
haptic feedback for presenting precise or complex in-
formation is limited, therefore they are often used in
combination with visual/ audio feedback as a multi-
modal feedback [38, 71, 73, 76].

Although only one study utilized auditory feedback as
the exclusive feedback modality in their system [78],
Newbold et al. [78] explored musically-informed move-
ment sonification for stretching exercises, using stable
sound to facilitate stretching exercises and unstable
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sound to avoid overdoing. Auditory feedback plays
important role within the studies providing multi-modal
feedback. For example, as a simple and clear notification
of error or reward, e.g., as a beeping sound [76]. Further-
more, Bhomer et al. [58] proposed a more complex sys-
tem in which the sound reflects the movement of the
wearer as the pitch or volume of a tune is controlled by
the stretch of a fabric sensor. Friedman et al. [47]
encouraged the subject to hit notes with music feedback
to practice hand function.

Feedback content and timing

Regarding to the content of feedback, most wearable
systems present the skill outcome or goal achievement,
defined as knowledge of results (KR) [83]. Examples are
the summary feedback of the achieved number of spe-
cific training activities [44], movement parameter scores
(range of motion, quality of movement) [4], successful
repetition number [45, 50, 72, 79]. Knowledge of per-
formance informs about the movement characteristics
that led to the performance outcome [83]. One common
way is to present kinematic information such as position,
time, velocity, and patterns [37, 41, 45, 46, 60]. Ding et
al. [52] and Panchanathan et al. [61] proposed feedback
on arm movement performance by vibrotactile feedback
on directing towards the correct posture. Pancha-
nathan et al. [61] also indicated the speed errors and
how to correct them. Within the included studies, 16
studies applied KR feedback, 14 studies applied KP
feedback and 16 studies applied both.

Eleven studies utilized game scenes to make repetitive
movement more engaging for the patient and to motivate
them to practice or train longer. Examples are grasping
activities [39, 67], arm or finger movement performance
[47, 59, 62, 66, 74], upper limb trajectory indication [45],
and feedback based on compensatory movements within
the games [3, 42, 49].

Bandwidth feedback is defined as feedback given only
when a movement error exceeds a certain threshold
[84]. Bandwidth feedback is beneficial for personalized
feedback to individual patients. Four papers [3, 42, 49]
set compensatory movement limits as the trigger for
game effects; another three studies used the reference
position as a threshold [52, 76, 79].

With regard to timing, feedback can be given during
the training execution (concurrent feedback) or after
completion of the training (terminal feedback) [84].
Concurrent feedback has been suggested to be effective
for beginning users and terminal feedback may benefit
more the skilled user [8]. Most included studies (# = 29)
applied concurrent feedback strategies, 11 studies used
both concurrent and terminal feedback, only 5 studies
used terminal feedback, 4 of them by means of KR feed-
back and one study applied both.
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Measurement

Wearable systems for the registration of body segment
joint kinematics, give feedback on movements like
flexion, extension, abduction, adduction, rotation and
parameters such as time and speed. Hence the dimen-
sion “measurement” could be classified into: range of
motion (movement distance around joint or body part),
amount of Use (activity amount of body segment) and
body segment posture (specific posture or body segment
to target spatial location). Similar measurements may
support various rehabilitation purposes and patient popu-
lations. Details of each study are presented in Table 2.

Measurement for different rehabilitation purposes

The included studies for upper body rehabilitation, had
following aims: improve active joint range of motion,
improve movement performance, improve movement
coordination, improve posture, improve muscle strength,
overcome learned non-use and improve performance of
ADL (activities of daily living) skills.

Sixteen studies [4, 37, 43, 46, 53-56, 60, 65, 68, 69, 75,
77-79] focused on the measurement of range of motion
(ROM) with the common purpose of improving active
joint range of motion. Studies by Timmermans et al. [4]
and Parker et al. [65] also concentrated on improving
ADL skills for Stroke. Harms et al. [53] aimed at improv-
ing posture and Newbold et al. [78] aimed at reducing
pain during rehabilitation in chronic pain patients.

The “Amount of Use” is used in 8 studies [44, 48,
50, 51, 57, 58, 64, 71]. Two studies [44, 57] targeted
at bilateral arm movement detection (use) to over-
come learned non-use and 2 studies [44, 48] men-
tioned improving ADL skills. Jeong et al. [50],
Myllymaa et al. [51], Bhomer et al. [58], Friedman
et al. [64], and Holden et al. [71] intended to motivate the
amount of exercise during general rehabilitation.

The category “Body Segment Posture” include 24 studies
[3, 4, 38, 39, 40-42, 45, 47, 49, 52, 55, 59, 61-63, 66, 67,
70, 72-74, 76, 79] about measurement of specific posture
such as compensatory movement [80] and motion guid-
ance. Most (16 out of 24) systems aimed for improving
movement performance as these studies help users under-
stand the desired motions and guide them through correct
movement patterns, followed by 7 studies for improving
posture, two for improving ADL [3, 47] skills and one for
improving coordination [47].

Measurement for different target population

In addition, we inventoried the target population addressed
by interactive wearable systems (Table 4). Three categories
are identified: 1) Neuro-rehabilitation: stroke (1 =21),
spinal cord injury (n = 1), cerebral palsy (n =2), Alzheimer
(n=1); 2) Musculoskeletal impairment: ligament rehabilita-
tion (n = 1), arthritis (7 = 1), frozen shoulder (# = 1), bones
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Table 4 Classification based on target population

Target Population Reference

Neuro- Stroke [3, 4, 38, 39, 44-49, 52,
Rehabilitation 53,57, 59, 63, 65, 67,71,
75,76, 79]
Spinal cord injury [74]
Cerebral palsy [42, 62]
Alzheimer [58]
Musculoskeletal Ligament rehabilitation [40]
impairment Arthritis rehabilitation [69]
Frozen shoulder rehabilitation [72]
Bones trauma [70]
Others COPD (chronic obstructive [54]
pulmonary disease)
Chronic pain rehabilitation [78]

General rehabilitation (hand,
elbow, shoulder, total

upper extremity), no specific
pathology

[37, 41,43, 50, 51, 55,
56, 60, 61, 64, 66, 68,
73,771

trauma (n=1); 3) Others: chronic pulmonary obstructive
disease (n = 1), chronic pain rehabilitation (z = 1) and other
general rehabilitation (n = 14).

System wearability

Sensor placements

Figure 4 illustrates the sensor placement for all the
studies included in this review with the intention of
showing an overview of the sensing module distribu-
tion on the upper body. The papers of Hermanis
et al. [70] and Bhomer et al. [58] have not been in-
cluded in this figure, since the sensor grid system
[70] is capable of acquiring up to 63 sensors as a
smart surface that can be worn on the back in the
form of a blazer vest and the sensing areas knitted
garment [58] based on smart textiles could cover the
upper body instead of specific points. For the
remaining articles, we have found that the main
concentration of sensors is on upper arm (n=16),
forearm (n=11), wrist (n=14), elbow (n=9), trunk
(n=13 including location on chest and back) and
finger (n=7).

Wearable design

Wearability has been defined by Gemperle et al. [81] as
the interaction between the human body and wearable
objects. Wearability is one of the key aspects for the
acceptance of wearable systems; especially wearable sys-
tems that are aimed for long-term monitoring have high
requirements for comfort.

From a system implementation perspective, the
integration level of electronics and textile influences
the wearability to a high extent. The integration level
pertains to how electronic parts are embedded in a
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wearable system. Based on Seymou et al. [82], the
integration level is distinguished into following cate-
gories: 1) Attachable, using a container like pocket or
strapped with bands; 2) Embedded, sensing parts
physically embedded into fabric, such as by conduct-
ive yarns; 3) Integrated, smart textiles sensors. In the
second category, there are two ways to embed the
sensing parts into the wearable system: with standard
copper wires and with conductive yarns. Various ways
of locating the sensors in the right places have been
proposed. To be more specific, this review classified
as follows: a) most included systems are in the stage
of being attachable (n=29) (3, 4, 37, 39-42, 44, 45,
48-55, 59, 60, 64-67, 71, 72, 74, 77-79], which is
easy for prototyping and easy for operation of the
system with a single device [42]; b) fewer studies are
in the stage of embedded systems with normal wires

(n=10) [38, 43, 46, 56, 57, 62, 63, 68, 70, 73]; c) for
even fewer systems sensors are embedded in the
fabric with conductive yarns (n= 2) [61, 76]; d) inte-
grated into smart textiles (n=3) [47, 58, 75]. Besides,
O'flynn et al. [69] proposed a glove combined stretch-
able substrate material and IMUs by customized PCB
board doesn’t require fabric platform.

Figure 5 summarizes the number of studies in dif-
ferent type of integration and in different years. Com-
pared to systems in attachable level, embedded
systems are more aesthetic and less bulky. Although
the systems in integrated level with fabric-based sens-
ing enhanced both comfort and aesthetics, the accur-
acy and flexibility supporting multi-DOF is limited
[58, 69]. However with the emerging developments in
smart textiles [32, 75], fabric-based sensing are show-
ing great potential.

12
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Wearable factors and requirements
Apart from system implementation issues, the efforts on
improving the systems wearability can be classified in
three levels: proposing a sensor package/platform design
criteria/requirements [44, 47, 55, 56, 76]; including wear-
ability related questions during the evaluation of the sys-
tem with users [57] and, finally, reporting lessons learned
about system wearability [45, 50, 61]. Table 5 summarizes
claims made about wearability in these articles. Although
the wearable systems are quite different, these quotes
demonstrate current design requirements for wearability
and how factors pertaining to wearability support these
requirements. The relationship is illustrated in Fig. 6.
Based on Table 5 and Fig. 6, following aspects has
been concluded:

1. Accuracy: the wearable should help locate and keep
the sensor in the right location on the body for high
accuracy (Q7,9,10,19,20).

2. Comfort: wearable factors contribute both
physiological comfort and psychological comfort
(Q10,19); the system should be light (Q15,18),
unobtrusive with suitable material (Q20,23) and
attachment methods (Q2).

3. Flexible: the system should guarantee human
movement flexibility (Q1,6,8,11,17).

Table 5 Quotes list about wearability requirements from
included studies

Ref
[46]

Quotes from included studies

Q1. “"does not restrain the human movement”;
Q2. "without slipping on users’ skin”;
Q3. "be easy to wear”; Q4. “fit to human arms with different size”;

Q5. “consideration of minimum critical distance for two adjacent
vibrotactile actuators”

Q6. “unobtrusive and not limit the skin and muscle motion”;
Q7."place sensor on bones, ligaments and between muscles”;
Q8. “with some flexibility in positioning”;

Q9. “provide additional stability”;

Q10. “must be non-invasive to be accepted by patient”;
Q11. "have to avoid restraining the movements that the patient
does in normal conditions”;

Q12. "fit closely to body for higher accuracy”;

Q13. “Easy to wear on and off’;

Q14. "adjustable for different size”; Q15."light, comfortable,
appropriate for long term monitoring”;

Q16. "how easy to put on/ take off the suit”;

Q17. "how easy was it to move your affected arm compared to
without wearing the wristband”;

Q18. “how comfortable/lightweight were the wristbands”;

Q19. “module size was too large, draw attention”
Q20. “reduce the quantity and bulk of the wiring”

Q21. “attach the harness around the neck, not the shoulders”;
Q22. “stabilize the Wii Remote against the back to prevent rolling”;
Q23."with a soft cloth cover to prevent rubbing against the skin”;
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4. Interactive: the wearable systems should support
interactive therapy (Q5);

5. Scalable: the system should address body size
diversity (Q4,14);

6. Ease of use: the system should be easy to operate
and easy to put on and take off (Q3,13,16).

Evaluation

The included systems are classified into four stages
based on their evaluation status: a) no evaluation (# = 5);
b) technical evaluation (1 =25); c) clinical trials (z = 3);
d) usability test (n =17), while six systems [49, 53, 55,
59, 76, 79] conducted both technical and usability
evaluation in their studies and one study [67] con-
ducted all. Some studies report evaluations from differ-
ent perspectives. It is noteworthy that not all the
experiments described in the studies could be defined
as evaluation evidence. There are five studies that
didn’t provide evaluation evidence. Note that the avail-
ability of “evaluation evidence” was not used as an
inclusion criterion in this study, in order to not ex-
clude reports on very novel systems that are presented
as proof of concept/principle as, for example, the
smart fabric embedded wearable sensor grid discussed
above [70]. Figure 7 Illustrates the systems evaluation
status in details.

The technical evaluation was conducted with regard to
the following aspects: accuracy, sensitivity, reliability,
power consumption and feasibility. There are 25 studies
that describe a technical evaluation along such require-
ments, 21 studies didn’t include patients and conducted
the experiment only with healthy subjects.

Most sample sizes in the empirical evaluation studies
reported are relatively small, ranging from 1 to 10, while
only seven studies [47, 48, 50, 55, 61, 66, 78] involved
more than 10 subjects, Halic et al. [66] conducted a
usability evaluation with 46 subjects.

Although 16 of the included studies involved patients
and reported usability tests, only three of these were
clinical trials [4, 47, 67] including one randomized clinical
trial [47] with 12 chronic stroke survivors for 2 weeks.
From Fig. 7, we can see that the usability evaluation with
patients is drawing more attention from 2010 to 2014.

Discussion

This paper reviews the featured technologies developed
over the recent 6 years, focusing on interactive systems
of wearable-sensing based technology toward upper
body rehabilitation. We proposed a taxonomy that con-
sists of 3 dimensions: measurement, sensing technology
and feedback. This new taxonomy may benefit other re-
searchers to gain deeper understanding of the emerging
projects, have more insights and explore the promising
design space.
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Discussion of wearable-sensing technologies

Advanced technologies have been developed and applied
to solve the relevant application problems [27]. Various
electronic sensors and systems have been applied in
these studies, namely: accelerometer, gyroscope, inertial
measurement unit (IMU), flex sensor, optical linear en-
coder (OLE), magnetometer, force sensitive sensor
(FSRs), light dependent resistor (LDR sensor), tilt sensor,
electrical lead, knitted piezoresistive fabric sensor (KPF)
and stretch sensing fabric. The accelerometers and
IMU'’s tend to be the most commonly used with the fol-
lowing advantages: they yield accurate essential values,
are easy to use and are miniature in size.

Some new developments on innovative sensing tech-
nologies are noteworthy and promising though they have
been excluded from the survey as they are only sensing
technologies which do not support yet any user feed-
back: conductive thread based stretch sensors [85], a
conductive elastomer sensor based system [20], stretchable
carbon nanotube strain sensors [86] and soft nano-patches
[87]. Based on the review study by Fleury et al. [32], the

development of conductive elastomer sensors have pri-
marily affected the recent advancements of textile-
based motion sensing, providing comfortable garments
with high integration level of electronic components
and fabric. Although conductive elastomer based sys-
tems show accurate performance compared to IMU
sensors, the single axis measurement and languid
response limits their application for rehabilitation.

Besides, the sensing placement plays an important role
for upper body rehabilitation as a combination of loca-
tions can provide the value of range of motion (ROM)
assessment, body segment position, usage and position.
These values are crucial for rehabilitation therapy as
their observation and interpretation influence how the
treatment develops [88].

Discussion of systems feedback

It is important that feedback matches the proficiency
level of the users [8]. The majority of systems (n =29)
included in this review use concurrent feedback which is
mostly suitable for persons that are not proficient. Only

~
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5 systems use terminal feedback and 4 of them by means
of knowledge of results. There is a lack of systems that
use fading frequency schedules that match the frequency
of feedback provision to the progress of the patient: the
more proficient the user, the less frequently feedback
needs to be given so persons don’t get dependent on the
extrinsic feedback and learn to rely on their intrinsic
feedback mechanisms [8]. This is a point of attention for
future system developments.

Several feedback modalities were used. The natural
visualization displays the movement of the user’s body
simultaneously with a virtual 3D modal. It could
enhance the user’s learning by imitation [91]. Also users
may enhance motor learning by mental practice, where
similar brain areas are active than during overt motor
actions [92].

Haptic and audio feedback do not require visual atten-
tion during the exercise. Haptic feedback, especially
vibrotactile displays, are widely used (n = 8) in the systems
included in the study. Haptic feedback allows patients to
focus on specific body areas rather than divide their atten-
tion to a visual or auditory display. Vibrotactile feedback
has been used to notify users on joint angle related errors
and on speed of movement [61]. Vibrotactile feedback is
also capable of presenting KP feedback [51, 52]. Auditory
feedback as a substantial modality has been applied as an
exclusive feedback by one study, Newbold et al. [78]
explored musically-informed movement sonification.
Bhomer et al. [58] and Friedman et al. [47] proposed
systems in which the sound together with screen feed-
back reflects the movement of the wearer. Other studies
applied auditory alarms as bandwidth feedback when a
certain movement exceeds the threshold as an error noti-
fication [3, 60] or as notification for rewards [49].

Virtual reality technology has been used extensively in
the included studies. Considering the recent booming
development of VR technology and serious games, these
technologies offer enormous potential for increasing the
training intensity, engagement and social participation
for patients.

Recent advances in smartphone technology such as
their prevalence, ability to use anywhere, powerful pro-
cessing ability and integration of sensor and display have
had a major impact on their use in rehabilitation sys-
tems. Providing feedback like visual information on
smartphones is common and effective, especially for the
systems intended for remote monitoring.

Discussion of system wearability

Most articles have conducted a technical, a usability, and
more rarely a clinical evaluation (only 3), while none of
the included studies report a systematic wearability
assessment, which is quite essential for user acceptance.
Most included studies describe only superficially how to
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attach sensors on the human body, despite that the way
this placement is done is very influential on both accuracy
and comfort of the system.

Regarding the different sensing technologies and four
integration levels of electronics and textiles, most studies
in category Acc/IMU are restricted to the lowest level of
integration where devices are attached to the body
rather than integrated in a wearable system through ad
hoc contraptions (e.g. Velcro strips), and sensors are dis-
tributed on body segments (e.g. upper arm, forearm and
wrist) to work as a combination system. However the
studies within embedment level are increasing and have
the advantages of stability, comfort, unobtrusiveness and
feasibility. Studies in the category “Flexible angular sen-
sor” are embedded sensors in a suitable platform and
precisely located at body joint (e.g. elbow). Two studies
in category “Others” embedded the sensor in gloves.
Only three studies are in the integrated level based on
smart textiles. However, applying smart textiles for pos-
ture detection, such as resistance changing materials,
pressure-sensitive conductive sheets, knitted conductive
textile and conductive yarns are growing trends in the
area of wearable electronics that should soon be
reflected in the domain of wearable rehabilitation tech-
nology [32, 89]. Currently, considering the rehabilitation
context, “Acc/IMU” show superiority for projects with a
high requirement of kinematic accuracy, while for a high
preference of user experience the category “E-textile”
has more advantages.

The reviewed studies have identified a number of re-
quirements that may be key to improve wearability and
usability of wearable rehabilitation technology: accuracy,
comfort, interactiveness, flexibility, scalability, and ease
of use. There has been little effort yet to evaluate wear-
ability. In this respect, the study by Cancela et al. [90] is
an inspiring example, where the Comfort Rating Scale
was used to assess perceived exertion and physiological
and biomechanical parameters were assessed to measure
musculoskeletal loading.

Discussion of clinical validation
Only 3 systems have been clinically evaluated in clinical
pilot trials [4, 67] and one randomized clinical trial [47]
has been found. Compared to the results of the review
study by Timmermans et al. [8], there have been only
small improvements of the clinical evidence on wearable
sensor-based systems. This can be attributed to the long
time that technological developments require, and the
fact that premature systems do not justify the time con-
suming and costly process of (randomized) clinical trials.
Twenty-one out of the 45 studies aim for stroke re-
habilitation. The focus on stroke rehabilitation is in line
with the general developments in the field of rehabilita-
tion technology. However, it is surprising with regard to
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developments in wearable sensor systems for rehabilita-
tion as they are mostly targeting a combination of pos-
ture monitoring in combination with upper extremity
movement monitoring which is of great value for mus-
culoskeletal as well as neurological pathologies. Com-
pared to other wearable systems that support clinical
applications [12] for lower extremity rehabilitation and
physical activity recognition, the clinical validation
proportion of wearable-sensing systems for movement
measurement during upper body rehabilitation shows
disparity.

Clinical trials are important to assess the effectiveness
of the systems with regard to the additional clinical value
they may provide to the patients for improving their
condition. Such trials are also paramount to pave the
path towards implementation in clinical settings, as
therapists will be hesitant to use them without clinical
validation studies [93].

Inspirations from novel wearable concepts

Researchers working on wearables from the field of textile
and fashion design and from the field of human computer
interaction have been developing inspiring wearable
solutions; although their objectives may not focus on re-
habilitation, their work shows the future trend that can
enhance wearable systems for rehabilitation:

1. Textile displays as visual feedback. For example,
textile display based on thermo paint [94]. Based on
the sensitive property of the thermo paint, both
concurrent feedback and long-term feedback
(e.g. after one hour’s training) could be provided.
Or display technologies such as embedded mini
LEDs or optical fibers can be embedded into
clothing.

2. New forms of haptic feedback, such as inflatable
interfaces like the dynamic textile forms (e.g.
origami textile structure [95]) that move.

3. Personalized design and digital fabrication, adapting
their form and functionality based on individual
needs can be realized through 3D scanning and 3D
printing techniques [96]. Customization design
opens the opportunity of accurately and comfortable
locating the sensors for individual patients.

Conclusions

Researchers from different backgrounds in biomedical sci-
ence, engineering, computer science, and rehabilitation
sciences have cooperated towards the development and
evaluation of wearable systems for wupper body
rehabilitation. The results indicated that accelerometers
and IMUs were most commonly used and they were used
to monitor and provide feedback to patients on range of
motion and movement performance during upper body

Page 18 of 21

rehabilitation. New possibilities are arising with up-
coming technologies such as e-textiles and nano-sensors.
Most systems were in the stage of feasibility prototypes,
where only technical evaluations have been conducted.
Some systems have reached the maturity to support user
tests, while only three systems have been evaluated in
clinical trials. There is a growing trend for using the
smartphone as a monitoring device and as a feedback
carrier. Rehabilitation training may be further improved
when wearable sensing hardware takes enhanced wearabil-
ity into account. Future research should focus on integrat-
ing advanced textile sensors, improving usability,
wearability as well as clinical validation. The latter is of
high importance to pave the path towards implementation
into clinical practice.
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