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Abstract

Background: The use of pattern recognition-based methods to control myoelectric upper-limb prostheses has
been well studied in individuals with high-level amputations but few studies have demonstrated that it is suitable
for partial-hand amputees, who often possess a functional wrist. This study’s objective was to evaluate strategies
that allow partial-hand amputees to control a prosthetic hand while allowing retain wrist function.

Methods: EMG data was recorded from the extrinsic and intrinsic hand muscles of six non-amputees and two
partial-hand amputees while they performed 4 hand motions in 13 different wrist positions. The performance of 4
classification schemes using EMG data alone and EMG data combined with wrist positional information was
evaluated. Using recorded wrist positional data, the relationship between EMG features and wrist position was
modeled and used to develop a wrist position-independent classification scheme.

Results: A multi-layer perceptron artificial neural network classifier was better able to discriminate four hand
motion classes in 13 wrist positions than a linear discriminant analysis classifier (p = 0.006), quadratic discriminant
analysis classifier (p <0.0001) and a linear perceptron artificial neural network classifier (p = 0.04). The addition of
wrist position data to EMG data significantly improved performance (p < 0.001). Training the classifier with the
combination of extrinsic and intrinsic muscle EMG data performed significantly better than using intrinsic (p < 0.0001)
or extrinsic muscle EMG data alone (p < 0.0001), and training with intrinsic muscle EMG data performed significantly
better than extrinsic muscle EMG data alone (p < 0.001). The same trends were observed for amputees, except training
with intrinsic muscle EMG data, on average, performed worse than the extrinsic muscle EMG data. We propose a wrist
position-independent controller that simulates data from multiple wrist positions and is able to significantly improve
performance by 48-74% (p < 0.05) for non-amputees and by 45-66% for partial-hand amputees, compared to a
classifier trained only with data from a neutral wrist position and tested with data from multiple positions.
Conclusions: Sensor fusion (using EMG and wrist position information), non-linear artificial neural networks, combining

EMG data across multiple muscle sources, and simulating data from different wrist positions are effective strategies for
mitigating the wrist position effect and improving classification performance.

Background

The application of advanced signal processing and in-
novative surgical procedures has expanded the use of
pattern recognition of electromyographic (EMG) signals
to control prosthetic devices [1-3]. The majority of this
work has focused on restoring function to individuals
with high-level amputations, who make up less than 10%
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of all upper-limb amputees in the United States [4, 5].
Few studies have sought to apply pattern recognition
control to individuals with partial-hand amputations, who
constitute the majority of upper-limb amputees. Although
often termed a “minor” amputation [5], the impact of
partial-hand amputation on employment and self-image is
increasingly recognized as being comparable to that of
more proximal level amputations [6, 7]. Partial-hand am-
putations are difficult to treat effectively with a prosthesis
[8-10] and cause individuals to perceive themselves as
having a greater disability than those with higher level uni-
lateral amputations [11, 12]. The recent introduction of
externally powered, independently functioning digits, such
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as the i-limb quantum (Touch Bionics Inc.) and Vin-
centpartial (Vincent Systems GmbH), offer exciting
possibilities for improving hand function of partial-
hand amputees.

Partial-hand amputees often retain the ability to move
their wrists, and preservation of residual wrist motion is
critical for functional performance of everyday activities.
With conventional myoelectric control, where an esti-
mate of EMG amplitude is used for proportional control
of an actuated joint, the prosthetist must use the EMG
from the extrinsic hand muscles when intrinsic hand
muscles do not provide viable control signals [8]. Since
the forearm contains muscles that move both the fingers
and the wrist, the user must generate EMG activity to
control the prosthetic fingers without significant wrist
movement, which may generate myoelectric signals that
disrupt control [8]. One recent study showed that when
non-amputees are limited to two degrees of freedom at
the wrist (pronation/supination and flexion/extension)
and 1° of freedom at the hand (open/close), they perform
similarly to when they are limited to a 1°-of-freedom ro-
tating wrist coupled with their natural 22°-of-freedom
hand [13]. Thus, a clinically successful partial-hand pat-
tern recognition control system must both provide high
performance accuracy and allow the individual to retain
use of their wrist.

Muscle contractions responsible for different wrist
movements influence properties of the surface EMG re-
corded from the forearm during hand movements. Joint
angle may also influence EMG patterns as a result of
various internal physiological factors: changing the angle
of the joint about which a muscle is fixed can alter
muscle geometry and affect the relative positions of
muscle fibers and motor units, not only with respect to
themselves but also with respect to the skin surface elec-
trodes [14]. Pattern recognition control depends on the
user’s ability to generate repeatable and differentiable
muscle contractions. Thus, changes in EMG patterns
due to wrist position can degrade performance of the con-
trol system. Studies have shown that variations in arm
position substantially impact the ability of pattern recogni-
tion control systems to classify hand grasps [15-17]. Our
previous studies demonstrate that varying wrist position
adversely affects pattern recognition performance in both
offline and real-time virtual studies [18, 19]. We showed
that the severity of this wrist position effect is diminished
by training the classifier with data from multiple wrist po-
sitions and combining EMG data from the extrinsic and
intrinsic muscles of the hand [18, 19], but these interven-
tions do not reduce classification error to the level seen
when the wrist is in one position.

To attenuate the limb position effect in individuals
with higher level amputations, other studies have sug-
gested that (i) adding information from a limb position
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sensor as an additional input into a pattern recognition
system [16] and (ii) using a two-stage cascade classifier
that uses a position sensor in the first stage for limb pos-
ition identification and EMG for limb motion classifica-
tion in the second stage may reduce the effect of limb
position variation on classification performance [15, 16].
However, these approaches require the user to train the
pattern recognition system by performing each hand
motion in multiple limb positions. Since this laborious
training process must be repeated whenever retraining is
needed, it would be beneficial to be able to predict
changes in EMG features as a function of wrist position,
such that future retraining procedures would only require
data collected in one wrist position. An ideal controller
would thus be able to provide wrist position—independent
control after being trained in one wrist position.

This work evaluates several strategies in non-amputees
and partial-hand amputees for improving classification
of hand grasps performed with varying wrist positions.
In this study, we (1) evaluate the benefit of incorporating
wrist position sensor information into linear and non-
linear controllers and (2) propose a potential method for
developing a control system that provides wrist position-
independent control after being trained in one wrist
position.

Methods

Data collection

Six non-amputees with no known neurological or phys-
ical deficits performed the experiments described in this
study. Two partial-hand amputees-one with an amputa-
tion of all 5 fingers at the metacarpophalangeal joints
(Subject 1) and one with a thumb amputation (Subject 2)
-also performed the experiments. All subjects gave written
consent for the collection of data, images and video
recordings, and experiments were performed at the
Rehabilitation Institute of Chicago under a protocol
approved by the Northwestern University Institutional
Review Board.

Nine self-adhesive bipolar surface Ag/AgCl EMG elec-
trodes (Bio-Medical Instruments) were evenly spaced
around the dominant forearm for non-amputees or re-
sidual forearm for amputees with an inter-electrode dis-
tance of 2.5 cm, with 5 electrodes on the proximal
forearm, 2—-3 cm distal to the elbow, and 4 electrodes on
the distal forearm, 7-8 cm proximal to the wrist (Fig. 1).
Four electrodes were placed on the hand: 2 electrodes
on the palmar side and 2 electrodes on the dorsal side
(Fig. 1). The ground electrode was placed on the olecra-
non of the elbow.

A biaxial flexible electrogoniometer (SG110, Biometrics
Ltd) was used to record wrist flexion, extension, abduc-
tion and adduction. A single axis torsiometer (Q150,
Biometrics Ltd) was used to record wrist pronation and



Adewuyi et al. Journal of NeuroEngineering and Rehabilitation (2017) 14:39

Fig. 1 Experimental setup. a Subjects were prompted by a computer
to perform each hand grasp in 13 wrist positions and received wrist
position visual feedback. b and ¢ anterior and posterior view,
respectively, of a non-amputee subject depicting electrode and
goniometer locations on forearm and hand

supination. The distal end of the torsiometer was at-
tached to the midline of the anterior forearm immedi-
ately proximal to the wrist joint and the proximal end
of the torsiometer was attached to the forearm, imme-
diately distal to the medial epicondyle of the humerus,
in a position that did not interfere with the electrode
placements on the forearm (Fig. 1b). The distal end of
the biaxial goniometer was attached to the back of the
hand, over the third metacarpal, such that it was paral-
lel with the center axis of the hand and its proximal
end was attached over the posterior midline of the fore-
arm (Fig. 1c).

Procedure

Subjects were prompted to position their wrist in one of
13 wrist positions. These positions were located at the
end-range and mid-range of motion for flexion, extension,
supination, pronation, abduction and adduction, in
addition to a “neutral” wrist position. For the neutral pos-
ition, subjects held their wrist at 0° in all 3° of freedom.
Subjects received visual feedback of their wrist position

Page 3 of 11

from a computer monitor. For each wrist position, sub-
jects were required to maintain the other two wrist de-
grees of freedom at 0°+5° Subjects were visually
prompted to perform one of 4 hand motions (chuck
grasp, key grasp, an open hand posture, and a rest pos-
ture). Chuck and key grasps were chosen because they
are the most common grasps used in activities of daily
living [20]. Each hand posture was held for 3 s and re-
peated 6 times in each wrist position for a total of 78
repetitions per hand grasp.

To ensure that non-amputee subjects maintained the
same pinch force throughout each grasp, subjects re-
ceived visual feedback of pinch forces produced during
chuck and key grips using an electronic pinch gauge
(12-0023, Fabrication Enterprises). Subjects were re-
quired to maintain a grasp force that was 15-20% of
their maximal voluntary grasp force made in a neutral
wrist position; this force level was comfortable for all
grasps in all wrist positions. To avoid fatigue, subjects
were allowed 2-5 min rests between trials, where a trial
consisted of 3 repetitions of the four hand postures in
one wrist position.

Signal processing

EMG signals were acquired using a custom built EMG
amplifier with a total gain of 2000x (2x Hardware gain,
1000x Software gain) for each channel. All EMG data
were digitally sampled at 1000 Hz using a custom-built
A/D converter based on a TI AD1298 bioamplifier chip
and band-pass filtered (30-350Hz) with a Type 1, 8th
order Chebyshev digital filter. Goniometer data were
sampled at 1000Hz with a custom-built 16 bit A/D con-
verter and low-pass filtered at 10Hz with a 3rd order
Butterworth filter.

Data analysis

Offline analyses were performed using MATLAB 2015a
software (The Mathworks, Natick, MA, USA). For all
conditions, data were segmented into 200 ms windows
with a 20 ms frame increment [21].

Effect of classifier type and wrist position on classification
error

A combination of four EMG time-domain features
(mean absolute value, number of zero-crossings, wave-
form length, and number of slope sign changes) and six
coefficients of a 6th order autoregressive model (here-
after called TDAR features) were extracted from each
EMG data window. For each window, the average value
of the goniometer and torsiometer data was also calcu-
lated (hereafter called POS, for position features). Four
classifiers, two linear and two non-linear, were compared:
(1) a linear discriminant analysis classifier (LDA), (2) a
quadratic discriminant analysis classifier (QDA), (3) a
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multilayer perceptron neural network with linear activa-
tion functions in its one hidden layer (LNN), and (4) a
multilayer perceptron artificial neural network with non-
linear hyperbolic tangent sigmoid activation functions in
its one hidden layer (MLPANN). The LDA was selected
because it is the most commonly used for the classifica-
tion of limb movements using EMG. It was compared to a
QDA because they make very similar assumptions about
the data except that it allows non-linear boundaries be-
tween data. These were compared to an LNN and
MLPANN classifier as they make no assumptions about
the data.

All classifiers were trained using data from (1) only ex-
trinsic muscle EMG data, (2) only intrinsic muscle EMG
data, or (3) a combination of all extrinsic and intrinsic
muscle EMG data. Data were divided into training data
sets (50% of all data), testing data sets (30% of all data)
and validation data sets (20% of all data). Each classifier
was evaluated using two-fold cross-validation with these
sets. The validation data set was used to minimize over-
fitting of the neural networks; training of the neural net-
works stopped once the error of the validation sets
began to increase. Seven hidden layer neurons were em-
pirically chosen for the MLPANN, and the LNN had
four neurons in its hidden layer. Since the LNN has lin-
ear activation functions, it simply maps the weighted
inputs to the output of each neuron and is thus math-
ematically equivalent to a reduced two-layer input-
output model [22]. The neural networks were trained
using scaled conjugate gradient descent [23]. This ana-
lysis was performed with two feature sets, (1) the TDAR
feature set alone and (2) the TDAR combined with the
POS feature set.

An exhaustive search was performed to determine the
optimal number of wrist positions needed for classifier
training. An LDA classifier was trained using data from
1 to 13 wrist positions and tested on data from all 13
wrist positions. All possible combinations of data from #
wrist positions were evaluated, and the combination
with the lowest error was chosen for each subject and
plotted as a function of number of wrist positions. For
example, when the number of wrist positions chosen
was 4, the four best positions that yielded the highest
classification accuracy for each subject was evaluated.

To determine if position-specific classifiers can per-
form better than one generalized classifier trained with
data from all wrist positions, two training paradigms
were evaluated. In training paradigm 1, one classifier
was trained with data from all wrist positions and tested
with data from each wrist position separately, with the
results averaged across positions. In training paradigm 2,
thirteen classifiers were trained and tested with data
from each wrist position separately and results were av-
eraged across classifiers.
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Predicting changes in feature as a function of wrist position
To predict how each feature changes as a function of
wrist position, a neural network was used for non-linear
regression. The neural network had 3 inputs which were
the wrist position in each of the three degrees of free-
dom. The network had 3 neurons in its one hidden layer
with hyperbolic tangent sigmoid activation functions
and 1 output neuron with a linear activation function.
The neural network was trained using scaled conjugate
gradient descent. A separate neural network was trained
for each feature, from each channel, for each class. Fifty
percent of the data from each wrist position was used to
calculate the mean and variance of each feature in each
position, which were then divided by the mean or vari-
ance, respectively, of each feature in a neutral wrist pos-
ition. The neural network was then trained to predict the
change in mean or variance of each feature (Fig. 2), where
20% of the data was used for cross-validation and 30% was
used for testing. The coefficient of determination, 7%, was
calculated to measure the performance of each neural
network.

Three data sets were compared: (1) the real dataset,
(2) a simulated dataset generated by randomly sampling
from distributions described by the means and variances
generated by the neural network and (3) a simulated
dataset generated by randomly sampling from distribu-
tions described by the mean and variance generated by
the neural network for only the neutral wrist position.
The three datasets were used to train three LDA classi-
fiers, which were tested using the real dataset. The num-
ber of data points used in all simulated datasets was
equivalent to the number of data samples in the original
real data set. For this analysis, only TDAR features were
evaluated, and the LDA classifier was used to determine
average classification error across subjects.

To summarize, the inputs into the neural network were
the wrist position angles and the outputs were either the
mean or variance of each feature for each wrist position
relative to the same feature’s mean or variance in a neutral
wrist position. Thus, once trained, the neural network is
able to predict the mean and variance of each feature in
each position with real data collected from only one neural
wrist position. In other words, by using this method, one
would only need to perform the grasps in all other wrist
positions once, use this data to train the neural network
and simulate the data that will be generated in other wrist
positions. Once this is complete, is no longer a need to
continually monitor wrist position.

Statistical analysis

To determine the effect of classifier type and wrist pos-
ition on classification error, a three-way repeated mea-
sures analysis of variance test (ANOVA) was performed
with subject as a random effect, and muscle set, feature
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Fig. 2 A neural network was trained to predict changes in the mean and variance of each EMG feature, from each channel, for each class as a
function of the mean and variance of the feature in a neutral position. The output of each neural network was used to generate data to simulate
real data collected from all wrist positions. This simulated data was then used to train an LDA and tested using real data

set, and classifier type as fixed effects. A two-way re-
peated measures ANOVA, with subject as a random ef-
fect and muscle set and training paradigm as fixed
effects, was used to determine the effect of training para-
digm on classification performance. To test the perform-
ance of the simulated datasets, a two-way ANOVA test
was performed with subject as a random effect and
muscle set and data set as fixed effects. All post-hoc
comparisons were made using a Bonferroni correction
factor to determine significance. All statistical analyses
were performed using Minitab 16.2.4 (Minitab Inc. PA,
USA), and the significance level was set at 0.05. Statis-
tical analyses were performed only on non-amputee
data.

Results

Effect of classifier type, muscle set and wrist position
information on classification

Figure 3 shows the effect of three factors (muscle set,
feature set, and classifier type) on classification error.
For non-amputees (Fig. 3a), there was a significant main
effect of all three factors (p<0.001). No interaction
terms were found to be significant. The use of wrist
position information as an additional feature improved
relative performance for the LDA, QDA, and LNN clas-
sifiers by 14, 13 and 16% for the extrinsic muscle data,
19, 14, and 26% for the intrinsic muscle data and 8, 6,
and 3% for the combination of extrinsic and intrinsic
muscle data, respectively. The addition of wrist position
information had a much greater effect on the perform-
ance of the MLPANN, improving relative error by 43%
for the extrinsic muscle, 48% for the intrinsic muscles
and 30% for the combination of extrinsic and intrinsic
muscle data (Fig. 3d) with absolute improvements in
error of up to 5.4%. Pairwise comparisons showed that
the MLPANN performed significantly better than the
LDA (p =0.006), QDA (p<0.0001) or LNN (p =0.04)
classifiers, and the LNN performed significantly better

than the QDA (p =0.02). The combination of extrinsic
and intrinsic muscle data performed significantly better
than using intrinsic (p <0.0001) or extrinsic muscle
data alone (p <0.0001), and intrinsic muscle data per-
formed significantly better than extrinsic muscle data
(p <0.001). For partial-hand subjects 1 and 2, similar
trends were observed: the LDA, QDA and LNN resulted
in small changes in classification error with the inclusion
of wrist position information, and the MLPANN classifier
performed the best. The QDA was the worst performing
classifier for both amputees, and the combination of
extrinsic and intrinsic muscle data performed better
than the two muscle group data sets alone. In contrast
to non-amputees, for both amputee subjects the intrin-
sic muscle data, on average, performed worse than the
extrinsic muscle data.

Figure 4 shows the relationship between the number
of wrist positions included in the training data and clas-
sification error. Error decreases substantially at the be-
ginning of the curve as more wrist positions are added,
but there is no further significant decrease in error for
the extrinsic when more than 9, 4, or 6 wrist positions
are included, for the extrinsic (p = 0.39), intrinsic (p = 0.14),
or combination of extrinsic and intrinsic muscle data
(p=0.13), respectively. Similar trends were observed
for amputee subjects. We found no statistically signifi-
cant difference in average classification error between a
classifier trained with data from all wrist positions and
tested with data from each wrist position separately and
13 classifiers trained and tested with data from each
wrist position separately (p = 0.47) (Fig. 5).

Predicting changes in feature as a function of wrist position
The neural networks were able to accurately predict the
change in mean of each feature in each wrist position
relative to the mean of the respective feature in a neutral
wrist position. Figure 6 shows a representative plot depict-
ing the mean and variance for two features, waveform
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length and slope sign changes when the wrist is in a neu-
tral position and when the wrist is in a flexed position
(Fig. 6). On average, for non-amputees, the 7 values were
0.84 for extrinsic muscle data, 0.82 for intrinsic muscle
data and 0.83 for the combination of extrinsic and intrin-
sic muscle data. For the amputee subjects, the +* values

were on average 0.79, 0.73 and 0.77 for the extrinsic, in-
trinsic, and the combination of extrinsic and intrinsic
muscle data, respectively (Table 1). The neural network
was less able to predict the variance of the features. The
values for non-amputees and amputees, respectively, were
0.55 and 0.6 for the extrinsic muscle data, 0.54 and 0.57
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Table 1 Summary of the * values for estimating the mean of
each feature as a function of wrist position

Non-Amputees  Amputees
Muscle Set  Grasp Mean + SD Subject 1 Subject 2
Extrinsics No Movement  0.898 + 0.04 0.836 0.836
Hand Open 0.812+£0.04 0.719 0.806
Key Grip 0.831+0.03 0.755 0.862
Chuck Grip 0.825+0.05 0.777 0.73
Intrinsics No Movement 0913 £0.05 0.845 0.847
Hand Open 0.837+0.07 0677 0.712
Key Grip 0.771+£0.06 0.743 0.796
Chuck Grip 0.74+0.07 0612 0621
Extrinsics No Movement ~ 0.902 + 0.04 0.839 0.839
Ian“tfi cs  HandOpen 0819005 0.706 0777
Key Grip 0.813+0.03 0.752 0.842
Chuck Grip 0.799 +0.05 0.727 0.697

for the intrinsic muscle data and 0.55 and 0.59 for the
combination of extrinsic and intrinsic muscle data
(Table 2).

Training the LDA classifier with real data from only a
neutral wrist position and testing with real data from all
positions resulted in high errors of 27, 22 and 15%, for
extrinsic muscles, intrinsic muscles and the combination
of both sets of muscles, respectively. However, when the
LDA was trained with simulated data from all wrist posi-
tions, the error significantly decreased for all three
muscle groups (Fig. 7a); by 48% for extrinsic muscle data
(p <0.001), by 54% for intrinsic muscle data (p <0.001),
and by 74% (p <0.001) for combined data from both
muscle groups. The same trends were observed in both

Table 2 Summary of the * values for estimating the variance of
each feature as a function of wrist position

Non-Amputees  Amputees
Muscle Set  Grasp Mean + SD Subject 1 Subject 2
Extrinsics No Movement 0576 £ 0.06 0.701 0.707
Hand Open 0486 +0.09 0.569 0.602
Key Grip 0572+0.05 0.527 0615
Chuck Grip 0.56+0.06 0.536 0.539
Intrinsics No Movement — 0.652 +0.05 0.73 0.646
Hand Open 0507 +0.09 0.527 0.57
Key Grip 0504 +0.1 0423 0.69
Chuck Grip 0512+0.1 0456 0523
Extrinsics No Movement 0.6+ 0.05 0.71 0.688
fn'l‘rji ‘e HandOpen  0493+006 0557 0592
Key Grip 0.551+0.06 0495 0638
Chuck Grip 0.545+0.07 0511 0.534
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Fig. 7 Three classifiers were trained using three datasets: (1)
unadjusted model-generated data which was a simulated dataset
generated by randomly sampling from distributions described by
the mean and variance generated by the neural network for only
the neutral position; (2) adjusted model-generated data which was a
simulated dataset generated by randomly sampling from distributions
described by the means and variances generated by the neural
network from all positions; and (3) the real data set. a Results from
non-amputee subjects; for each muscle set, datasets that are
significantly different from each other do not share the same
symbol. b Results from two partial-hand amputee subjects. Error
bars represent standard deviation

partial-hand amputees, where error decreased by 63 and
47%, 45% (Subject 1) and 44%, 66 and 63% (Subject 2)
for the extrinsic, intrinsic, and the combination of ex-
trinsic and intrinsic muscle data, respectively (Fig. 7b).
Moreover, there was no significant difference between
the performance of the adjusted simulated data set and
the real data set (p =0.76) when data from the extrinsic
and intrinsic muscles were combined.

Discussion

This work sought to evaluate strategies that mitigate the
effect of varying wrist position on pattern recognition
classification of hand grasps, to facilitate the application
of pattern recognition control to externally powered
myoelectric partial-hand prostheses. We evaluated the
benefit of incorporating wrist position sensor informa-
tion into linear and non-linear controllers and estab-
lished a control system that is capable of providing wrist
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position—independent control after being trained in one
wrist position.

Overall, the performance of the LDA, LNN, and
MLPANN classifiers were comparable for amputees and
non-amputees, although the QDA performed worse than
all other classifiers. This is likely because unlike the
LDA, the QDA is a more complex model that allows for
the heterogeneity of covariance matrices for each class
of data. Consequently, it requires more data to estimate
more parameters and its poorer performance may be at-
tributed to overfitting of the training data. Though the
use of wrist position information as an additional feature
significantly improved performance across all classifiers,
a multi-layer perception was better able to utilize the
additional wrist position information, improving perform-
ance by 30-48%. The LDA is commonly used because it
provides a good balance between classification perform-
ance and computational efficiency and performs as well as
the MLPANN and LNN [2]. However, these studies do
not consider classification performance for multiple wrist
positions because they focus on applications to individuals
with more proximal amputations. Our results suggest that
for controlling partial-hand prostheses in multiple wrist
positions, the benefit of wrist position information is best
realized when it is incorporated into a multi-layer percep-
tion neural network.

In agreement with our previous studies [18], we found
that combining extrinsic and intrinsic muscle data con-
sistently resulted in significant improvement in perform-
ance over extrinsic or intrinsic muscle data alone for
amputees and non-amputees. For non-amputees, train-
ing with intrinsic muscle EMG data alone performed
significantly better than training with extrinsic muscle
EMG data alone. However, for the amputee subjects, the
extrinsic muscles generally performed better than the in-
trinsic muscles. It is worthwhile to note that it is clinic-
ally difficult to stably record from the intrinsic muscles.
Moreover, 93% of partial-hand amputations are due to
traumatic injury [5] and as such, the intrinsic hand mus-
cles may be damaged or absent rendering them unsuit-
able as an EMG signal source. The differences between
non-amputee and amputee performance may be due to
damage to the intrinsic muscles of amputee subjects.
Though there is high degree of variability in partial-hand
amputations, the extrinsic muscles of partial-hand ampu-
tees are relatively intact and our results demonstrate that
it is feasible to achieve control that is comparable to that
of non-amputee subjects with extrinsic muscle EMG data.

In an attempt to resolve the limb position effect,
Fougner et al. [16] proposed a two-stage position-aware
classifier where the limb position was first detected and
then a classifier specific for that position was used for
motion classification. Our analysis showed when we
compare a classifier trained with data collected from all
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wrist positions to the performance of the average of 13
wrist position specific classifiers, there are small, nonsig-
nificant changes in offline classification error. In our
analysis we did not classify wrist position. Thus even if a
system had perfect 100% wrist position classification ac-
curacy, the use of a position sensor would provide no
benefit when used for two-stage classification.

Because training in multiple wrist positions can be
burdensome for the user, it is important to minimize the
number of wrist positions necessary to train the control
system. Though classification performance generally im-
proved with each additional wrist position, there was
small improvement after more than 6 positions were in-
cluded. In some instances, including data from too many
wrist positions may increase error (e.g., an increase in
the number of wrist positions from 6 to 13 increased
classification error from 5.3 to 6, 4 to 4.4% and from 6.8
to 7.4% for the intrinsic muscle data for non-amputees,
Subject 1, and Subject 2 respectively). This is likely be-
cause data from one wrist position had class labels that
directly contradicted class labels from another wrist pos-
ition. We further analyzed the data to determine if the
classification of hand grasps from all wrist positions was
better when the classifier was trained with the wrist po-
sitions in the mid-range of motion or at the end-ranges
of motion and found that there was no significant differ-
ence between the two training sets. These findings sug-
gest that the number of training positions is more
important than the training position.

The previously discussed strategies require the collec-
tion of data from different wrist positions, which can be
quite time consuming and possibly fatiguing for the user,
especially when retraining of the control system is ne-
cessary. Ideally, a controller would be able to provide
wrist position-independent control after being trained in
one wrist position. By using a neutral network for non-
linear regression, we demonstrate that it is feasible to ac-
curately predict how EMG data features change as a
function of wrist position, and thus we can use data col-
lected from a neutral wrist position to generate simu-
lated data for all wrist positions. Here, we used an
artificial neural network to implement a “black box” ap-
proach, which does not consider the individual factors
that could be contributing to the wrist position effect
such as the changes in muscle length, moment arms,
electrode position relative to the innervation zone, or
muscle fiber recruitment [24]. Alternatively, one could
use other approaches such as a biomechanical model
that can model the effects of changes in musculoskeletal
geometry on muscle activation patterns and muscle
force. However, by using a black-box approach, we
forego the complexities and challenges associated with
such models. For example, the moment arms for the ex-
trinsic hand muscles used in musculoskeletal models are
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based on results from cadaver studies which assume the
same proximal muscle origins and insertions across sub-
jects [25], but for partial-hand amputees, the insertions
of the extrinsic muscle tendons would be highly variable,
depending on each individual’s surgical procedure.

These results are limited in that the training and testing
data sets are from the same day and experimental session.
Though pattern recognition control deteriorates when clas-
sifiers are trained and tested with data collected from differ-
ent days or sessions, a recent study has shown that
between-day performance improves and approaches within-
day performance when subjects perform contractions over
11 consecutive days [26]. These results imply that subjects
are better able to make more consistent contractions when
training over multiple days. It is thus possible that the map-
ping between EMG features and wrist position will be stable
if subjects are trained over multiple days. Further multi-day
experiments are needed to determine if the neural network
maintains its performance across sessions.

One important consideration regarding the neural net-
work regression model is that we assume each feature is
independent and thus the change in feature as a function
of wrist position is predicted separately for each feature.
Consequently we lose any some mutual information across
the features. Even with this loss of information, the per-
formance using the model-generated data particularly with
intrinsic and extrinsic muscles performs just as well as the
real data set, implying that the issue is not critical. Perhaps
this is because there are enough data from enough features
to overcome this. It is possible however, that preserving
the relation and covariability between features would better
allow the model-generated data to more accurately predict
the feature changes and improve performance.

Another potential limitation is that the analyses were
performed offline and with only 4 hand motion classes
(2 grasps, hand open and no movement). We expect
classification error to increase when more hand grasps
are available to the classifier though future work is
needed to evaluate the extent to which wrist position in-
formation improves error and to determine if the per-
formance of the simulated dataset generalize to more
grasps. The relationship between offline error and real-
time performance is unclear. Some previous research
has demonstrated a minimal correlation between offline
performance and usability with a virtual task [27, 28];
however other studies have shown significant correlation
between offline classification error and real-time control
[21, 29]. Though the findings of this study are promis-
ing, further real-time experiments in a virtual environ-
ment or with a physical prosthesis are warranted.

Conclusion
The application of pattern recognition technology to
control externally powered partial-hand prostheses offers
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exciting opportunities for restoring hand function. This
study evaluated strategies that would promote this appli-
cation while allowing a partial-hand amputee to retain
residual wrist function. In this study, we compared the
performance of linear and non-linear control strategies,
and we also evaluated the benefit of adding information
from a wrist position sensor to EMG data for improving
pattern recognition control of hand grasps in multiple
wrist positions. We found that adding wrist position in-
formation improved performance when incorporated
into a neural network classifier for both amputees and
non-amputees. We also successfully used non-linear re-
gression to model the relationship between EMG fea-
tures and wrist position and exploited this relationship
to significantly improve performance of a control system
trained with real data from one wrist position and tested
with real data from multiple wrist positions.
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