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Abstract

Background: Monitoring physical activity and leveraging wearable sensor technologies to facilitate active living in
individuals with neurological impairment has been shown to yield benefits in terms of health and quality of living. In
this context, accurate measurement of physical activity estimates from these sensors are vital. However, wearable
sensor manufacturers generally only provide standard proprietary algorithms based off of healthy individuals to
estimate physical activity metrics which may lead to inaccurate estimates in population with neurological impairment
like stroke and incomplete spinal cord injury (iSCI). The main objective of this cross-sectional investigation was to
evaluate the validity of physical activity estimates provided by standard proprietary algorithms for individuals with
stroke and iSCI. Two research grade wearable sensors used in clinical settings were chosen and the outcome metrics
estimated using standard proprietary algorithms were validated against designated golden standard measures
(Cosmed K4B2 for energy expenditure and metabolic equivalent and manual tallying for step counts). The influence of
sensor location, sensor type and activity characteristics were also studied.

Methods: 28 participants (Healthy (n = 10); incomplete SCI (n = 8); stroke (n = 10)) performed a spectrum of activities in
a laboratory setting using two wearable sensors (ActiGraph and Metria-IH1) at different body locations. Manufacturer
provided standard proprietary algorithms estimated the step count, energy expenditure (EE) and metabolic equivalent
(MET). These estimates were compared with the estimates from gold standard measures. For verifying validity, a series
of Kruskal Wallis ANOVA tests (Games-Howell multiple comparison for post-hoc analyses) were conducted to compare
the mean rank and absolute agreement of outcome metrics estimated by each of the devices in comparison with the
designated gold standard measurements.

Results: The sensor type, sensor location, activity characteristics and the population specific condition influences the
validity of estimation of physical activity metrics using standard proprietary algorithms.

Conclusions: Implementing population specific customized algorithms accounting for the influences of sensor location,
type and activity characteristics for estimating physical activity metrics in individuals with stroke and iSCI could be beneficial.

Keywords: Wearable devices, ActiGraph, Metria-IH1, Validation, Step counts, Energy expenditure, Metabolic equivalent,
Stroke, Spinal cord injury, Sweat rate
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Background
Ubiquitous estimation of physical activity and quality of
life measures collected from real life environments are
becoming an imperative component to monitor success-
ful translation of clinical research into patient’s own liv-
ing environment [1–3]. With context to this, continuous
monitoring paradigms are gaining substantial signifi-
cance in tracking a patient’s compliance to a stipulated
exercise regime and to gauge their level of community
integration post rehabilitation [1, 2, 4]. Commonly used
methods of measuring mobility include the traditional
methods of performance-based or patient-reported mea-
sures. These measurements are either limited by rater or
recall bias, or in their ability to encompass all aspects of
community mobility. Advanced methods like camera
based motion capture, pressure sensor walkway [5] and
force plate systems for assessments, although signifi-
cantly reliable, limits data collection to a confined
controlled laboratory space and are expensive [6]. While
such controlled environment tests can provide high-
resolution information to uncover the underlying bio-
mechanics during in-patient movement assessments,
they provide very little to no information about a
patient's natural physical activity behavior and compliance
in their community or home setting [7].
Evidence suggests that employing wearable sensors

provide means to remotely and continuously track
patient’s recovery in real world settings [7, 8]. Indeed,
activity monitoring with wearables are showing cost
benefits for healthcare and also paving the way for
participatory clinical decision making for customized
healthcare [1, 2, 9–11]. Despite offering numerous bene-
fits, the validity and reliability of outcome estimates
from these wearable sensors for rehabilitation medicine
in individuals with chronic conditions is a daunting chal-
lenge for researchers [12, 13].
A potential reason for this being that most of standard

proprietary algorithm (SPA) provided by sensor manufac-
turer’s are derived using empirical data from healthy
populations leading to inaccurate/unreliable estimates
when deployed to estimate outcome measures in clinical
populations [13]. Research to date acknowledges two major
contributing factors to such estimation inaccuracies [14],
namely, (i) the sensor location and (ii) variation in
acceleration thresholds due to pathology specific movement
signatures in comparison to healthy controls.
In this context, there has been less focus on studying

the influence of such factors on outcome metrics other
than step count, like, energy expenditure (EE) and meta-
bolic equivalents (MET), especially in individuals with
stroke and incomplete spinal cord injury (iSCI) [13, 15,
16]. Further, there is limited information regarding the
relationship between attributes like (i) sensor type (i.e.
body worn, body stuck and standalone Vs fusion sensor

modalities) and (ii) characteristics of activity being
studied, on the validity of outcome measures estimated
using SPAs in populations with neurological impair-
ments like iSCI and stroke.
Consequently, our primary goal was to investigate the

influence of sensor type, and sensor location on the valid-
ity of physical activity outcome estimates (step count, en-
ergy expenditure (EE) and metabolic equivalent (MET) as
provided by SPA from wearable sensors in a sample of
healthy individuals (controls) and individuals with iSCI
(ambulatory) and stroke. A secondary goal was to investi-
gate the influence of activity characteristics (intensity) on
the validity of each of the physical activity outcome esti-
mates in our sample. In this pilot study, we investigated
the influence of above aspects on validity of the outcome
measures as provided by the respective SPAs from two
research grade sensors. The spectrum of activities studied
were identical to those encountered in activities of daily
living (ADL), but were performed in a controlled
laboratory setting. Although performed in a controlled
environment, such findings will have important implica-
tions for understanding the possible factors that needs to
be considered while estimating outcome measures using
wearables in free living conditions.
It was postulated that the choice of sensor type, sensor

location (arm, waist and ankle), population specific
movement signatures (healthy, iSCI (ambulatory),
stroke) and the characteristics of the activity being stud-
ied will significantly influence the validity of the physical
activity outcomes metrics estimated using SPA in labora-
tory conditions.

Methods
The participant pool included, healthy controls, and in-
dividuals with iSCI and chronic stroke who could ambu-
late with or without an assistive device. Detailed group
wise demographic information is provided in Table 1.
Exclusion criteria included, (i) presence of any known
serious cardiac conditions, (ii) neurological degenerative
pathologies as co-morbidities (such as Multiple Scler-
osis, Alzheimer’s disease, Parkinson’s disease, etc.), and
(iii) inability to sit unsupported. In addition, subjects
were requested to stay off of any medications that has
previously known to affect their metabolism during the
study period.

Devices used
Currently, a plethora of commercial and research grade
wearable devices are available for clinicians to choose
from [17]. Testing the validity of outcome metrics from
all the devices was outside the scope of this study design.
Therefore, in order to test the postulated hypotheses
two specific research grade wearable sensor types used
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in clinical research, namely, Actigraphs [18, 19], and
Metria-IH1 [18, 20] were chosen (Fig. 1a & 1b).
The goal of the study was to investigate the validity

of estimates as provided by the respective SPAs from
ActiLife and SenseWear. These SPAs are usually
based on data from healthy individuals and the
algorithms performance are optimized to the specific
sensor locations. Therefore, the sensor locations for
this study were chosen based on literature and the
respective manufacturers prescription [21]. This pro-
cedure was adopted to reduce any possible confound-
ing factors to the outcome estimates that may arise
due to switching of the sensor location from the opti-
mal location for which the respective SPAs were
developed. Furthermore, all wearable devices used in
this study were obtained from the same manufactur-
ing batch. This was done to minimize any measure-
ment differences inherently arising due to variations
in manufacturing process.

ActiGraph
The ActiGraph wGT3X-BT’s [22] were worn on the upper
arm [23], the waist [24, 25] and the ankle [26] (Fig. 1c).
The waist sensor locations were chosen based on previous
literature [13, 24]. For consistency, all the ActiGraphs
were placed on the right side of the body. Adjustable fab-
ric belts securely positioned the ActiGraphs on their re-
spective locations. ActiGraphs measure the triaxial
acceleration to estimate physical activity metrics [22]. (Fig.
1a). The ActiGraphs sampled at 30 Hz.
Each ActiGraph device was assigned to a specific

anatomical location. The device to anatomical location
was held consistent between participants to minimize

confounding factors due to unit calibration and sensor
switching [27]. The time on all the three devices were
synchronized to the local atomic clock server time
before data collection began.

Metria-IH1
Based on the manufacturer’s recommendation, the
Metria-IH1 patch was adhered to the skin and located
on the back of the upper left arm (Fig. 1b, c). The Metria
IH1 patch houses variety of sensors to measure four
modalities, namely, (i) 3-axis accelerometer, (ii)
skin temperature, (iii) near body temperature and (iv)
galvanic skin response (GSR). The module sampled data
at the rate of 5000 data points per minute. The
accelerometer alone sampled at 32 Hz. Metria-IH1 is a
one-time use and throw device.

Outcome measures
Three outcome metrics of relevance widely used in
monitoring physical activity in clinical rehabilitation in
individuals with stroke and iSCI were studied, namely,
(i) step count, (ii) energy expenditure (EE) in Kcals, and
(ii) metabolic energy (METs) [14, 28, 29]. These metrics
were compared against the designated gold standard
(Cosmed K4B2 [30] for EE and MET and phone-based
counter for step count).

Gold standard devices
Cosmed K4B2 (K4B2 Cosmed, Italy) [30] is a portable
gas analysis system that measures oxygen consump-
tion and Carbon-dioxide production in a breath by
breath fashion. Extensive scientific usage and valid-
ation of Cosmed K4B2 makes it a gold standard in

Table 1 Sample demographics and self-reported perceived Borg RPE

Characteristics Healthy iSCI Stroke

Age (Yrs) 27.1 (5.1) 48.5 (10.4) 55.6 (9.4)

Height (cm) 173.7 (8.3) 179.1 (8.4) 172.1 (8.5)

Weight (lbs) 155.5 (33.6) 186.9 (37.8) 190.1 (33.9)

Gender (M/F) M (n = 6); F (n = 4) M (n = 7); F (n = 1) M (n = 6); F (n = 4)

Impairment demographics – C3-C4 (n = 1); C5-C6 (n = 1); C1-C4
(n = 1); C4 (n = 1); C6-C7 (n = 1); C7
(n = 1); T8-T9 (n = 1); L3-L4 (n = 1).

Right side impaired (n = 4); Left side
impaired (n = 6).
Hemorrhagic (n = 4); Ischemic (n = 6).

Time since condition (Years) – 11.9 (7.7) 7.0 (5.0)

Assistive devices used during testing – Walker and knee brace (n = 1) Straight cane (n = 2)

BORG RPE for activities

Lying 7(1) 8 (5) 6 (0)

Sitting 6 (0) 8 (3) 7 (1)

Standing 6 (0) 9 (5) 9 (4)

50 step walking 7 (1) 10 (4) 8 (3)

6MWT 10 (2) 15 (3) 14 (3)

Multi sit-to-stand 12 (2) 14 (4) 15 (3)
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breath-by-breath metabolic measurements [22, 31].
For EE and MET metrics, the Cosmed K4B2 output
was used as the gold standard comparison.
For step counts, the steps taken were counted

manually using a phone-based counter during the 50 step
walk test. This manual tally was used as gold standard for
step count [32, 33].

Experimental data collection
The experimental design and the test protocol are pre-
sented in Fig. 1(d) & (e). Consistent with recommended
practice, the validation protocol was designed to cover a

spectrum of physical activities [27]. Data collection
started with the subjects performing a series of activities
such as lying, sitting, and standing for two-minutes each,
a 50 steps walk on a hallway [34], a six minute walking
test (6MWT) and finally two minutes of multi sit-to-
stands. During multi sit-to-stand task, subjects were
encouraged to do as many sit-to-stand sets as they safely
and possibly can do.
Sufficient rests periods were given to the participants

between each activity. The rest duration between activities
were to ensure that the heart rate of the participants
returned to their resting levels before starting the proceed-
ing activity (refer Fig. 1(e)).

Fig. 1 Devices used and protocol design. a Picture of ActiGraph wG3TX-BT; b picture of Metria-IH1; c The sensor locations used, ActiGraphs (red
color) were placed on the right side upper arm, waist and ankle while the Metria-IH1 (grey color) was placed on the back side of left upper arm.
The Cosmed K4B2 was body mounted with the rubberized facemask; d) the experimental design and the spectrum of activities executed during
the protocol. To execute the study protocol, participants performed a set of structured indoor activities in a controlled laboratory setting. (e) The
spectrum of the performed activities was categorized into three levels, (i) sedentary activities: lying down on a treatment table, sitting and stand-
ing (with or without assistive device) for two minutes each, (ii) low intensity activity: walk 50 steps, and (iii) high intensity activities: a six-minute
walking test (6MWT) and two minute of fast paced multi sit-to-stand activity. Sufficient rests and recovery were provided between all the per-
formed activities. All the three devices, namely, the Actigrpah, Metria and Cosmed K4B2 continuously collected data during the entire protocol
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At the end of each activity, subjects self-reported their
perceived effort of each activity using a Borg scale of
perceived exertion [35]. These self-reported ratings were
later used to classify the intensity of activities performed
based on the exertion levels. Participants were given the
choice on whether they wanted to use their assistive de-
vice. All the participant’s completed the entire protocol
successfully in a single visit. All the three devices,
namely, the ActiGraphs, Metria and Cosmed K4B2 con-
tinuously and simultaneously recorded data during the
entire session (i.e. 60 min).

Data analysis
For all data analysis, SPA provided by manufacturers of
the respective devices were used for estimating the out-
come metrics of interest (EE, MET and step count).
ActiLife:. The goal was to study the validity of outcome

metrics while using SPAs in individuals with stroke and
iSCI. The Choi [36] and Freedson [37] proprietary
algorithms based off of healthy population empirical
data was used to extract the EE and MET estimates for
each of the activities in all of the groups. A Harris Bene-
dict equation [38] was used to include the contribution
of BMR to estimated EE and MET’s. This data extraction
procedure was repeated for each of the wearable sensors
positioned at the waist, ankle and the arm. The metrics
from ActiGraph’s were used to study the effect of
the sensor location, activity characteristics and popula-
tion effects on the validity of outcome estimates.
Metria-IH1: The Metria-IH1’s proprietary fusion

algorithm developed on the SenseWear software
development kit platform, prompts for anthropometric
information (age, height, weight, gender, dominant hand
and smoking) at the time of data processing. This infor-
mation is then fused along with information from the
various on board sensor modules to calculate the out-
come metrics of interest [20, 39]. The outcome metrics
from Metria-IH1 were used to study the effect of activity
characteristics and population effects on the validity of
outcome estimates.
COSMED-K4B2 [30]: The manufacturer provided soft-

ware was used to extract the EE and MET estimates
from the Cosmed K4B2 [30, 39].

Step count: For agreement, the manually counted steps
using a phone based tally counter was cross-verified with
step counts from the video recorded during the 50 step
walk test [32, 33].

Statistical analysis
All the statistical analyses were performed using IBM
SPSS 21.0 (SPSS Inc., Chicago, IL). Per study design,

there were no direct between group comparisons (i.e. no
direct comparison between healthy, iSCi and Stroke) and
between device comparisons (i.e. no direct comparison
between ActiGraph Vs Metria-IH1). For each sensor the
postulated hypotheses were statistically compared with
the designated gold standard’s estimate (i.e. EE & MET:
Device vs. Cosmed K4B2; step count: device count vs.
manual tally). The null hypothesis (H0) was that, the
mean ranks of the groups (device estimates Vs Cosmed
estimates) are the same. Therefore, failure to achieve the
statistical significance, does not give sufficient evidence
to reject the H0.
The statistical significance was set to p < .05 for all hy-

potheses tests pertaining to Metria-IH1. To account for
multiple comparisons a corrected (Bonferroni) p value
of p < .016 was used for all hypothesis testing pertaining
to ActiLife estimates. For the group with stroke, data
were analyzed based on the side of stroke impairment.
(i.e. (Metria-IH1 for stroke (L) and ActiGraphs for
stroke (R))).
Following epsilon-squared effect size (E2) thresholds were

used for interpretation of strength of relationship: small ef-
fect size (E2 ≤ .1), medium effect size (.1 < E2 ≤ .3) and large
effect size (E2 > .5) [40]. With context to this analysis the
following interpretation was used: a value of E2 = 1.0, indi-
cated a large deviation and a value of E2 = 0 indicated a
closer match in the mean rank of the estimated outcome
with the designated golden standards (Cosmed K4B2 for
EE and MET, manual step tally for step count).
Due to the smaller sample size and non-normal distri-

bution of the data (based on Shapiro-Wilk test), non-
parametric tests were used to statistically verify the pos-
tulated hypotheses. A series of Kruskal Wallis tests
(Games-Howell multiple comparison for post-hoc ana-
lyses due to unequal variances verified using Levene’s
test of equality for variances) were conducted to com-
pare the mean rank and absolute agreement of outcome
metrics estimated by each of the devices in comparison
with Cosmed (designated gold-standard measurements
[30]. To verify step count validity, estimates of step
count from ActiLife and Metria-IH1 SPAs were statisti-
cally compared with the manually counted steps during
the 50 steps walk test.

Results
For brevity only salient results are reported in the text.
For detailed statistical results on bias between measures
please refer to the Tables 1, 2 & 3. For detailed analysis
of absolute agreement to assess reliability refer to the
post-hoc analysis (additional file shows this in more de-
tail [see Additional file 1; Supplementary Tables ST1
through ST8]). The results for the outcome metrics
trended the same way from both the bias (Kruskal-Wallis)
and absolute agreement tests (Games-Howell post-hoc).
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Demographics
In total, 28 participants completed the study. All partici-
pants completed the protocol successfully within
60 min. There were no adverse events. The descriptive
statistics of the study population is provided in Table 1.

Activity type classification (Borg RPE)
Activities were classified as sedentary (lying, sitting and
standing), low intensity (50 step walking) and high
intensity (6MWT and multi sit-to-stand) (Table 1, Fig.
1(e)) based on the participants self-reported perceived
exertion. Consistent with literature, individuals with
stroke and iSCI rated their activities at a higher exertion
level than healthy controls [41].

Sedentary activities
EE estimated by the ActiLife were significantly lower
(p < .016; E2 > 0.7) than the Cosmed for all sedentary ac-
tivities irrespective of the sensor locations and popula-
tion studied. (Tables 2 & 3, Fig. 2a).
No significant differences were observed for EE esti-

mates between Metria-IH1 and Cosmed for all sedentary
activities in iSCI group (p > .05; E2 ≤ .3) and stroke
groups with left impairment (n = 6) (p > .05; E2 < .3). In
the healthy group, except for the EE during lying activity
(p < .05; E2 > .7), no significant differences were observed
between EE estimates from Metria-IH1 and Cosmed for
other sedentary activities in the healthy controls (p > .05;
E2 < .1); (Tables 2 & 3, Fig. 2b). The MET’s followed the
same trend as EE’s.
These results show that the sensor type and character-

istics of population studied can influence the accuracy of
estimates during sedentary activity when using SPA.

Low intensity activity
No significant differences were observed between the
manually counted steps (i.e. 50 steps) and the step
counts estimated by the ActiLife (irrespective of sensor
locations) and Senseware (Metria-IH1) for the healthy
control group (p > 0.016) (Fig. 3). In the group with
stroke, except the ActiLife estimates for ActiGraph
located at the ankle (p > .016) (Fig. 3), ActiGrpah’s at all
other locations and the Metria-IH1 significantly under-
estimated the step count (p < 0.016). For the group with
iSCI, the ActiLife (all sensor locations) and Metria-IH1,
significantly under-estimated the step counts (p < .016)
(Fig. 3). These observations with step counts are consist-
ent with previous literature, thus benchmarking the
quality of data collected in this investigation [13, 42].
These results suggest that, (i) the step count estimates
from standard algorithms can be influenced by effects
such as sensor location and the optimal location to place
sensor for step count tracking can vary depending on
the specific type of population being studied.

The EE for the 50 step walk from the ActiLife for the
healthy controls and iSCI groups were significantly
different than the Cosmed when placed at arm and waist
locations (p < 0.016) (Table 2, Fig. 2(a), 2(b)). No statis-
tical significant differences were observed in the ActiLife
EE estimates at all placement locations for the stroke
group with right side impairment (p > .016) (Table 2,
Fig. 2(c), 2(d)).
In general, the Metria-IH1 underestimated the EE for

the low intensity activity for all groups (p < .05; medium
effect sizes) [(χ2 = 7; E2 = .37)Healthy; (χ

2 = 5.8; E2 = .39)iSCI;
(χ2 = 6.5; E2 = .41)Stroke (L)] (Tables 2 & 3, Fig. 2(b)).
Overall the MET showed similar validity trends as EE

for iSCI and stroke groups (Fig. 2). For the healthy
group, except the MET from ActiLife at ankle, MET’s
from all other locations showed same trend as EE.
These results highlight two main observations for low

intensity activity; (1) sensor location that may be valid
for estimating step count may not be valid for estimating
metrics like EE/MET, and (2) using SPAs for estimating
physical activity metrics in population with neurologic
impairment like stroke and iSCI may yield inaccurate
estimates.

High intensity activity
Six-minute walk test
In comparison to Cosmed estimates, no statistical
significant differences were observed in the ActiLife EE
estimates for the healthy controls at arm and waist
locations (p > 0.016) (Table 2; Fig. 2(a)). However the
ActiLife EE estimates from ActiGraph at ankle was sig-
nificantly over estimated in comparison to cosmed
(p < .016; E2 = .58) (Table 2). These results for the
healthy group are in contrast to the EE trends from 50
step walk test. Thus, the activity intensity and duration
can influence the accuracy of estimates from SPA even
in a healthy group.
Similarly, for the 6MWT in the stroke group with

right side impairment, in comparison to cosmed esti-
mates, no significant difference was observed for the
ActiLife EE estimates from ActiGraph’s at arm, waist
and ankle (p > .016) (Table 2; Fig. 2(c)). However, for
the stroke group with left side impairment, the EE
estimates from ActiGraph at the right ankle, was only
near significant with moderate effect size (p = 0.04;
E2 = 0.39). Further, diminished effect sizes were
observed for the ActiGraphs from the right side of
the body for the group with left impaired. Similarly, it
was observed that for the stroke group with right side
impairment, the EE estimates from Metria-IH1 lo-
cated at the left upper arm, was significantly different
in comparison to Cosmed (p = 0.08; E2 = 0.43) (Table
2; Fig. 2(d)). This raises the possibility that when
using fusion based sensor type to study EE (Metria-
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IH1- SenseWear), placing the sensors on the side of
impairment may be a conservative approach for esti-
mating EE. Indeed similar observations regarding side
of impairment and EE estimate has been reported in
stroke literature [43].
ActiLife EE estimates from all sensor locations for the

group with iSCI, were significantly different (p < .016) in
comparison to cosmed. The effect sizes ranging between
medium to large (Tables 2 & 3, Fig. 2(a)). This shows
that, the SPAs might not yield accurate results for EE in
iSCI population. Based on effect size for EE estimates
from 6MWT, the waist seems to be a non-optimal loca-
tion for placing ActiGraph sensor for iSCI group. A
potential reason for this could be the reduced walk-
ing speed in the iSCI group (0.5(0.22) m/s).
In all the groups studied, the Metria-IH1 EE estimates

showed no statistical significant difference with Cosmed
estimates (p > .05) [(χ2 = 1.0; E2 = .05)Healthy; (χ

2 = .04;
E2 = .00)iSCI; (χ2 = .03; E2 = .00)Stroke(L); (χ2 = 3.0;
E2 = .43)Stroke (R)].
A rationale for Metria-IH1 to have performed well

with iSCI sample studied despite using SPA based off
of healthy controls could be that the SenseWear fuses

a galvanic skin response (GSR) sensor information
among others to estimate EE and MET. We speculate
that the excess exertion during the prolonged 6MWT
could have increased skin conductance due to in-
creased sweating causing the Metria-IH1’s fusion SPA
to over-estimate EE values and thus producing values
closer to Cosmed. It is known that individuals with
cervical iSCI are compromised in their autonomic
nervous system functioning which could lead to reflex
sweating [44]. A majority (75%) of the iSCI group in
this study had injury at cervical level where unilateral
hyperhidrosis and reflex sweating is a reported
phenomenon [45]. Indeed, literature suggests that
higher exertion could lead to higher skin conductance
[46]. The group with iSCI reported higher physical
exertion during the low and high intensity activities
(Table 1).

Multi sit-to-stand
In comparison to Cosmed EE estimates, no significant
differences were observed for the ActiLife EE esti-
mates from ActiGraphs (Table 2; Fig. 2), (i) at arm

Fig. 2 A visual comparison of the validity maps for bias in the estimated EE and MET. Estimates from both the devices in comparison to
the Cosmed for the spectrum of activities performed in Healthy, iSCI and stroke groups. (a,c) Validity map for estimates from ActiGraph wG3TX-
BT’s located at waist, ankle and upper arm on the right side (using ActiLife’s SPA), (b,d) Validity map for estimates from Matria-IH1 located at back
side of the left upper arm (using Metria-IH1’s Senseware platform SPA). The effect of sensor location on the outcome estimates (EE, MET and step
count) when using SPAs for the population with stroke and iSCI from our sample is visually summarized in the map
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and waist for healthy group, (ii) waist for the stroke
groups and (iii) arm for the iSCI group. Irrespective
of side of stroke impairment, the sensors at waist
seems to be a desirable location to estimate EE dur-
ing sit-to-stand task in stroke group. Except for the
EE estimates for iSCI group, the Metria-IH underesti-
mated the EE during the multi sit-to-stand task in
stroke and healthy groups. The MET metrics followed
a similar trend as the EE for healthy and stroke
groups during 6MWT and multi sit-to-stand.
These results could suggest that, (i) the choice of

sensor location could be dependent on activity type
and outcome metric of interest and (ii) impairment
conditions can significantly impact outcome metric es-
timated by SPA.

Discussion
This study systematically analyzed the influence of four
factors, namely, (i) choice of sensor type ((ActiGraph
wG3TX-BT using ActiLife SPA) and Metria-IH1 -Sense-
ware fusion based SPA), (ii) sensor location (ActiGraph
wG3TX-BT at arm, waist and ankle and Metria-IH1 at

arm) (iii) the activity characteristics and (iv) population
effects (healthy, iSCI(ambulatory), Stroke) on the validity
of three physical activity outcome metrics estimated by
SPAs. Overall it was found that the physical activity
metrics (EE, MET and step count) estimated by SPAs
could be influenced significantly by these factors across
the spectrum of activity levels studied.
Consistent with previous literature [13], the SPAs from

both the sensors estimated the step count metric accur-
ately in the control group, irrespective of sensor location
(ActiLife) and type. However, observations from our data
showed that, the estimates by these SPAs for EE and
MET significantly diverged from the gold standard esti-
mates at all activity levels. The sensor location, sensor
type and activity type seemed to influence the EE and
MET estimates provided by SPA even in healthy controls
group. For instance, sensor placed at arm and waist
seems to estimate EE and MET better during low and
high intensity activities in comparison to sensor located
at the ankle (Fig. 2(a)). Similar observations on healthy
individuals have been reported in literature [47].
Benchmarking with previous literature serves as a

Fig. 3 Step count estimates. Estimated step counts during the 50 step walk test from Actigraphs at arm, waist, ankle and Metria-IH1 compared to
manual count (phone based manual tally) of 50 steps in healthy, SCI and Stroke. * indicates significant differences in estimated step count (*: p <
0.05 (Metria-IH1); p < 0.016(ActiGraph))
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support for the consistency of data collected and
analyzed in this study.
The SPAs estimation for the activity data collected

from the study groups with iSCI and stroke were
mediocre. For instance, in the group with iSCI, irrespective
of sensor location and sensor type, the step counts esti-
mates were inaccurate. Further, based on the ActiLife SPA
estimates for iSCI, irrespective of sensor location and activ-
ity type studied, most of the EE estimates were significant
deviants from the estimates produced by the designated
gold standards. However, overall, based on a subjective
comparison, the Sensewear performed relatively better for
estimation in the iSCI and stroke groups [48]. On the same
lines, in comparison to ActiLife, the fusion algorithm from
Senseware seemed to perform relatively better for EE and
MET estimation during the studied sedentary tasks.
Finally, the trends from the multi sit-to-stand activity

showed that, the sensor location should be chosen based
on the nature of the activity type being studied. For in-
stance, the arm and/or waist seems to be a desirable spot
to estimate EE during sit-to-stand task for the healthy
controls and the stroke group. For the iSCI group, sen-
sors located at the arm seemed to capture the EE esti-
mates well.
Overall, there are three possible reasons for such di-

vergences observed in validity while using SPAs based
off of healthy population to estimate outcomes from
wearable sensors in stroke and iSCI.
Firstly, it is possible that the SPAs estimated outcome

metrics based on the movement signature and acceler-
ation thresholds empirically derived off of database
collected from healthy population. These standard accel-
eration threshold values from healthy are far higher than
those observed in neurological population [1, 2, 4, 49].
Individuals with iSCI and stroke in general walk with a
gait speed much slower in comparison to healthy popu-
lation [50, 51] and also use assistive devices. The average
gait speeds during 6MWT for the different participant
groups from our study sample were, 1.7(0.23) m/s,
0.5(0.22) m/s and 0.9(0.20) m/s for the healthy, iSCI and
stroke respectively. Decreased speed and gait signatures
while performing physical activities changes the acceler-
ation thresholds leading to underestimates in step
counts (an additional file shows this in more detail [see
Additional file 2: Figure S1]). Secondly, sensors placed at
different body locations (arm, waist and ankle) unfold
different acceleration signatures (cut points) for a given
activity type, due the dynamics constraint in motion be-
tween different body segments and sensor location [13,
52]. Finally, it is reasonable to expect that neurologic im-
pairment like stroke and iSCI alters the metabolic pro-
file. Hence empirically derived EE models based off of
healthy controls may not work for this population [11,
53–55]. Thus the effect of choice of sensor type, sensor

location and activity characteristics seems to be add-
itional factor that needs consideration on top of popula-
tion specific differences which influence the deviation of
the estimates derived using SPAs.
We observed from our results that, for the stroke

group, both the Actilife and Metria-IH1 (Senseware)
SPAs performed relatively well when placed on the
impaired side as opposed to unimpaired side for EE and
MET estimation (Fig. 2(c), 2(d)). Overall, we also ob-
served that despite using the standard SPAs some of the
EE and MET estimates turned out to produce valid esti-
mates for the group with stroke and iSCI.
As far as this sample data goes, there are a few pos-

sible explanations for above observations. One possible
speculation from a pathophysiological angle could be the
asymmetric sweat response that has been reported in in-
dividuals with stroke due to compromise in functioning
of their autonomic nervous system [56–58].It is possible
that the increased sweating on the paretic side could
have improved the skin conductance, leading to the GSR
sensor in Metria-IH1's (SenseWear) SPA overestimating
the EE values, thus leading to values close to the
Cosmed. Literature suggests that a higher physical
exertion level can lead to higher skin conductance [46].
Indeed self-reported physical exertion levels were higher
for both the stroke and iSCI groups compared to healthy
controls (Table 1). We speculate that a similar
phenomenon could have led to overall better EE and
MET estimates for the iSCI group while using Sensewear
[44]. However, it is promising to find support for this
observation in literature [43]. We did not record data
regarding the sweat rate or skin temperature in this
study. Nor did we have access to the Sensewear’s SPA to
tease out the weightage given to GSR data in their fusion
algorithm. These aspects require more work and specif-
ically designed study to understand the influence of such
factors are warranted.
We also suspect that since the participants from the

stroke group in our study had mild-moderate gait
impairments (mean gait speed was relatively higher 0.9
(0.20) m/s during 6MWT), the acceleration threshold
was sufficient to create enough count points for the
SPAs to produce better estimates. Similar observations
have been noted in literature [42]. We can only specu-
late that this could be the reason that the ActiLife SPAs
estimates showed validity for some of the activities while
used for the group with stroke.
Additionally from a sensor capability stand point, a

potential reason for this could be that unlike the ActiLife
(ActiGraph sampled at 30 Hz) the Metria-IH1’s SPA
estimates EE and MET by fusing information from
multiple on board sensor modules (overall sampling of
all sensors at 5000 data points per minute in which
accelerometer alone sampled at 32 Hz), such as, tri-axial
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accelerometer, near body skin temperature sensor and
galvanic skin response in addition to customized
participant specific information such as smoking
behavior, and anthropometrics. Indeed literature shows
that sensor fusion based approaches yield better
measurements of metrics, contingent upon the quality of
the sensors [2, 48, 59–61].
In summary, there were two main findings and recom-

mendations form this pilot investigation, (i) the sensor
type, sensor location, activity characteristics and the
population studied influences the accuracy of estimation
of physical activity metrics derived using SPAs: imple-
menting advanced techniques like machine learning and
data fusion to create customized population specific
algorithms to estimate physical activity metrics in indi-
viduals with neurologic impairments such as iSCI and
stroke has the potential to improve the reliability &
accuracy and (ii) comprehensive validations including all
outcome metrics (EE, MET and step counts) at different
activity intensity level is recommended for validation of
wearable sensors used in rehabilitation. These findings
are also in consensus with findings from literature study-
ing validity of wearable sensor estimates in different
groups [13, 14, 52, 62–65].

Limitations
Despite producing some novel and clinically useful
information, this investigation has many limitations. The
small sample size limits the extent of generalizability of
our findings. However, the sample size in our study is
comparable to other studies in this literature [66] and
our findings were supported with observations from
previous literature. The sedentary activities were recorded
only for bouts of 2 min each. It is not clear if the same
trends would hold when data is gathered for a different
time scale. However, to justify our choice of this time
scale, it is reasonable to assume that there is value in
studying such small bouts (< 2 min) of sedentary activities
as such low/high intensity activity occur through-out the
day in community setting. Future studies with a larger
sample size and includes other types of neurological im-
pairments is recommended to explore the individual influ-
ence of each of the factors for population specific
conditions on the outcome variables in laboratory as well
as free living conditions.

Conclusions
On one hand the inferences and information from our
results highlight the need to practice cautious decision
making while choosing wearable sensor types and
mounting locations for activity measurement in neuro-
logic rehabilitation. Whilst on the other hand, imple-
menting customized algorithms using advanced methods

like machine learning and data fusion methodologies for
estimating outcomes using wearables in individuals
neurological impairments like stroke and iSCI could be
beneficial [2]. We maintain that, incorporating the
combined effect of choice of sensor type used, location
of placement, and the activity intensity being studied, to
algorithms estimating outcome metrics from wearable
devices may yield reliable physical activity metrics both
in in-patient and out-patient environments.

Additional files

Additional file 1: tables with post-hoc analysis. Description:Table ST1.
Games-Howell multiple comparison post-hoc test to assess absolute
agreement (EE estimates in healthy control group). Table ST2. Games-
Howell multiple comparison post-hoc test to assess absolute agreement
(MET estimates in healthy control group). Table ST3. Games-Howell mul-
tiple comparison post-hoc test to assess absolute agreement (EE esti-
mates in iSCI control group). Table ST4. Games-Howell multiple
comparison post-hoc test to assess absolute agreement (MET estimates
in iSCI control group). Table ST5. Games-Howell multiple comparison
post-hoc test to assess absolute agreement (EE estimates in stroke group
with right impairment). Table ST6. Games-Howell multiple comparison
post-hoc test to assess absolute agreement (MET estimates in stroke
group with right impairment). Table ST7. Games-Howell multiple com-
parison post-hoc test to assess absolute agreement (EE estimates in
stroke group with left impairment). Table ST8. Games-Howell multiple
comparison post-hoc test to assess absolute agreement (MET estimates
in stroke group with left impairment). (DOCX 41kb)

Additional file 2: FigureS1. Sample acceleration data. Acceleration
(triaxial) from ActiGraphs strapped to arm, waist and ankle during a 50
step walk test from a representative healthy, iSCI and stroke participants.
Note: The duration for the 50 step walk test is different across the
groups. (PNG 93 kb)
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cord injury; MET: Metabolic equivalent; SPA: Standard proprietary algorithm;
Stroke(L): Stroke with left impairment; Stroke(R): Stroke with right impairment
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