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Abstract

Background: Application of objective measurement of stroke gait with accelerometer-based wearable technology
and associated algorithms is increasing, despite reports questioning the accuracy of this technique in quantifying
specific stroke-related gait impairments. The aim of this study is to determine the feasibility, validity and reliability of
a low-cost open-source system incorporating algorithms and a single tri-axial accelerometer-based wearable to
quantify gait characteristics in the laboratory and community post-stroke.

Methods: Twenty-five participants with stroke wore the wearable (AX3, Axivity) on the lower back during a laboratory
2 minute continuous walk (preferred pace) on two occasions a week apart and continuously in the community for two
consecutive 7 day periods. Video, instrumented walkway (GaitRite) and an OPAL accelerometer-based wearable were
used as laboratory references.

Results: Feasibility of the proposed system was good. The system was valid for measuring step count (ICC 0.899). Inherent
differences in gait quantification between algorithm and GaitRite resulted in difficulties comparing agreement between
the different systems. Agreement was moderate-excellent (ICC 0.503–0.936) for mean and variability gait characteristics
vs. OPAL. Agreement was moderate-poor between the system and OPAL for asymmetry characteristics. Moderate-
excellent reliability (ICC 0.534–0.857) was demonstrated for 11/14 laboratory measured gait characteristics. Community
test-retest reliability was good-excellent (ICC 0.867–0.983) for all except one (ICC 0.699) of the 19 gait characteristics.

Conclusion: The proposed system is a low-cost, reliable tool for quantifying gait post-stroke with multiple potential
applications. Further refinement to optimise gait quantification algorithms for certain gait characteristics including gait
asymmetry is required.
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Background
Gait impairments such as reduced gait speed and temporal
asymmetry are common after stroke, limiting community
ambulation [1] and physical activity [2]. Reduced physical
activity predisposes this at-risk population to increased

morbidity, stroke recurrence, and further cardiometabolic
disease [3].
Quantification of gait after stroke via examination of

spatio-temporal characteristics (e.g. step length and
velocity, which, in relation to gait outcomes (see below),
we term ‘micro’ characteristics [4]) commonly occurs in
a gait laboratory. Laboratory testing relies on expensive
equipment and technical support, limiting data capture
to specialist centres and analysis to a sparse number of
gait cycles that are produced under highly controlled
conditions. In clinical practice when laboratory facilities
are not available, functional measures such as the ten
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metre walk test [5] and the Dynamic Gait Index [6] are
commonly used to measure gait after stroke [5]. These
approaches are limited however for three key reasons:
measures of gait velocity and function may not detect
gait quality or asymmetry; one-off testing in a controlled
environment does not inform about day to day
variability in performance or the challenges of real-
world walking and visual observation and stop watch
timing can be limited by observer error. Instrumented
walkways such as the GaitRite system are another
potential method of measuring gait via a pressure
sensitive mat that detects footfall location and timing
during walking [7]. Electronic measurement with the
GaitRite system reduces observer bias and the system
has been shown to have good to excellent intra and
inter-rater reliability in sub-acute stroke [8]. One-off
testing with the GaitRite system however prohibits
understanding of community walking.
The use of accelerometer-based wearable technology

(wearables) to quantify micro gait characteristics has
gained popularity in stroke research with open-source,
data processing platforms facilitating ease of application
[9, 10]. Wearable technology offers a low-cost method of
quantifying gait in the clinic and can reduce the bias of
manual recording techniques [11]. In the community
wearable technology can be used to increase ecological
validity and reduce observer bias and attentional
compensation associated with clinic testing [12].
Capturing levels of physical activity is also possible

using wearables [13] and this field appears more
advanced in stroke research than measurement of
spatio-temporal features of gait which is, by comparison,
novel. Traditionally, physical activity outcomes that
describe the ‘volume’ of activity after stroke such as step
count are reported [14] but these have now been
extended to include more nuanced and informative
outcomes such as the pattern and variability of activity
[15, 16]. We refer to this grouping of volume, pattern
and variability physical activity measures as ‘macro’ gait
outcomes [4].
Research examining the application of wearables to

measure micro and macro gait outcomes in stroke is
emerging [17–21]. Although this application of wearable
technology is promising, a number of potential problems
require consideration for future use of wearable technol-
ogy in stroke. Potential problems include: application of
inertial measurement units with short battery lives
necessitating regular recharging (limiting community
application) [22]; use of multiple wearables resulting in a
high researcher/participant burden [4]; use of engineer-
ing terminology to describe gait measures reducing
clinical application [4] and validation against manual
recording techniques leading to potential bias [21]. The
hemiparetic gait pattern adds a further challenge to

development of accurate algorithms for detection and
processing of discrete spatio-temporal features such as
step asymmetry [17]. Also, to date research has focused
on measuring either physical activity or spatio-temporal
aspects of gait, rather than integrating both which would
allow for more targeted rehabilitation approaches. The
use of a single wearable that could capture both spatio-
temporal and physical activity aspects of gait over time
in the community could address some of the problems
highlighted above. Previous work has demonstrated the
feasibility of instrumenting gait with a single wearable
positioned on the fifth lumbar vertebrae [23, 24]. This
location enables the optimal functionality of the
algorithms selected for both spatio-temporal and
physical activity aspects of gait in healthy participants.
This functionality however, has not been confirmed in
stroke where pathological gait is commonly observed.
The aims of this study were to determine the feasibil-

ity, reliability and validity of a low-cost open-source
system, incorporating algorithms and a single tri-axial
accelerometer-based wearable (AX3), to comprehen-
sively quantify gait in terms of both spatio-temporal
(micro) and physical activity (macro) outcomes in the
laboratory and community post-stroke.

Methods
Study design: Cross-sectional (Time point 1 and Time
point 2) and observational/longitudinal (Week 1 and
Week 2).
Setting: Gait laboratory, Clinical Ageing Research Unit,

Campus for Ageing and Vitality, Newcastle upon Tyne
and community settings in North East England.

Participants: Inclusion criteria
Community dwelling stroke survivor; at least 1 month
post-stroke onset; mild to moderate gait deficit defined by
clinical observation of asymmetry of gait including
reduced stance time, increased swing time in the affected
limb and/or reduced gait speed/balance problems; no
changes in gait-related ability over the past month based
on self-report and able to walk 10 m with/without a stick
(cane or quadropod cane). Exclusion criteria: medical
problems other than stroke impacting on gait e.g.
osteoarthritis. Participants were recruited via advertise-
ment or therapist referral. All eligible participants were
consecutively invited to participate in the study. The study
was approved by the Greater Manchester West Research
and Ethics Committee. All subjects gave informed
written consent for the study according to the Declar-
ation of Helsinki.

Demographic and clinical measures
Participant age, gender, date of stroke, stroke type (Oxford
Community Stroke Project Classification [25]), stroke
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impairment (National Institute of Health Stroke Scale [26]
hemiplegia (clinical observation by two independent expe-
rienced clinicians), walking stick use, ankle foot orthosis
(AFO) use, height and weight were recorded at baseline.

Test protocol for laboratory-based outcomes
Participants were asked to walk for 2 minutes continuously
around a 25 m track at self-selected speed in a laboratory
instrumented with a GaitRite system whilst wearing an
AX3 wearable (see instrumentation) affixed with double
sided tape and Hypafix (BSN Medical Limited, Hull, UK) at
the fifth lumbar vertebrae (L5). A continuous rather than
intermittent walk was chosen based on previous methodo-
logical findings [27].

Validity
Three tools were used during the walking trial to establish
the validity of the AX3 wearable: GaitRite instrumented
walkway; high grade wearable data capture system (OPAL,
APDM) and video (to facilitate manual step count check-
ing and visual inspection of stroke related impairment).
The GaitRite mat was placed in the 25 m circuit (see
instrumentation and Fig. 1) to allow measurement of the
spatio-temporal aspects of gait. The single wireless OPAL
device was affixed directly adjacent to the AX3 at L5
and held in place by double sided tape and Hypafix
(see instrumentation).

Test-retest reliability
Test-retest reliability of the AX3 was established by
repeating the walking trial 1 week later (± 2 days) and
comparing measures taken at the first walking trial (T1)
with the second (T2). Walking aid and AFO conditions
were matched over trials.

Test protocol for community-based outcomes
In order to assess feasibility and test-retest reliability of
the AX3 wearable in the community participants were
asked to wear the AX3 wearable for two consecutive 7
day periods. After completing the laboratory protocol at

T1 participants were provided with an AX3 wearable to
wear for 7 days in the community (Week 1). The
wearable was worn continuously except for skin cleaning
or during bathing/swimming (the wearable was water
resistant but not waterproof ). Participants, or a family
member who could assist, were instructed how to
remove and reattach the wearable. The data from the
wearable was downloaded on the participants return to
the clinic at T2. The participants were then asked to
wear the wearable for a second consecutive 7 days
(Week 2). The wearable was returned by participants in
a pre-paid envelope and data downloaded. During the 2
week measurement period participants completed a daily
log of daily activities wear time and any problems with
the wearable. This log was reviewed at T2 clinic appoint-
ment and each participant was questioned on comfort
and application of the wearable. This data was used
alongside wearable data capture to assess feasibility.

Instrumentation
Low-cost wearable
The AX3 is a single tri-axial accelerometer-based wear-
able (AX3, Axivity, York, UK https://axivity.com/, cost
≈£100, dimensions 23.0 mm × 32.5 mm× 7.6 mm). The
AX3 weighs 11 g, has a memory of 512 Mb and a battery
life of 14 days. AX3 data capture is 100 Hz (16-bit reso-
lution) at a range of ±8 g. Recorded AX3 accelerations
were stored locally on the device’s internal memory and
downloaded upon the completion of each walking trial.

Video
A Samsung W200, 25 Hz video camera was used to
record walking trials to allow visual inspection for
manual counting of steps within the gait task and visual
observation of asymmetry.

Instrumented walkway
Dimensions were 7.0 m × 0.6 m and had a spatial accur-
acy of 1.27 cm and a temporal accuracy of one sample
(240 Hz, ~4.17 ms) (GaitRite: Platinum model GaitRite,

Fig. 1 Clinic protocol and positioning of AX3 wearable
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software version 4.5, CIR systems, NJ, USA). Gaitrite has
been used extensively in the quantification of spatio-
temporal measures in stroke [8, 28].
High-cost wearable system The OPAL wireless

accelerometer-based wearable system (APDM, Inc.,
Portland, OR, USA, https://www.apdm.com/wearable-
sensors) comprises a tri-axial accelerometer, gyroscope
and magnetometer [18] (128 Hz, 8Gb, 16 h of logging
8 h of streaming). The OPAL system has been used
previously in stroke for quantification of spatio-temporal
measures [18, 20]. Only accelerometer data were used in
the analysis.

Data synchronisation
Video, GaitRite and OPAL were synchronised in time
with the AX3 recordings. The quartz-stabilized real-time
clock of the AX3 and OPAL systems (accuracy: 20 ppm)
were synchronized with the computer used for the
GaitRite recordings, and for each walking trial, the start
and stop time were recorded by the assessor. Start and
stop times were subsequently input to a bespoke
MATLAB program that automatically segmented and
analysed the accelerometer data. AX3 and OPAL data
corresponding to steps leading to and after contact with
the GaitRite were excluded from analysis so a direct
comparison could be made between the wearables and
instrumented walkway.

Wearable algorithms
Micro (spatio-temporal) outcomes
The 14 temporal and spatial gait characteristics defined
by Lord et al. (2013) [29] were quantified from the AX3
and OPAL wearables and GaitRite. Mean gait values
were calculated for step time, stance time, (time stance
foot was in contact with the ground for a given stride),
swing time (duration a foot was not in contact with the
ground for a given stride), step length and step velocity.
The standard deviation from all steps was calculated to
determine step variability. Asymmetry was calculated as
the absolute difference between consecutive left and
right steps. Algorithm and data segmentation techniques
applied to both the AX3 and the OPAL data and ration-
ale have been described in full previously [9]. In brief the
vertical acceleration underwent continuous wavelet
transformation to estimate initial contact and final
contact in the gait cycle while the inverted pendulum
model was used in conjunction with those outcomes for
spatial data.

Macro (physical activity) outcomes
A validated free-living algorithm [30] was used to quantify
macro characteristics (e.g. volume, pattern and variability)
Volume was quantified as total daily step count. Pattern
was quantified as number of daily walking bouts (minimum

bout length defined as three steps [31]), mean length of
walking bouts (s) and alpha (α) as the distribution of
ambulatory bouts (a lower α indicates that the distribution
is derived from a greater proportion of longer bouts [32,
33]). Variability was described as the within subject
variability of bout length calculated from the maximum
likelihood technique due to non-normality of data [34]. A
high variability indicates a more varied pattern of walking.

Statistical analysis
Analysis was completed using SPSS v23 (IBM). Normality of
data was tested with a Shapiro-Wilk test. Descriptive statis-
tics (median and interquartile range) were calculated for gait
characteristics measured by AX3 and OPAL wearables and
GaitRite. Bland-Altman plots were used to visually check for
non-linear or heteroscedastic distributions of error between
AX3 and clinic references. Data for two participants who
wore a fixed plastic AFO were removed from the analysis as
individual data analysis (including video observations)
revealed the algorithms applied were not appropriate for
these two participants. This finding was likely due to fixed
nature of the AFO impacting on heel strike and the
performance of the algorithm which was developed based
on the detection of initial and final contact within the gait
cycle. Individuals who wore a push aequi AFO were
able to achieve some degree of plantarflexion there-
fore were included in the analysis.
Agreement between AX3 measurements and video,

OPAL and GaitRite and on AX3 measures at T1 com-
pared with T2 were formally tested using intraclass cor-
relation coefficient, Spearman’s rank correlation
coefficients (r) and limits of agreement (LoA) expressed
as a percentage of the mean of the two measures and
the 95% LoA.
For all analysis statistical significance was set at p < 0.05.

Predefined acceptance ratings for ICCs were set at
excellent (≥.900, 0.0–4.9%), good (0.750–0.899, 5.0–9.9%),
moderate (0.500–0.749, 10.0–49.9%) and poor (<0.500,
>50.0%) [35].

Participant characteristics
Participant demographic and clinical data are shown in
Table 1. The sample had a heterogeneous mix of gait
speeds (range 0.14–1.4 m/s). Video observation of
participants by two experienced clinicians showed 15 of
the 23 participants (65%) had marked hemiplegia (moder-
ate to severe) impacting on gait symmetry.

Results
Laboratory-based measures Feasibility
25/25 participants completed the testing protocol with no
adverse events or AX3 wearable missing data. We were able
to quantify all fourteen spatio-temporal gait characteristics
in all 23 participants included in the analysis.
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Validity (AX3 wearable system vs. clinic references)
Absolute agreement between AX3 wearable and video
step count was good (median 210 (interquartile range
41) vs. 206 (36), median difference 4 (2%), ICC 0.899,
P ≤ 0.01, LoA expressed as a percentage of the mean of
the two measures 0.4 (95% LoA 49.6, −38.6).
Table 2 demonstrates agreement for spatio-temporal

measurement between AX3 wearable system and two
references (GaitRite and OPAL). Absolute agreement
between the system and GaitRite was moderate to good for
mean step velocity, step time, stance time, step time and
stance time variability (ICCs 0.724–0.802) but poor for all
other micro characteristics. Absolute agreement between
the system and OPAL was moderate to excellent for all
mean and variability characteristics and swing and stance
time asymmetry (ICCs 0.504–0.974) but poor for step
length and step time asymmetry. Overall agreement
between the system and references was superior for
mean and variability characteristics compared with
asymmetry characteristics.

Reliability
Table 3 demonstrates the agreement between laboratory
AX3 wearable system micro outcome measurement (T1 vs.
T2). Absolute agreement was moderate to excellent (ICCs
0.534–0.858) for all measures except mean step length, step
velocity variability and step length asymmetry. Relative

Table 1 Participant characteristics

Demographics (n = 25)

Gender (male/female) 19/4

Age (years) 63 ± 11

Stroke characteristics

Time since stroke (months) 66 ± 48 (range 5–201)

Stroke subtype (OCSP)

Total anterior circulation 11

Partial anterior circulation 6

Lacunar 3

Posterior circulation 3

Stroke impairment (number (%))

NIHSS score (0–40) 4 ± 3 (range 0–11)

NIHSS lower limb score (0–4) 1 ± 0.7 (range 0–3)

Walking speed (m/s) 0. 9 ± 0.4

Marked Hemiplegia (Yes/No) 15/8

Walking aid 3 (13%)

Push Aequi ankle foot orthosis 4 (17%)

OCSP Oxford community Stroke Project, % Percentage, NIHSS National
Institute for Health Stroke Scale

Table 2 Laboratory based agreement between AX3 wearable system, Gait Rite and OPAL for micro gait characteristics

Variable AX3 wearable system vs. GaitRite AX3 wearable system vs. OPAL

ICC r LoA % (95% LoA) ICC r LoA % (95% LoA)

Micro gait characteristics

Mean

Step velocity (m/s) 0.744** 0.632** 1.1 (0.06, −0.043) 0.923** 0.871** 0.4 (0.19, 0.22)

Step length (m) −0.411 0.035 1.5 (0.56, −0.35) 0.831** 0.784** 0.6 (0.22, −0.18)

Step time (s) 0.797** 0.917** 1.1 (0.38, −0.38) 0.890** 0.948** 0.6 (0.25, −0.17)

Swing time (s) 0.431* 0.558** 1.3 (0.40, −0.21) 0.900** 0.944** 0.8 (0.22, −0.17)

Stance time (s) 0.758** 0.902** 1.2 (0.50, −0.60) 0.876** 0.871** 0.6 (0.28, −0.17)

Variability

Step velocity (m/s) 0.052 0.261 3.8 (0.28, −0.05) 0.658** 0.503* 2.1 (0.17, −0.23)

Step length (m) 0.457** 0.121 2.9 (0.175,-0.036) 0.884** 0.616** 1.6 (0.08, −0.104)

Step time (s) 0.802** 0.688** 4.5 (0.25, −0.13) 0.972** 0.940** 1.6 (0.09, −0.10)

Swing time (s) 0.389 0.694** 6.4 (0.33, −0.15) 0.968** 0.928** 1.7 (0.1, −0.11)

Stance time (s) 0.724** 0.766** 4.3 (0.26, −0.12) 0.974** 0.936** 1.5 (0.09, −0.11)

Asymmetry

Step length (m) 0.442 0.001 4.5 (0.25, −0.18) 0.464 0.381 3.6 (0.2, −0.22)

Step time (s) 0.178 0.601** 3.9 (0.49, −0.75) 0.492* 0.558** 4 (0.13, −0.08)

Swing time (s) 0.320 0.454* 6.7 (0.23, −0.33) 0.539* 0.733** 4.7 (0.13, −0.08)

Stance time (s) 0.439 0.570** 6 (0.216, −0.30) 0.504* 0.592** 4.9 (0.15, −0.09)

Vs. versus, ICC Intraclass correlation coefficient, r Spearman’s rank correlation coefficient, LoA% limits of agreement as a percentage of the mean of the
two systems
**p ≤ 0.01 *p ≤ 0.05
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agreement was moderate to excellent (r 0.525–0.941)
for all measure except step velocity variability and
step length asymmetry.

Community based outcomes
Feasibility
25/25 participants completed the community free living
protocol 24 h a day for 7 days, only removing to bathe.
There were no missing data sets. The AX3 battery life
lasted for over the seven-day monitoring period. Participant
logs and questioning during clinic visits indicated partici-
pants found the AX3 monitor comfortable to wear and easy
to apply. Participants with upper limb impairment reported
they either got an informal carer to assist with the applica-
tion or managed an adapted technique of application with
one arm.
Table 4 demonstrates agreement between community

habitual physical activity and spatio-temporal measure-
ment by AX3 wearable system (Week 1 vs. Week 2). Ab-
solute agreement was moderate to excellent for all
measures (ICCs 0.668–0.982).

Discussion
This is the first study to investigate the feasibility, reliabil-
ity and validity of a low-cost system incorporating algo-
rithms and a single tri-axial accelerometer-based wearable
(AX3) in quantifying a comprehensive assessment of both

micro and macro gait characteristics post-stroke. The
feasibility of using the AX3 wearable system was excellent
with individuals with mild to moderate gait impairment
following stroke. In the laboratory validity of the AX3
wearable system measurement of micro characteristics
was assessed by comparison to three references (video,
GaitRite, OPAL) with positive results. Test re-test reliabil-
ity of the AX3 wearable system in both the laboratory and
the community was moderate to excellent for all bar three
of the gait measurements.
Breaking down the raw signal from a single wearable

to quantify discrete gait characteristics is a potentially
useful approach for quantifying specific gait impairments
post-stroke and allows ‘real world’ measurement of these
characteristics. Quantification of spatio-temporal charac-
teristics by the AX3 system was compared with two
references (GaitRite and OPAL). Agreement for mean
gait characteristics between the AX3 wearable system
and GaitRite was moderate to good for three measures,
but poor for swing time and step length. The poor
agreement for swing time may have been due to a
limitation of the algorithm which estimated swing time
from the difference between stride time and stance time
which could lead to small inaccuracies [9]. Poor agree-
ment between step length may have been due to the
algorithm as it is based on a healthy model of gait
assuming a rhythmical, linear and compass gait cycle

Table 3 Laboratory based test-retest reliability (1 week apart) for AX3 wearable system micro gait measurement

Variable Median (IQR) Correlations/agreements

Time point 1 Time point 2 Median difference (%) ICC LoA % (95% LoA) r

Mean

Step velocity (m/s) 1.08 (0.40) 1.08 (0.345) 0 (0%) 0.534* 1.0 (0.34, −0.30) 0.547**

Step length (m) 0.657 (0.113) 0.642 (0.140) −0.015 (−2%) 0.419 1.0 (0.31, −0.32) 0.572**

Step time (s) 0.600 (0.130) 0.601 (0.123) −0.001(0.2%) 0.844** 1.0 (0.28, −0.3) 0.941**

Swing time (s) 0.485 (0.174) 0.467 (0.117) −0.018 (−4%) 0.858** 1.0 (0.24, −0.28) 0.926**

Stance time (s) 0.743 (0.136) 0.740 (0.130) −0.003 (−0.4%) 0.819** 0.78 (0.32, −0.34) 0.930**

Variability

Step velocity (m/s) 0.150 (0.053) 0.162 (0.130) 0.012 (7%) 0.343 3.7 (0.33, −0.26) 0.427*

Step length (m) 0.082 (0.077) 0.123 (0.131) 0.041 (33%) 0.632** 2.8 (0.21, −0.13) 0.693**

Step time (s) 0.056 (0.097) 0.082 (0.208) 0.026 (32%) 0.777** 4.17 (0.36, −0.24) 0.886**

Swing time (s) 0.063 (0.098) 0.082 (0.168) 0.019 (23%) 0.793** 4.1(0.33, −0.23) 0.901**

Stance time (s) 0.062 (0.104) 0.087 (0.195) 0.025 (29%) 0.784** 4 (0.36, −0.24) 0.909**

Asymmetry

Step length (m) 0.084 (0.216) 0.106 (0.125) 0.022 (21%) −0.194 5.1 (0.36, −0.32) 0.015

Step time (s) 0.045 (0.085) 0.036 (0.077) 0.009 (25%) 0.813** 3.6 (0.14, −0.12) 0.628**

Swing time (s) 0.044 (0.077) 0.035 (0.082) −0.009 (26%) 0.857** 3.3 (0.12, −0.10) 0.545**

Stance time (s) 0.045 (0.087) 0.042 (0.075) −0.003 (7%) 0.857** 3.2 (0.11, −0.11) 0.525**

T1 Time point 1, T2 Time point 2, IQR Interquartile range, ICC Intraclass correlation coefficient, LoA% limits of agreement as a percentage of the mean of the two
systems, r Spearman’s rank correlation coefficient
**p ≤ 0.01 *p ≤ 0.05
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(circular trajectory [36]) which is often not present with
marked asymmetry common post-stroke and conse-
quently the model may require refinement in this popu-
lation. Indeed, a previous study using a single inertial
measurement unit has indicated that a higher error rate
is present in the detection of initial contact, swing time
and stance time in pathological gait (including hemiple-
gic gait) in comparison to healthy elderly individuals
[18]. Previous studies have also indicted it may be neces-
sary to apply an individual correction factor to estimate
step/stride length with accelerometry in people with
neurological conditions including stroke [21].
Although GaitRite has been used in the stroke popula-

tion to quantify gait characteristics [28], limitations have
been observed when making comparisons of wearable
measures to instrumented walkways [9]. Limitations
relate to inherent differences in mechanisms of data
capture as instrumented walkways such as GaitRite use
pressure sensing to capture discrete foot falls whereas

wearables continuously track acceleration This may have
been the reason that the agreement between AX3
wearable system and GaitRite was poor on a number of
measures. Agreement between the two wearable systems
was better on mean, variability and asymmetry charac-
teristics compared to agreement between the wearable
system and the instrumented walkway.
Gait asymmetry is a common consequence of stroke

and target of rehabilitation. Formal statistical tests of
agreement indicated poor levels of agreement for asym-
metry characteristics between the system and references.
To explore these findings further individual participant
data and formal agreement testing was conducted to
explore if gait asymmetry (defined by video observation
by experienced stroke clinicians and NIHSS lower limb
scores) affected algorithm accuracy (data not reported).
Post-hoc analysis indicated agreement was inferior for
those with higher levels of asymmetry indicating this
requires further exploration and algorithms may require

Table 4 Community based test-retest reliability for AX3 wearable system micro and micro gait measurement

Variables Median (IQR) Agreement

Week 1 Week 2 Median difference (%) ICC LoA % (95% LoA) r

Macro characteristics

Total daily step count 7825 (6428) 7191 (5920) −634 (−9%) 0.917** 0.9 (3138, −4470) 0.892**

Mean walking bout length (s) 17.12 (2.56) 16.3 (6.2) −0.82 (−5%) 0.919** 0.4 (3.036, −3.565) 0.894**

Total number of daily walking bouts 535 (288) 462 (237) −73 (16) 0.867** 2 (226,-272) 0.823**

Alpha (unit less) 1.614 (0.535) 1.615 (0.068) 0.001 (0.06) 0.948** 0.1 (0.05, −0.046) 0.853**

Variability (s) 0.840 (0.057) 0.842 (0.105) 0.002 (0.2%) 0.887** 0.2 (0.08, −0.094) 0.801**

Micro characteristics

Mean

Step velocity (m/s) 1.05 (0.165) 1.07 (0.152) 0.02 (1.9) 0.958** 0.17 (0.087, −0.093) 0.914**

Step length (m) 0.610 (0.085) 0.610 (0.085) 0 (0) 0.969** 1.2 (0.034, −0.038) 0.940**

Step time (s) 0.613 (0.353) 0.622 (0.38) 0.009 (1) 0.951** 0.07(0.022, −0.018) 0.889**

Swing time (s) 0.474 (0.032) 0.475 (0.030) 0.001 (0.2) 0.962** 0.07 (0.02,-0.013) 0.925**

Stance time (s) 0.764 (0.040) 0.766 (0.047) 0.002 (0.2) 0.942** 0.1 (0.026, −0.026 0.863**

Variability

Step velocity (m/s) 0.385 (0.048) 0.383 (0.042) −0.002 (−0.5) 0.905** 0.2 (0.04, −0.0345) 0.914**

Step length (m) 0.162 (0.021) 0.159 (0.017) 0.003 (−2%) 0.944** 0.12 (0.034, −0.0384) 0.940**

Step time (s) 0.183 (0.041) 0.181 (0.044) −0.002 (−1) 0.982** 0.17 (0.018, −0.0149) 0.889**

Swing time (s) 0.152 (0.040) 0.150 (0.039) −0.002 (−1.3) 0.983** 0.15 (0.0119,-0.0113) 0.925**

Stance time (s) 0.193 (0.042) 0.193 (0.044) 0 (0) 0.982** 0.2 (0.0189, −0.0169) 0.863**

Asymmetry

Step length (m) 0.082 (0.019) 0.090 (0.021) 0.008 (9%) 0.668** 0.7 (0.0337, −0.0245) 0.599**

Step time (s) 0.123 (0.037) 0.120 (0.044) −0.003 (−2.5) 0.875** 0.6 (0.0357, −0.0344) 0.788**

Swing time (s) 0.109 (0.040) 0.101 (0.049) −0.008 (−8%) 0.925** 0.5 (0.026, −0.0261) 0.850**

Stance time (s) 0.123 (0.04) 0.109 (0.030) −0.01 (−13%) 0.878** 0.6 (0.0357, −0.0398) 0.742**

IQR Interquartile range, s seconds, ICC Intraclass correlation coefficient, LoA% limits of agreement as a percentage of the mean of the two systems, r Spearman’s
rank correlation coefficient
**p ≤ 0.01 *p ≤ 0.05
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refinement for those with marked gait asymmetry, or
alternative placement and algorithms sought., Placement
of a wearable sensor with appropriate adaptation of
algorithms on each lower limb rather than the lower
back may be more suitable for detecting asymmetry gait
characteristics [18] but this would double patient
burden, cost and increase technical complexity for
synchronisation and data fusion. The reliability and
validity of bilateral ankle accelerometers has been previ-
ously established in a small convenience sample (n = 12)
for determining walking speeds and bouts of walking
activity in the clinic after stroke [19] but the study did
not explore gait asymmetry. More recent work on a
small sample of hemiparetic stroke participants (n = 10)
has indicated promise for accurate measurement of
spatio-temporal parameters of gait with a system incorp-
orating magneto-inertial units positioned on both ankles
[20]. These results will need to be confirmed in a larger
sample and are potentially limited by the use of
magneto-inertial units requiring frequent recharging.
Alongside the novel use of wearables to quantify

spatio-temporal gait characteristics post-stroke, wear-
ables have been used for some time to capture physical
activity outcomes. Review of psychometric data,
however, has indicated that no single device is ideal at
present for the measurement of physical activity after
stroke [13]. As daily step count is linearly associated
with reduced long-term all-cause mortality [37], and
daily step count can be reduced by stroke impairments,
it is imperative we have accurate measures of this
variable post-stroke. Step count estimated by the system
proposed here was accurate across a range of gait speeds
when compared to video.
Establishing test retest reliability is important to deter-

mine whether there is consistency of measurement across
time and subsequent use for longitudinal measurement of
gait. Test-retest reliability was excellent for all macro char-
acteristics captured in the community (ICC 08.67–0.917)
and good to excellent for all except one of the 14 ‘micro’
characteristics. A recent summary of the test-retest reli-
ability of physical activity measurement using wearable de-
vices in stroke indicated that test retest reliability varied
markedly across devices (ICCs 0.68–0.989) [13]. Findings
from a number of studies testing measurement on mul-
tiple occasions indicted that the Step Watch Activity
Monitor was the most reliable device for use to capture
step count after stroke. Excellent test-retest reliability for
step count was also demonstrated for the AX3 wearable in
the current study and the AX3 also allowed for the reliable
measurement of pattern and variability of gait activity and
spatio-temporal gait characteristics. The AX3 wearable
could be used to measure intervention response across a
comprehensive range of gait measures in the laboratory
and the community after stroke.

Limitations
Study limitations include the sample’s relatively high
average gait speed and mild level of impairment as
measured by the NIHSS meaning the sample may not
have been representative of a typical stroke population.
The use of gait speed and the NIHSS scale to character-
ise the sample did not allow the capture of data on
quality of gait and hemiplegia. Individual levels of gait
asymmetry and hemiplegia were assessed by clinical
observation from video and indicated that almost two
thirds of the sample had moderate to severe hemiplegia
resulting in gait asymmetry. The sample may have been
representative of community dwelling stroke survivors,
but this data was not captured by the selected measures.
This subjective data would have been strengthened by
the inclusion of a measure of impairment such as the
Fugl-Meyer motor assessment [38] The study excluded
participants who wore a fixed ankle foot orthosis (AFO)
due to the impact of the AFO on heel strike, meaning
algorithms applied were unsuitable. Results from this
study can therefore only be applied to stroke survivors
who do not use a fixed AFO. The sample was not
powered but was based upon previous sample sizes of
studies of a similar nature [39, 40]. The study compared
AX3 wearable system measures to video, and two other
high-cost systems: GaitRite and OPAL. Comparing
wearable measures to a camera-based motion capture
system would have provided an alternative gold standard
that may be worth considering in the future.

Conclusion
Although the low-cost AX3 wearable system demon-
strates promise as a feasible and reliable tool with which
to measure a comprehensive range of gait characteristics
after stroke further work is needed to establish the
system’s validity. Gait asymmetry is a common problem
after stroke and the systems current algorithms will need
to be refined/developed in order to capture this complex
pathological gait characteristic.
Multiple applications in the stroke population including:

monitoring symptoms; determining intervention and
therapeutic effects; analysing relationships between daily
fluctuations in activity and stroke impairments such as
fatigue; and for patient feedback and assisting with self-
management programmes, highlight the important role
wearable systems have in future stroke management and
the need for further refinement in this area.
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