
RESEARCH Open Access

A composite robotic-based measure of
upper limb proprioception
Jeffrey M. Kenzie1*, Jennifer A. Semrau1, Michael D. Hill2, Stephen H. Scott3 and Sean P. Dukelow1

Abstract

Background: Proprioception is the sense of the position and movement of our limbs, and is vital for executing
coordinated movements. Proprioceptive disorders are common following stroke, but clinical tests for measuring
impairments in proprioception are simple ordinal scales that are unreliable and relatively crude. We developed and
validated specific kinematic parameters to quantify proprioception and compared two common metrics, Euclidean
and Mahalanobis distances, to combine these parameters into an overall summary score of proprioception.

Methods: We used the KINARM robotic exoskeleton to assess proprioception of the upper limb in subjects with
stroke (N = 285. Mean days post-stroke = 12 ± 15). Two aspects of proprioception (position sense and kinesthetic
sense) were tested using two mirror-matching tasks without vision. The tasks produced 12 parameters to quantify
position sense and eight to quantify kinesthesia. The Euclidean and Mahalanobis distances of the z-scores for these
parameters were computed each for position sense, kinesthetic sense, and overall proprioceptive function (average
score of position and kinesthetic sense).

Results: A high proportion of stroke subjects were impaired on position matching (57%), kinesthetic matching
(65%), and overall proprioception (62%). Robotic tasks were significantly correlated with clinical measures of upper
extremity proprioception, motor impairment, and overall functional independence. Composite scores derived from
the Euclidean distance and Mahalanobis distance showed strong content validity as they were highly correlated
(r = 0.97–0.99).

Conclusions: We have outlined a composite measure of upper extremity proprioception to provide a single
continuous outcome measure of proprioceptive function for use in clinical trials of rehabilitation. Multiple aspects of
proprioception including sense of position, direction, speed, and amplitude of movement were incorporated into
this measure. Despite similarities in the scores obtained with these two distance metrics, the Mahalanobis distance
was preferred.
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Background
Stroke is heterogeneous, affecting sensory, motor, and
cognitive functions that are required for daily activities.
While there are well validated tools to assess motor and
speech functions (eg. Fugl-Meyer Assessment (FMA) [1],
the National Institute of Health Stroke Scale (NIHSS)
[2], Chedoke-McMaster Stroke Assessment Impairment
Inventory (CMSA) [3]) the use of high quality, validated
assessment tools for measuring sensory function post-

stroke (proprioception in particular) is limited [4], and
there is still a lack of a gold standard assessment. While
the FMA and NIHSS have sensory components to the
assessment, they are seldom used as a sole measure of
sensory impairment in research studies focused on sen-
sation as they are based on relatively coarse scales. Yet,
sensory and proprioceptive impairments have a signifi-
cant negative impact on functional recovery following
stroke [5–9]. Individuals with sensory and motor impair-
ments, compared to those with just motor impairments,
have longer lengths of hospitalization and fewer dis-
charges home [10–12]. Furthermore, it has recently been
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shown that motor and proprioceptive impairments can
occur independently after stroke [13].
Some commonly used clinical assessments of proprio-

ception post-stroke include: 1) simple passive limb
movement detection test [14] in which an examiner
moves a subject’s limb segment with their eyes closed,
and subjects are asked to say which direction the limb
was moved; 2) the Revised Nottingham Sensory Assess-
ment [15, 16] in which the subject is asked to mirror
match the movement of a passively moved limb by a
therapist; and 3) the Thumb Localizing Test [17] which
involves passive movement of a subject’s arm and hand
to a random position overhead, and is followed by sub-
jects reaching to grasp their thumb with the opposite
(less affected) hand. These assessments are scored
crudely as normal, slightly impaired, or absent, and lack
the sensitivity to detect smaller changes in propriocep-
tive function in part due to poor inter- and intrarater re-
liability [18, 19]. Therefore, establishing an objective and
reproducible method to assess proprioceptive impair-
ments post-stroke is vital to evaluating the efficacy of
different treatments.
Other more advanced methods to assess proprioception

have been developed [20–23], with many using robotic
technology to measure the kinematics of an individual’s
movements. Assessment devices can now measure pos-
ition sense and kinesthetic impairments after stroke using
arm contralateral matching [13, 24–26], in which a sub-
ject’s affected arm is passively moved by the robot to a
position, and the subject mirror-matches the movement/
position with their less affected limb. Another paradigm
involves passive movement of a subject’s limb to a speci-
fied position, returning the limb to the starting position,
and then having subjects actively move the same arm to
this remembered position [21, 26]. This method has an
advantage in that it does not require interhemispheric
transfer of information, but has limited value in assessing
people with concurrent motor deficits, or in assessing
kinematic aspects of proprioception, such movement
speed and amplitude perception. Further, results can be
confounded by problems with spatial working memory.
Threshold for detection of passive movement paradigms
have also been used to assess proprioception [27, 28]. This
paradigm eliminates confounds due to motor impairment
and interhemispheric transfer of information but again, lit-
tle information about the kinematics of movement per-
ception (e.g. speed or direction) are gained from this task,
and it typically takes much longer to complete than pos-
ition/movement matching. Lastly, Carey et al. [20] have
developed and validated a wrist position sense test, where
a subject’s wrist is moved to a position (wrist flexion or ex-
tension) and without vision of the wrist the subject has to
use their other arm to move a cursor to the direction the
wrist is pointing. This method minimizes confounds due

to interhemispheric information transfer and motor defi-
cits, but again does not provide information about
kinesthetic impairments.
Many of these assessments are reliable, reproducible, ob-

jective, and provide quantitative measures of propriocep-
tive function in the upper limbs. Dukelow et al. [13, 24],
used a KINARM robot (BKIN Technologies, Kingston,
ON), and detailed a contralateral position-matching task
for the upper extremities that can measure various aspects
of an individual’s position sense including: absolute error,
variability in matching positions, systematic shifts in per-
ceived workspace, and perceived contraction or expansion
of the workspace. Similarly, Semrau et al. [25] recently de-
tailed a kinesthetic matching task using the KINARM
robot that can measure an individual’s ability to mirror-
match the speed, direction, and amplitude of a robotically
moved limb [8, 25]. These tasks are reliable [24], and pro-
vide numerous parameters that describe an individual’s
position or kinesthetic sense impairments and can be used
to guide a rehabilitation program tailored to the individual.
Furthermore, these studies have shown a strong relation-
ship between proprioceptive impairments and functional
independence post-stroke, yet proprioceptive impairments
are often not addressed in day-to-day therapy. Reliable and
quantitative assessment tools are therefore critical for test-
ing the efficacy of rehabilitation treatments, as in clinical
rehabilitation trials.
While multiple kinematic parameters can provide a

level of exactness around the nature of an individual’s
proprioceptive impairments and are helpful for rehabili-
tation planning, a summary measure is needed for clin-
ical therapeutic trials in rehabilitation. Thus, a single
continuous metric of upper limb proprioceptive function
that combines all parameters from the position and
kinesthetic matching robotic tasks was developed using
two common measures of distance, Euclidean distance
(EDist) and Mahalanobis distance (MDist) [29]. The
EDist was chosen as it is an easily interpretable calcula-
tion and considers each parameter independently. It is
the square root of the sum of squared distances between
data points (i.e. the straight-line distance between two
points in three-dimensional space). The MDist is the
next measure we used to compare with the EDist. It was
chosen because the calculation accounts for correlations
between parameters (by using the inverse of the
variance-covariance matrix of the data set of interest),
therefore preventing the overweighting of correlated pa-
rameters in the calculation. It is the distance between a
point and the center of a distribution, measured along
the major axes of variation (i.e. the standard deviation of
an object in more than one dimension) [30, 31].. Because
the kinematic parameters derived from the robotic tasks
may demonstrate some degree of correlation with one
another [13], the MDist can account for this auto-
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correlation. Theoretically, it should perform better at
identifying stroke subjects who perform abnormally on
the tasks and those who have atypical patterns of behav-
ior relative to controls. The MDist is generally preferred
over the EDist for multivariable data since it can cope
with different structures of data [31].
MDist (or variants of it) has recently been used in

other studies when examining reaching movements after
stroke [32].. Our primary aim was to examine differences
and similarities between two summary scores (EDist and
MDist) in their ability to differentiate proprioceptive im-
pairment in individuals with stroke from controls in a
large patient sample. We hypothesized that using a com-
posite proprioception score calculated from the Mahala-
nobis distance would more accurately identify impaired
proprioception in individuals with stroke compared to a
proprioception score calculated from the Euclidean
distance.

Methods
Subjects
Subjects with stroke were recruited from the Foothills
Medical Centre or Dr. Vernon Fanning Centre in Cal-
gary AB, Canada. Inclusion criteria were: Subjects
18 years and older with first reported ischemic or
hemorrhagic stroke. Exclusion criteria were: stroke af-
fecting both hemispheres of the brain, upper limb ortho-
pedic injury, neuropathy, evidence of apraxia [33], any
other neurological disease or injury (e.g. Parkinson’s Dis-
ease, Multiple Sclerosis), unable to follow task instruc-
tions due to aphasia or cognitive impairments or
significant fatigue which limited task performance. A
sample of healthy control subjects without history of
neurological injury or disease were also recruited from
the community. Subjects provided written informed con-
sent prior to study participation and this research was
approved by The University of Calgary Conjoint Health
Research Ethics Board (CHREB: #22123).

Robotic assessments
Assessment of proprioception was performed using a
KINARM robotic exoskeleton (BKIN, Kingston, ON,
Canada) (Fig. 1). Subjects were seated in the wheelchair
base with both arms supported against gravity by arm
troughs. The device was fitted to each subject by a
trained study physician or therapist. Subjects were then
wheeled into a virtual reality environment where vision
of the upper extremities was occluded with a screen and
bib fitted around the subject’s neck. The set-up of each
subject and calibration of the robot took between six
and eight minutes to complete. The position matching
task took on average three minutes to complete and the
kinesthetic matching task on average took five minutes
to complete.

Arm position matching
The position matching task required subjects to mirror-
match the position of a robotically moved arm (passive
arm) with their opposite arm (active arm) [13, 24, 34].
The robot passively moved a subject’s stroke-affected
arm to one of nine pre-determined positions in the
workspace in a pseudorandom order (Fig. 1b). Subjects
were then instructed to mirror-match the position of the
passive arm with the opposite limb, without using vision.
Six trials were performed for each of the nine target lo-
cations for a total of 54 trials.
The following parameters were used to quantify task

performance after completion of all trials. Absolute error:
the mean absolute distance error in the X (AbsX), Y
(AbsY), and XY directions (AbsXY) across all trials be-
tween the active arm and the ideal target position:

AbsXY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Abs2X þ Abs2Y

q

Variability: the trial-to-trial variability in matching to
the same target position. Variability was calculated as
the standard deviation of the active hand for each target
position, and then averaged across all target positions
for the X (VarX), Y (VarY), and XY combined (VarXY)
directions:

VarXY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var2X þ Var2Y

q

Contraction/ Expansion Ratio: a measure of whether a
subject perceived contraction or expansion of the work-
space. It was calculated as the matched area of the active
arm, relative to the area of the passive arm (Fig. 1b).
Contraction/ Expansion Ratio was also calculated in the
X (Contr/expx), Y (Contr/expY), and combined XY
(Contr/expXY) directions:

Contr= expX ¼ rangexactive
rangexpassive

Systematic Shift: the mean perceived translation of the
workspace. The mean error between passive and active
hands was calculated for each target position, followed
by taking the mean of means across target locations.
These were computed for the X (ShiftX), Y (Shifty), and
XY (ShiftXY) directions:

ShiftXY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Shift2x þ Shift2y

q

Each of these four parameters, taken in three direc-
tions (X, Y, and XY), provided a total of 12 parameters
for the position matching task.

Arm kinesthetic matching
Kinesthetic matching measured a subject’s ability to
mirror-match the movement of a robotically moved arm
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(passive arm) with the opposite arm (active arm), with-
out using vision (Fig. 1c,d). This task has been previously
described [8, 25, 35]. The passive arm was always the
stroke-affected arm in our sample. Prior to the start of
each trial, both arms were positioned at mirrored start-
ing positions in the workspace. During this ‘positioning’
phase, the robot moved the passive arm to one of three
positions in the workspace. Then two circular dots were
illuminated on the projection screen, a white dot repre-
senting the active arm’s index finger, and a red dot
representing the mirrored starting position. Subjects
were instructed to place the white dot in the red dot.
The targets were then extinguished, and after a random
delay (1500 ± 25 ms) the passive arm was moved with a
bell-shaped velocity profile (peak speed = 0.28 m/s)
(Fig. 1d) between two pre-set target locations (20 cm)
(Fig. 1d). Subjects were instructed to mirror-match
the speed, direction, and amplitude of the passive arm with
their active arm as soon as they felt the robot move their
arm. Six movement directions were tested in a pseudoran-
dom format to each of the three targets, with each direc-
tion being tested six times for a total of 36 trials. Kinematic
data was filtered using 6th double-pass Butterworth filter
with an overall 3 dB cutoff frequency of 10 Hz.
We quantified active arm movement (mirror match-

ing) using the following parameters. Response Latency
(RL): the time between the onset of passive and active

arm movements. Initial Direction Error (IDE): the angu-
lar deviation from subjects’ hand path at peak hand
speed compared to the ideal hand movement path. Peak
Speed Ratio (PSR): the ratio of the maximum speed of
the passive arm to the active arm. Ratios greater than
one indicated a maximum speed of the active arm that
was greater than the passive arm. Path Length Ratio
(PLR): the ratio of the distance travelled by the active
arm relative to the distance travelled by the passive arm.
Ratios greater than one indicated an active arm move-
ment longer than the passive arm. The mean and stand-
ard deviation (variability) across the 36 trials for each of
these four parameters were calculated as separate pa-
rameters (e.g. RL: mean response latency, RLv: response
latency variability). Thus, a total of eight parameters
were derived from the kinesthetic matching task [25].

Development of composite score
The parameters chosen to be included in the composite
score were based on early observations of patterns of behav-
ior that individuals showed post-stroke. These parameters
have been reported in previous studies and we wanted to be
consistent with our previous work [8, 13, 24, 25, 35–37].

Conversion of parameter scores in native units to z-scores
Scoring systems were developed that captured subject
performance relative to that observed for neurologically

Fig. 1 a KINARM robotic exoskeleton (BKIN Technologies, Kingston, ON, Canda). Subjects are seated in the wheelchair base with arms supported
by the arm troughs. b Top-down view of the position matching task. The stroke affected arm was positioned by the robot (black targets, green
lines) and subjects were required to mirror-match the target positions with their opposite hand (open targets, blue lines). Nine targets were
matched to six times each for a total of 54 trials, presented in pseudorandom order. c Top-down view of an exemplar subject performing one trial
of the kinesthetic matching task. The stroke affected arm was moved by the robot between two targets (green lines) and subjects were required to
mirror match the speed, direction, and amplitude of movement as soon as they felt the robot move their arm (blue lines). The speed versus time
profile represents the temporal aspects of the task, by measuring the response latency (time to initiation of the active arm movement) and peak speed
ratio (difference between peak speeds of the passive (green) and active (blue) hands)
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intact subjects. The first step was to convert the task pa-
rameters from their native units to normalized z-scores
based on a large sample of neurologically intact control
subjects (n = 160, tested on both arms = 319 data points,
median age = 54 (range = 18–93), female = 84, right
handed = 147, left handed = 13). Performance metrics
for this sample of healthy subjects were transformed to a
normal distribution, using a Box-Cox power transform-
ation [38–40]. Linear regressions were then used to con-
sider the influence of age for each parameter, and then
verified that the data was normally distributed. If neces-
sary, the Box-Cox transformations were adjusted to
achieve normality. Data points ± 3.29 standard devia-
tions from the mean were considered outliers and were
removed from the control dataset (maximum <4% of
subjects per parameter, average < 1% per parameter).
This entire process was performed again after any outlier
removal.
The next stage involved transforming these z-scores so

that a score of 0 was equal to the best possible perform-
ance and higher scores indicated worse performance.
This is because some of the task parameters were one-
sided in which negative z-scores indicated better per-
formance (e.g. initial direction error for kinesthetic
matching), whereas others were two-sided in which both
positive and negative z-scores of increasing value indi-
cated worse performance (e.g. contraction/expansion ra-
tio for position matching). Therefore, z-scores for the
one-sided parameters (e.g. Position matching: Abs, Var,
Shift. Kinesthetic matching: RL and IDE), were trans-
formed such that negative infinity was equal to zero and
positive infinity remained the same (henceforth referred
to as zeta-scores). The zeta-scores for the two-sided pa-
rameters were simply equal to the z-scores. These zeta-
scores were used in the subsequent composite score cal-
culations. For the arm position matching task, these
values were computed using automated analysis tools
from KINARM Standard Tests (BKIN Technologies).
For the kinesthetic task, values were computed in
MATLAB (v2014b, MathWorks, Natick, MA) using cus-
tom routines from BKIN Technologies.

Composite score 1: E-score based on Euclidean distance
The Euclidean Distance (EDist) was computed from the
healthy control subjects for a given task.. This EDist is
simply the root mean square (RMS) of the zeta-scores
for all parameters associated with a task:

EDist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að Þ2 þ bð Þ2 þ…

q

where a, b, etc. represent the zeta-scores for a subject.
EDist increases in size with the number of parameters.
In order to compare scores across tasks, the Box-Cox
equations were used to convert the EDist scores for the

healthy control population into a normal distribution
(followed by testing for normality). These scores were
again transformed to all positive values and scores ≥3.29
were considered outliers and were removed. This process
was repeated until no outliers remained in the distribution
(~1% of subjects removed). Similar to the zeta-scores, a
final E-Score of 0 signifies best performance and increas-
ing positive values signifies poorer performance. The units
follow the same percentiles as ±1SD of a normal distribu-
tion (i.e. 1 = 68.3%, 2 = 95.4%, etc.).

Composite score 2: M-score based on Mahalanobis distance
The Mahalanobis Distance is similar to the Euclidean
Distance measure above, except that the covariance
matrix was used to consider correlations between parame-
ters [29]. As in the E-Score processing, the z scores were
first transformed into positive values with 0 reflecting best
performance and increasing values reflecting poorer per-
formance (zeta scores). This MDist is computed using the
zeta-scores of all parameters from a task using:

MDist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð ÞC−1
x xð ÞT

q

Where x is the row vector of zeta scores for an indi-
vidual subject, and Cx is the covariance matrix computed
from the healthy control population dataset [30]. MDist
values were converted into an M-Score following the
same procedures used to convert EDist to E-Score.
E- and M-Scores were generated for position matching

and kinesthetic matching separately. Subjects were consid-
ered ‘impaired’ on the task if they received a score greater
than 1.96, indicating their performance was more than
95% from the mean of neurologically intact control sub-
jects. The overall proprioception score was the average be-
tween the position and kinesthetic matching scores. All
statistical analyses and calculations were performed in
MATLAB (v2014b, MathWorks, Natick, MA) using both
custom scripts and scripts from BKIN Technologies. The
BKIN Dexterit-E User Guide refers to the E-Score as the
‘Task Score’ while the M-Score is the M-Score.

Clinical Assessments
A battery of clinical assessments was performed on sub-
jects with stroke by a trained study physician or therap-
ist. The Chedoke McMaster Stroke Assessment (CMSA)
for the Upper Extremities was performed to evaluate
upper limb motor function [3]. The Functional Inde-
pendence Measure (FIM) was used as a metric for inde-
pendence within activities of daily living [41]. The
conventional subtests of the Behavioral Inattention Test
(BIT) was used to evaluate visuospatial neglect [42]. We
included this clinical assessment of visuospatial neglect
because we have previously noted that there can be a
high co-occurrence of visuospatial neglect and sensory
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loss [35]. Handedness was measured using the Modified
Edinburg Handedness Inventory (performed on healthy
controls as well) [43]. Lastly, the Thumb Localizing Test
(TLT) was used to evaluate upper limb proprioceptive
function [17]. For this test, the subject’s eyes were closed
and the subject’s stroke-affected limb was placed some-
where in space above eye level by a therapist. Subjects
were then instructed to grasp this thumb with their op-
posite (i.e. less affected) hand. Performance was scored
on an ordinal scale from zero (no difficulty locating
thumb) to three (unable to locate thumb). We choose
this assessment because it was easy to administer and
uses both limbs to test proprioception, akin to our ro-
botic tasks. There is currently no gold standard for the
assessment of upper limb proprioception post-stroke.
The level of agreement between the TLT and robotic as-
sessments in classifying subjects as having impaired pro-
prioception (TLT > 0, robotic score > 1.96) was
calculated using Cohen’s Kappa [44]. Comparisons be-
tween robotic and clinical measures were performed
using Pearson or Spearman correlations, where appro-
priate, with Bonferroni corrections for multiple compari-
sons. The strength of association was classified as either
very weak (r = 0.00–0.19), weak (r = 0.20–0.39), moder-
ate (r = 0.40–0.59), strong (r = 0.60–0.79), or very strong
(r = 0.80–1.0) [45].

Results
Subjects
A total of 285 stroke subjects (Female = 92) were re-
cruited and assessed on the position matching and
kinesthetic matching tasks (Table 1).

E- and M-scores
The composite E- and M-Scores were highly correlated
with one another (Fig. 2a and b). There were strong

positive, linear relationships between E- and M-Scores
on the position matching (r = 0.99, p < 0.001) and
kinesthetic matching (r = 0.97, p < 0.001) tasks. E- and
M-Scores on the position matching and kinesthesia tasks
were also positively correlated with one another
(r = 0.80, p < 0.001). Despite these high correlations,
there were instances in the overall proprioception score
where subjects were considered ‘impaired’ (score > 1.96)
based on the E-Score and not the M-Score (n = 11), and
vice versa (n = 6). However, these discrepancies were
rarely larger than ± one standard deviation.
Comparing performance between tasks revealed that per-

formance on position matching was not always indicative
of performance on kinesthetic matching (Fig. 2c and d).
More subjects had impaired kinesthetic matching with un-
impaired position matching (n = 45 using E-Score; n = 44
using M-Score) than subjects who demonstrated impaired
position matching with unimpaired kinesthetic matching
(n = 24 using E-Score; n = 23 using M-Score). More sub-
jects with right hemisphere stroke were abnormal on the
position matching task (E-Score = 73.4%, M-
Score = 69.8%), kinesthetic matching task (E-Score = 74.6%,
M-Score = 74.0%), and overall (E-Score = 75.1%, M-
Score = 73.4%), relative to subjects with left hemisphere
stroke (Position match: E-Score = 35.3%, M-Score = 38.8%;
Kinesthesia: E-Score = 51.7%, M-Score = 50.9%; Overall: E-
Score = 47.4%, M-Score = 45.7%). Overall, more subjects
were abnormal on the kinesthetic matching task (E-
Score = 65.3%, M-Score = 64.6%) relative to the position
matching task (E-Score = 57.9%, M-Score = 57.2%).
Table 2 shows Pearson correlations between z-scores

for each of the position and kinesthetic matching param-
eters. The E- and M-Scores for position and kinesthetic
matching were positively correlated with one another
(E-Scores, r = 0.80, p < 0.001. M-Scores, r = 0.80,
p < 0.001). The overall proprioception score was

Table 1 Demographic and clinical information for sample of 285 subjects with stroke. Values are presented as mean ± standard
deviation, or a count of the number of subjects in each category

Left Hemisphere Stroke (n = 115) Right Hemisphere Stroke (n = 170) Total (n = 285)

Age 59.5 ± 14.7 61.2 ± 14.6 60.6 ± 14.6

Sex (F, M) 41, 74 51, 119 92, 193

Handedness (R, L, Mixed) 104, 10, 1 160, 8, 2 264, 18, 3

Days post-stroke 12 ± 18 12 ± 12 12 ± 15

CMSAa (1,2,3,4,5,6,7) 10,6,15,7,20,15,40 14,19,18,6,37,24,51 24,25,33,13,57,39,91

FIM 115.1 ± 17.5 112.1 ± 18.5 113.3 ± 19.6

TLT (0,1,2,3) 60,31,17,5 82,52,25,11 142,83,42,16

BIT 138.1 ± 16.3 130.1 ± 21 133.3 ± 19.6

Arterial Territory (MCA, PCA, ACA, VA)b 73,18,7,21 124,28,4, 24 197,46,11,45

F: Female, M: Male, R: Right, L: Left, CMSA: Chedoke McMaster Stroke Assessment for the Upper Extremities, FIM: Functional Independence Measure, TLT: Thumb
Localizing Test, BIT: Behavioral Inattention Test, MCA: Middle Cerebral Artery, PCA: Posterior Cerebral Artery, ACA: Anterior Cerebral Artery, VA: Vertebral Artery
aValues are for the stroke-affected limb
bVertebral artery territory includes any artery supplied by the vertebral artery, before branching into the posterior cerebral arteries (i.e. posterior inferior cerebellar
artery, anterior inferior cerebellar artery, basilar artery). Thirteen subjects were classified as having strokes in more than one arterial territory

Kenzie et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:114 Page 6 of 12



Fig. 2 Scatter plots of robotics scores for individual stroke subjects (N = 285). Greater scores indicate worse proprioception a The relationship
between position matching performance calculated using subjects’ E-Scores (Euclidean distance of an individual subject’s robotic scores from the
mean healthy control scores) versus M-Scores (Mahalanobis distance of an individual subject’s robotic scores from the mean healthy control scores). b
Relationship between kinesthetic matching performance calculated using the E-Scores and M-Scores. c Relationship between the position matching
and kinesthetic matching tasks based on the E-Scores. d Relationship between the position matching and kinesthetic matching tasks based on the M-
Scores. E and M-Scores represent standard deviations from the mean of neurologically intact control performance. Grey dashed lines indicate 1.96
standard deviations. Data points beyond 1.96 indicate impaired performance. Black dotted lines on each plot indicate unity between scores, black solid
lines on each plot indicate least squares fit between scores. Pearson correlation coefficients (r) and associated p-values (p) are presented in each plot

Table 2 Pearson correlation coefficients between position matching and kinesthetic matching parameters for subjects with stroke
(n = 285). Comparisons were made between z-scores for each task parameter. Z-scores were calculated based on distributions of
neurologically intact control subject scores (n = 319 data points)

Position Matching Parameters

Absolute Error Variability Contr/Exp Shift E M

Kinesthetic Matching Parameters X Y XY X Y XY X Y XY X Y XY

IDE 0.65 0.65 0.69 0.65 0.63 0.67 0.58 0.57 0.60 0.24 0.38 0.38 0.80 0.80

IDEv 0.59 0.50 0.60 0.57 0.56 0.59 0.49 0.45 0.49 0.22 0.22 0.31 0.67 0.66

PLR 0.34 0.40 0.39 0.40 0.35 0.40 0.31 0.44 0.36 0.09 0.29 0.20 0.47 0.48

PLRv 0.56 0.55 0.61 0.60 0.58 0.61 0.40 0.46 0.41 0.26 0.29 0.36 0.65 0.64

RL 0.43 0.43 0.45 0.46 0.46 0.47 0.37 0.32 0.38 0.10 0.18 0.18 0.50 0.49

RLv 0.12 0.11 0.12 0.13 0.18 0.14 0.15 0.14 0.14 −0.06 −0.09 −0.02 0.18 0.17

PSR 0.25 0.36 0.30 0.22 0.27 0.24 0.39 0.39 0.40 0.12 0.24 0.19 0.44 0.47

PSRv 0.17 0.09 0.16 0.23 0.21 0.23 −0.05 −0.03 −0.03 0.11 0.05 0.15 0.08 0.05

E 0.63 0.66 0.69 0.66 0.64 0.68 0.57 0.60 0.60 0.23 0.38 0.37 0.80 0.80

M 0.61 0.66 0.66 0.64 0.63 0.66 0.57 0.60 0.59 0.21 0.40 0.36 0.79 0.80

All bold values are significant at p < 0.00036 (Bonferonni corrected, p < 0.05, n = 140 comparisons)
IDE(v): Initial Direction Error (variability), PLR(v): Path Length Ratio (variability), RL(v): Response Latency (variability), PSR(v): Peak Speed Ratio (variability). Contr/Exp:
contraction/ expansion ratio. E: ‘E -score’ calculated from Euclidean distance of z-scores. M: ‘M -score’ calculated from Mahalanobis distance of z-scores
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calculated as the average of the position matching and
kinesthetic matching scores. The average E-Scores iden-
tified 63.9% of subjects as abnormal (score > 1.96) while
the average M-Scores identified 62.1% of subjects as
abnormal.

Comparison with clinical measures
The robotic proprioception measures showed moderate
correlation with the clinical measures of proprioception,
upper extremity arm function, and overall functional in-
dependence (Table 3). We also calculated the agreement
between the thumb localizing test (TLT) and our robotic
scores in classifying subjects as having ‘normal’ or ‘ab-
normal’ proprioception using Cohen’s Kappa [44]. Ab-
normal proprioception based on the TLT was any score
greater than or equal to one, and abnormal propriocep-
tion on the robotic tasks was an E- or M-Score greater
than 1.96. Table 3 shows the agreement between clinical
and robotic classification of proprioceptive impairments.

Exemplar subjects
Figure 3 describes four individuals who performed differ-
ently on the position and kinesthetic matching tasks.
Starting with the position matching task, a healthy control
subject (Fig. 3a) mirror-matched the target positions ac-
curately and consistently (denoted by the small ellipse
sizes which indicate one standard deviation of error) (pos-
ition matching E-Score = 0.03, M-Score = 0.02). A subject
with stroke in Fig. 3b also demonstrated normal perform-
ance on the position matching task (E-Score = 0.6, M-
Score = 0.6), while the subject with stroke in Fig. 3c dem-
onstrated abnormal performance (E-Score = 2.1, M-
Score = 2.1) resulting primarily from increased absolute
error (AbsY z = 2.1), variability (VarY z = 3.4), and system-
atic shift (ShiftY z = −2.4). Lastly, Fig. 3d presents a subject
who was significantly impaired on the position matching
task (E-Score = 5.3, M-Score = 5.4).

For the kinesthetic matching task (Fig. 3a), the control
subject made smooth, straight movements in line with the
ideal trajectory and demonstrated a consistent response
latency and movement speed (E-Score = 0.03, M-
Score = 0.1). The subject with stroke presented in Fig. 3b
performed well on matching the direction (IDE z = −1.8)
and amplitude (PLR z = 1.4) of passive movements, but
poorly on response latency (RL z = 2.4) and response la-
tency variability (RLv z = 2.3) (E-Score = 1.6, M-
Score = 1.7). In comparison, the subject with stroke in Fig.
3d had difficulties in matching the direction (IDE z = 3.0)
and length (PLRv z = 2.7) of passive movements, but per-
formed well in matching speed (PSR z = −0.88) with nor-
mal and consistent response latency (RL z = 1.1, RLv
z = 0.6) (E-Score = 2.6, M-Score = 2.6). Finally, the stroke
subject in Fig. 3d was significantly impaired on all aspects
of the kinesthetic matching task (E-Score = 7.3, M-
Score = 8.4).

Discussion
We have developed a composite measure of upper limb
proprioception using the KINARM robotic exoskeleton
that can be used as an outcome measure for tracking pro-
prioceptive impairment over time and across subjects
[24]. Despite the significant correlation between position
sense and kinesthetic sense impairments, individuals after
stroke were often impaired on different aspects of position
sense and kinesthetic sense (Fig. 3), with some individuals
demonstrating impairments in one sense and not the
other (Fig. 2). Our robotic scores also identified more
stroke subjects as having proprioceptive impairments
(~62%) compared with standard clinical measures (50%).
Contrary to our hypothesis, the Mahalanobis distance
score identified slightly fewer subjects as impaired (62.1%)
compared to the Euclidean distance score (63.9%).
There is currently no gold standard for assessing pro-

prioceptive impairment after stroke, despite proprioceptive
impairments being common (over 50%) [8, 10, 20, 24, 25]

Table 3 Spearman correlations between clinical and robotic assessment scores and the agreement between clinical and robotic
classification of proprioceptive impairment in subjects with stroke. Values presented are Spearman’s rho for correlations and Cohen’s
Kappa for level of agreement. Subjects were considered impaired on the robotic tasks if they scored >1.96, and impaired on the
Thumb Localizing Task if they scored >0

Robotic Assessments

Clinical Assessments
(ρ(283)=)

PM_E PM_M KIN_E KIN_M Overall E-Score Overall M-Score

TLT 0.48 0.49 0.47 0.48 0.50 0.51

CMSA −0.50 −0.50 −0.56 −0.58 −0.57 −0.57

FIM −0.40 −0.40 −0.44 −0.44 −0.44 −0.45

Agreement, (k=) TLT 0.27 0.28 0.29 0.33 0.32 0.33

All values (correlations and agreement) are significant at p < 0.001
TLT: Thumb Localizing Task (scored from 0 = no impairment to 3 = unable to locate thumb). CMSA: Chedoke McMaster Stroke Assessment for the Upper
Extremities (scored from 7 = normal movement to 1 = flaccid paralysis). FIM: Functional Independence Measure (scored from 126 = complete independence with
daily activities to 18 = complete dependence/total assistance). PM_E: E-Score for the position matching task. PM_M: M-Score for the position matching task. KIN_E:
E-Score for the kinesthesia task. KIN_M: M-Score for the kinesthesia task. Overall E- and M-Scores indicate the average score between the position matching and
kinesthesia tasks

Kenzie et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:114 Page 8 of 12



Fig. 3 Exemplar subjects’ performance on the position (left panel) and kinesthetic (middle and right panel) matching tasks. For the position
matching task, the subject’s matched hand positions (open targets, blue lines) are mirrored across the vertical centre line and displayed on top of
the passive robotically moved hand positions (black filled targets, green lines). For the kinesthetic matching task, both hand movements are displayed
where solid green lines indicate passive robotic movements, dotted green lines indicate the optimal movement path of the opposite arm, and solid
blue lines indicate active subject movements. Light blue lines indicate individual trials and dark blue lines indicate the average between all completed
trials in the given movement direction. Note that for the position matching task, the blue and green lines simply connect the target positions for
display purposes and do not represent the hand movements between targets. E: ‘E-Score’ indicates the subject’s composite score calculated from the
Euclidean distance. M: ‘M-Score’ indicates the subject’s composite score calculated from the Mahalanobis distance. a Control exemplar. Intact position
matching performance is indicated by low variability (small ellipse size), with minimal shift or contraction/expansion of the workspace (blue dotted
lines). Intact kinesthetic matching performance is indicated by alignment in movement direction to the ideal movement path, and a short response
latency (onset of active arm movement) with similar peak speeds between passive (green lines) and active hands (blue lines). b Stroke subject with
intact performance on the position matching task. This subject also performed well on the spatial aspects of kinesthesia (middle panel) but performed
poorly on the temporal aspects of kinesthesia (right panel). c Stroke subject who performed poorly on the position matching task (increased variability
and shift of workspace). This subject demonstrated impairments on the spatial aspects of kinesthesia but normal performance on the temporal
parameters (short and consistent response latency and peak speeds). d Stroke subject who was severely impaired on both position and kinesthetic
matching tasks
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and having a strong relationship with functional recovery
post-stroke [11, 12]. In order for clinical rehabilitation trials
to identify appropriate treatments for improving proprio-
ceptive function post-stroke, a sensitive and reliable out-
come measure of proprioception is needed [19]. The level
of agreement (k = 0.32–0.33, p < 0.001) between our ro-
botic measures of proprioception and a commonly used
clinical measure of proprioception (the Thumb Localizing
Test) demonstrates some discrepancy between these tests
in classifying subjects as normal or abnormal. Based on
previous studies we expected fair agreement between these
assessments [24, 25]. These results are not surprising given
the known limitations with these clinical tests and their
low reliability [18]. Unfortunately, there is currently no
gold standard for assessing upper limb proprioception
post-stroke. Our proprioception score, utilizing the
KINARM and Mahalanobis distance, provides an overall
indicator of proprioceptive impairment that considers mul-
tiple kinematic and spatial parameters. This score is suit-
able as a primary outcome measure of proprioception for
use in clinical rehabilitation trials targeting upper limb
function.
The Euclidean and Mahalanobis distances have been

used for decades as general distance metrics, for outlier
detection [46, 47], and in various classification algo-
rithms [48–51]. The Mahalanobis distance was preferred
over the Euclidean distance in summarizing our robotic
parameters, because it takes into consideration correla-
tions between parameters. Theoretically, it is more sensi-
tive in identifying abnormal patterns of behavior
compared to the Euclidean distance. It can also account
for impaired performance that is in line with the normal
variation in task performance, thus producing a lower
overall score (i.e. more normal). This is likely why fewer
subjects were identified as abnormal based on the M-
Score compared with the E-Score, since impairments on
parameters that were in line with normal variations in
task performance had less of an impact on the overall
score. Based on our data, EDist and MDist performed
similarly in calculating a composite score from the ro-
botic parameters, and neither method produced drastic-
ally inflated results compared to the other for any one
subject. Recently, Kitago et al. (2015) used functional
principal component analysis along with the Mahalano-
bis distance to create a single variable to measure reach-
ing performance during a visually guided reaching
paradigm in chronic stroke survivors. This type of data
driven approach is useful for capturing kinematic as-
pects of movement (or impairments in movement) that
may not be immediately apparent. However, we chose to
use the Mahalanobis distance on previously defined
kinematic parameters for two reasons. One was to main-
tain consistency with our previous work and that of
others. The second reason was to ensure that the

parameters used to construct the M-Score were behav-
iorally meaningful.
Some limitations exist with this study and with using

composite scores. First, a composite score may not fully
describe the nature of an individual’s impairment. Figure
3 shows that individuals post-stroke can be impaired on
different aspects of proprioceptive sensation. There are
also subjects who have difficulties with specific aspects
of proprioception but are classified as normal based on
the composite score. Thus, while a single task score
might be necessary for planning and reporting clinical
trials, it may not be informative enough when deciding
on what an individual should be working on in a therapy
intervention. Second, deciding on what the minimal
clinically important difference is for the M-Score of pro-
prioception requires further analysis comparing changes
in M-Score with changes in an individual’s functional
ability. Third, there is the possibility that fatigue may
have contributed to the difference in performance be-
tween the position-matching and kinesthesia tasks, since
the position-matching task was always assessed before
the kinesthesia task in our protocol. However, we did
not observe any decrease in performance over the
course of the kinesthesia task across all subjects after
visual inspection of the data. Additionally, given the pos-
ition matching task takes only three minutes and the
kinesthesia task takes five minutes, we suspect any fa-
tigue in our subjects, if present at all, was minimal.
Lastly, our composite score does not include the assess-
ment of distal joints (e.g. wrist, thumb, and fingers). As-
sessment tools have been designed for proprioception at
the distal joints (e.g. Wrist Position Sense Test) [20] but
our focus here was on the shoulder and elbow joints.
Proprioceptive impairments at the shoulder and elbow
are related to functional independence [24, 25], however,
future studies could examine the impact of better quan-
tifying proprioception throughout the upper limb and
the cumulative impact on prognosis and treatment
planning.
Having tangible and easily interpreted outcome variables

enables the translation of someone’s specific impairments
directly to therapy, where a rehabilitation program can be
tailored to these impairments. Somatosensory and pro-
prioceptive impairments are becoming well known as sig-
nificant factors in the recovery of function post-stroke.
However, sensory retraining is still in its infancy with
regards to high-quality clinical trials. There is a great need
for improved outcome measures for proprioceptive im-
pairments post-stroke and improved evidence for proprio-
ceptive interventions [9, 19, 52, 53].

Conclusions
We have developed a quantitative and reproducible out-
come measure for upper limb proprioception that takes
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into consideration both position and kinesthetic senses.
In a large sample of subjects with recent stroke
(n = 285), over 60% had abnormal proprioception rela-
tive to a neurologically intact control population. The
outcome measure presented here for proprioception will
be important in measuring the efficacy of clinical stroke
rehabilitation trials for improving proprioceptive
function.
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