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Abstract

Background: Integration of kinesthetic and tactile cues for application to post-stroke gait rehabilitation is a novel
concept which needs to be explored. The combined provision of haptic cues may result in collective improvement
of gait parameters such as symmetry, balance and muscle activation patterns. Our proposed integrated cue system
can offer a cost-effective and voluntary gait training experience for rehabilitation of subjects with unilateral
hemiparetic stroke.

Methods: Ten post-stroke ambulatory subjects participated in a 10 m walking trial while utilizing the haptic cues
(either alone or integrated application), at their preferred and increased gait speeds. In the system a haptic cane
device (HCD) provided kinesthetic perception and a vibrotactile feedback device (VFD) provided tactile cue on the
paretic leg for gait modification. Balance, gait symmetry and muscle activity were analyzed to identify the benefits
of utilizing the proposed system.

Results: When using kinesthetic cues, either alone or integrated with a tactile cue, an increase in the percentage of
non-paretic peak activity in the paretic muscles was observed at the preferred gait speed (vastus medialis obliquus:
p < 0.001, partial eta squared (η2) = 0.954; semitendinosus p < 0.001, partial η2 = 0.793) and increased gait speeds
(vastus medialis obliquus: p < 0.001, partial η2 = 0.881; semitendinosus p = 0.028, partial η2 = 0.399). While using
HCD and VFD (individual and integrated applications), subjects could walk at their preferred and increased gait
speeds without disrupting trunk balance in the mediolateral direction. The temporal stance symmetry ratio was
improved when using tactile cues, either alone or integrated with a kinesthetic cue, at their preferred gait
speed (p < 0.001, partial η2 = 0.702).

Conclusions: When combining haptic cues, the subjects walked at their preferred gait speed with increased
temporal stance symmetry and paretic muscle activity affecting their balance. Similar improvements were
observed at higher gait speeds. The efficacy of the proposed system is influenced by gait speed.
Improvements were observed at a 20% increased gait speed, whereas, a plateau effect was observed at a
40% increased gait speed. These results imply that integration of haptic cues may benefit post-stroke gait
rehabilitation by inducing simultaneous improvements in gait symmetry and muscle activity.
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Background
Worldwide, stroke is ranked as one of the leading cause
of disability [1]. Up to 88% of individuals suffering stroke
experience hemiparesis with disorders of gait and bal-
ance; which may persist even in the chronic phase [2, 3].
Therefore, a crucial goal in the rehabilitation of patients
affected by stroke is to restore their mobility in order to
allow resumption of independent living and improved
quality of life [4, 5]. Post-stroke gait suffer from reduced
abilities due to balance, speed, symmetry and muscle
strength deficiencies [6]. Individuals suffering sub-acute
and chronic stroke continue to use assistive or support-
ive devices in order to overcome postural control defi-
ciencies, gait asymmetry, sensorimotor deficiencies and
speed deterioration to increase their gait ability [7, 8].
Recent studies show that rehabilitation and gait training
may also benefit chronic hemiplegic patients [9–11]. In-
volvement of a physical therapist is necessary to admin-
ister gait rehabilitation procedures, but due to the high
incidence of stroke, the patient to therapist ratio is in-
creasing and creating a situation which demands the in-
creased use of engineering technology to aid therapists
in gait rehabilitation interventions [12]. Gait rehabilita-
tion after stroke requires intensive task-related training
as well as variable training in changing environmental
contexts with increasing physical demand [13]. Over-
ground gait training with the use of assistive devices and
in combination with other therapies or exercise regimens
may benefit the gait rehabilitation after stroke [14].
Among the currently available gait rehabilitation sys-

tems, several recently developed devices offer gait train-
ing with overground walking for individuals suffering
stroke [15–20]. These devices often use powered actua-
tors for lower extremity joints, and may increase the
post-stroke walking functionality towards a normal gait
pattern. Meanwhile, the numerous limitations of the
currently available systems such as high cost, wearability,
weight, safety, and other issues often deny many individ-
uals from undertaking post-stroke gait rehabilitation reg-
imens with such devices. Therefore, it has been a
difficult task to develop cost-efficient and adequate over-
ground gait rehabilitation devices with a simple setup
process and intuitive interactions targeted towards pa-
tients who can stand and move, but still need to over-
come gait deficiencies.
Rehabilitation devices may also deliver sensory cues to

the patients through visual, auditory and haptic modal-
ities. These cues can be applied individually or in combin-
ation for task-oriented neuromotor rehabilitation
following trauma [21]. Applications involving visual cues
require a bulky setup (display monitor/surface). Therefore
they are mostly not feasible for use with portable/wearable
gait training devices. Auditory cues can be delivered using
compact systems but are quite cumbersome for the users

in gait training application, as they continuously occupy
the hearing sensation and may obstruct activities of daily
life. Moreover, noisy or inappropriately lit environments
may also restrict the practical usability of auditory or vis-
ual cues [22]. The term haptic cue refers to the provision
of information/experience to the users through their sense
of touch. Visual and auditory senses are mostly occupied
by receiving information to maintain the activities of daily
life, whereas the haptic sensation is typically underutilized
[23]. Thus, haptic cues may be delivered to the users with-
out burdening their frequently used senses of vision and
hearing. The ectoderm present at the early embryo stage
is the basis of formation of both the skin and the nervous
system [24]. This connection forms a link whereby the
brain activity can be invoked through haptic stimuli, im-
plying that the use of the haptic channel may provide an
ease in changing neural plasticity. Haptic cues are gener-
ally divided into two categories; Tactile and Kinesthetic.
Kinesthetic cues generally include a sensation of force at
the location of the interface and offer a spatial frame of
reference to the user. PHANTOM [25] and SPIDAR-G
[26] are typical examples of devices that provide
kinesthetic cues. Tactile Cues generally include the sensa-
tion of vibration, texture or pressure. These can be pro-
vided by devices such as LinkTouch [27] and MIMIC [28].
Thus, provision of haptic cues can be achieved through
devices that deliver kinesthetic and tactile sensations to
the user [29].
Provision of discrete kinesthetic cues to individuals with

subacute stroke, through an instrumented cane, during
overground walking has been found to improve paretic
muscle activity [30]. Light touch (LT) refers to fingertip
contact with another physical object [31]. When lightly
touching a surface, proprioceptive receptors send informa-
tion of position and velocity of the body sway to the cor-
tical areas that control posture, leading to the activation of
postural muscles to attenuate sway [32]. Continuous
kinesthetic cues provided to individuals with chronic
stroke through an instrumented haptic bar coupled with a
visual display and with manipulation of physical environ-
ments improved their gait stability in challenging condi-
tions such as downslope walking [33]. Tactile cues
(muscle stimulation) provided to individuals suffering
chronic stroke improved their gait performance during
overground walking [34]. In addition to general physical
therapy, tactile cues applied for therapy may improve gait
performance in patients with chronic stroke and foot drop
[35]. Thus, whether provided as kinesthetic or tactile, hap-
tic cues may facilitate recovery of post-stroke gait during
rehabilitation process. In this context, haptic cues can
be a useful therapeutic option for intuitive interac-
tions in overground gait rehabilitation; the applica-
tions of which in post-stroke ambulation recovery can
be further explored.
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We recently proposed a haptic cane device (HCD)
which can deliver kinesthetic cue [36], and a vibrotactile
feedback device (VFD) which can provide tactile cue
[37]. Both HCD and VFD are low-cost and easy-to-use
systems that can provide overground gait rehabilitation
experience for individuals with sub-acute/chronic stroke.
In the pilot study with HCD [36], we observed that pro-
prioceptive augmentation delivered to individuals with
sub-acute stroke could improve their paretic muscle ac-
tivation and allow them to walk with increased gait
speed on the ground while maintaining balance. Walking
at increased gait speeds improves the kinematics and
muscle activation patterns of hemiparetic gait [38],
which is consistent with the speed-dependent changes
reported in healthy subjects [39]. Increased gait speed
also influences temporal symmetry of hemiparetic gait
[40]. Moreover, post-stroke lower limb muscle functional-
ity is correlated with comfortable and faster gait [41, 42].
Additionally in the pilot study with VFD [37], we observed
that delivering tactile cue induces the increase in stance
time of paretic lower limb, which effectively helps in re-
duction of temporal gait asymmetry. In studies related to
upper limb, complementary integration of kinesthetic and
tactile cues can improve hand movement perception [43],
activate heteromodal areas to subserve multisensory inte-
grative mechanisms at cortical and subcortical levels [44]
and facilitate motor learning [45]. Novel rehabilitative ap-
proaches that combine simultaneous motor and sensory
stimulations may substantially improve muscular strength
and joint position sense in chronic stroke patients [46];
thereby confirming the strong impact of somatosensory
stimulation on motor recovery [47]. The integration of
kinesthetic and tactile cues for application to post-stroke
gait rehabilitation has previously undergone little to no ex-
ploration [48]. Proprioceptive and tactile afferents both
terminate and share overlapping networks in the somato-
sensory cortex [49]. Therefore, exploration of the effects
of such cues on lower limb movements is warranted.
In this paper, we have explored the effects of combining

the use of portable HCD and wearable VFD for a novel in-
tegrated cue system at various gait speeds. Our proposed
system provides voluntary overground gait training modes
for hemiparetic post-stroke ambulatory individuals. The
first aim of this study is to determine whether the individ-
ual benefits of HCD and VFD can be observed as com-
bined in the integrated cue system at user-preferred gait
speed. The second aim of this study is to evaluate the ef-
fects of haptic cues (kinesthetic vs integrated) and in-
creased gait speed on the characteristics of balance, gait
symmetry and lower limb muscle activity.

Methods
Integrated cue system with its components and applica-
tion is shown in Fig. 1. The main idea of this system is

to provide over-ground walking with aid of HCD for
kinesthetic perception and a vibrotactor array attached
on the paretic leg to cue the gait modification through
VFD. Thus, integrated cue system has two basic func-
tions, which are velocity control of the cane and vibra-
tion on the shank during swing phase of gait. The
designs of HCD [36] and VFD [37] have individually
been evaluated through pilot studies, the results of
which have already been published.
HCD offers a new design, composed of a motorized

wheel and a cane structure to provide continuous pro-
prioceptive augmentation [36]. Canes and walkers have
traditionally been used to improve the patient’s ability of
walk by increasing the base of support area and also
maintaining the voluntary gait by providing a psycho-
logical sense of stability [50]. However, these traditional
devices require excessive use of the upper extremities to
keep balance and manage weight distribution, which
causes an aggravating gait imbalance due to the reduced
involvement of the lower extremities. HCD prevents the
patient to use excessive support force of an upper limb

Fig. 1 The proposed integrated cue system under use by a participant
of this study. Participant is performing overground walk, whilst holding
the handle of HCD by the healthy upper-limb and wearing the
VFD meanwhile the vibrotactor array is positioned at the paretic
shank. During all trials a physical therapist walks beside and monitors
the participant
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as a conventional cane and encourages the patient to use
paretic lower limb more actively due to the reduced
weight-bearing. The structure of HCD, which consists of
a wheeled base and a cane, induces the balance stability
by providing a continuous proprioceptive input and in-
creasing user’s base of support. The HCD is velocity-
controlled and can therefore help regulate the user’s gait
speed. This makes it a valuable tool of gait rehabilitation
in post-stroke ambulatory subjects. Use of the healthy
hand is recommended for hemiparetic stroke subjects to
operate and walk with HCD. As the users cannot apply
excessive force for the weight support on the cane with
a wheeled structure, they need to use their affected
lower limb instead of chiefly relying on the upper limb.
This operation mode of HCD provides a user with
device-driven walking over the ground similar to
treadmill-driven walking on a treadmill [51].
VFD is a wearable device which provides tactile cues

to the user during overground walking and serves as a
tool for diagnosing temporal asymmetry of gait. An elas-
tic belt containing an array of six vibrotactors, securely
attached to the inside of the belt, is used for the tactile
cue application to the subject [37]. The vibrotactors
cover the entire proximal end of paretic shank from
front to back. Vibration with constant intensity at
200 Hz is provided during the paretic swing phase to
maximally stimulate high-frequency Pacinian mechano-
receptors [52]. Each vibrotactor operates at 3.3 V and 66
mA, producing vibration amplitude of 1.4 G. The belt is
worn on the lower leg, so that it does not interfere with
proprioceptor information from the ground, as reduced
feedback due to proprioceptive loss is likely to impair
balance [53]. Also, direct muscle stimulation may con-
tribute in enhancing the gait modification through affer-
ent signal of vibration [54, 55]. The on/off status of the
vibration signal can be visualized using an LED con-
nected to the array of vibrotactors. The whole system
can be worn easily using elastic belts with Velcro fas-
teners. A pair of insoles containing four force-sensitive
resistors each, positioned at the heel, toe, fifth metatar-
sal, and first metatarsal are incorporated in VFD system,
for collection of ground contact data.

Subjects
To determine the effects of the proposed integrated cue
system an experimental setup of overground walking
was arranged. Ten individuals with hemiparetic stroke
took part in the trials. Participants of the study had suf-
fered single onset of unilateral hemiparetic stroke, and
were in the sub-acute phase of recovery, were able to
walk 10 m without assistance and had a 3 or higher
Brunnstrom stage [56]. Individuals who were unable to
follow verbal request, or had foot drop condition, limita-
tions in joint range of motion, pain in the lower

extremities, unstable medical conditions, or other diag-
nosed neurologic or musculoskeletal diseases were ex-
cluded from the study. Demographic details (mean ±
standard deviation (SD) or counts) of the participants
are presented in Table 1. All participants were inpatients
of the Rehabilitation Center of Gyeongsang National
University Hospital (Jinju, Republic of Korea). Gait train-
ing, strengthening and endurance exercise, and balance
training were applied to the patients in their current re-
habilitation program. All recruited subjects gave written
informed consent approved by our local Ethics Commit-
tee before participating in the study.

Protocol
Each subject was first introduced to the system and its
functionality. The patient grasps the handle of HCD to
switch on its operation. HCD allows the patient to re-
ceive kinesthetic cue and walk within a range of gait
speeds set by the operator. Meanwhile VFD provides a
tactile cue on the paretic shank during swing phase.
Subject wears a waist mounted leather belt holding a
smartphone for evaluation of trunk sway and wireless
electromyography (EMG) sensors (Wireless EMG Probes
by NORAXON USA) [57] to monitor muscle activity.
Recently, we utilized smartphone as a reliable tool to as-
sess body sway parameters [48], [58, 59]. The smart-
phone ran a custom-made android application that
identified trunk tilt and provided this information to a
socket program on the operator’s computer at 100 Hz.
EMG data was recorded at 1.5 kHz, for four muscles
each of the paretic and healthy legs (vastus medialis obli-
quus (VMO), semitendinosus (SMT), tibialis anterior
(TBA) and gastrocnemius medialis (GCM)). Stance
times of healthy and paretic leg calculated by the
Arduino Due on the VFD were sent to a custom-built
MATLAB GUI through XBee. All subjects walked
10 m distance in each trial; data obtained during the
middle 6.5 m was recorded for analysis. A 10 m walk
can give an adequate representation of the post-stroke
walking ability [60]. The scheme of administering
haptic cues used in this study was adopted to assess
their individual and combined effects on gait

Table 1 Demographic details of participants

Participants 10

Age (year) 57.7 ± 10.6

Height (cm) 165.5 ± 7.3

Weight (kg) 61.8 ± 10.1

Days since onset 62.5 ± 26.6

Gender Male = 6, Female = 4

Cause of Stroke Infarction = 5, Intracerebral Hemorrhage =5

Side of Hemiplegia Right = 7, Left = 3

Values are mentioned as Mean ± SD or counts (as appropriate)
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parameters. Furthermore, the speed of HCD was se-
lected to achieve an increase of up to 40% in the
user’s preferred gait speed. As, various exercise ther-
apy regimes have been found to achieve up to 40%
increase in initial gait speeds [61]. Each trial condi-
tion was performed two times by the participants and
the mean was analyzed. Four cue combinations and
three gait speeds were tested per participant. The cue
combinations were No Cue walk (NCW), Tactile Cue
walk (TCW), Kinesthetic Cue Walk (KCW), and Inte-
grated Cue Walk (ICW). The speed settings were 0%
(+ 0%), 20% (+ 20%), and 40% (+ 40%) increases in the
subject’s normal gait speed. The details of the trial
conditions are described in Table 2. All participants
wore comfortable walking shoes with removable in-
soles to accommodate the custom-made insoles of the
VFD. A physical therapist walked beside the subject
during the walking trials. Participants were given a
break of 1 min in between trials.

Data analysis
During each walking trial, various parameters were re-
corded for post-experimental data analysis. Figure 2 il-
lustrates the communication interface of the various
devices used in this research. HCD was operated over
Wi-Fi with a personal computer running a custom-built
LabVIEW GUI program. This GUI commanded the
HCD to setup various walking speeds during trials. It
also handled the smartphone communication over Wi-Fi
and saved the body sway data for post-experimental ana-
lysis. Later we calculated RMS of Mediolateral (ML) tilt
to determine the condition of balance during various
walking trials. The tilt in Mediolateral plane (ML tilt) is
the sideways sway a human body experiences while
maintaining an upright stance or walking. The RMS of

ML Tilt has been utilized as a reliable marker of postural
control during walking [62, 63]. Stance times received
from the VFD were stored on the personal computer
and utilized to define Stance Symmetry Ratio (i.e.,
Stance Symmetry Ratio (SSR) = stance time of healthy
side / stance time of paretic side). The use of wireless
EMG Sensors minimized the noise and artifacts of elec-
trical and mechanical origins. The recorded EMG signals
were band pass filtered (20–400 Hz), rectified, and
smoothed with RMS filter at 100 ms [64]. To identify
the increase in muscle activity of paretic side percentage
of non-paretic peak activity (%NPA) was calculated,
where integrals of EMG values of the paretic muscles
during stance and swing phase were normalized to the
EMG integrals from peak activity of the same muscles
on the non-paretic side [30, 65, 66].
A one-way repeated measures analysis of variance

(ANOVA) was performed to study the effects of Cue
(factor), at preferred gait speed, which had four levels
(no cue (NCW), tactile cue (TCW), kinesthetic cue
(KCW+ 0%) and integrated cue (ICW + 0%)) on RMS of
ML Tilt, Stance Symmetry Ratio and %NPA in the four
paretic muscles. Moreover, a two-way repeated measures
ANOVA was used to identify the effects of Haptic Cue
(factor, levels: kinesthetic (KCW) and integrated (ICW))
and increase in Gait Speed (factor, levels: 0%, 20% and
40%) on RMS of ML Tilt, Stance Symmetry Ratio and
%NPA in the four paretic muscles. In addition,
Mauchly’s test of Sphericity was used and Greenhouse-
Geisser corrections were applied in case of its violation.
Post hoc tests were conducted using the Bonferroni cor-
rection method. Partial eta squared (η2) was calculated
as a measure of the effect size for one- and two-way re-
peated measure analysis of variance; Cohen’s d was also
calculated and used for pairwise comparisons. All statis-
tical analysis was performed using SPSS V20.0 (IBM
Corp., Armonk, NY, USA).

Table 2 Protocol of experimental trials

Trial Conditions

No Cue Walk
(NCW)

Normal walk in a straight line without
any assistance/cue
Subject maintains self-preferred walking
speed
Operator calculates the normal gait
speed of the subject

Tactile Cue Walk
(TCW)

Walk with only VFD’s tactile cue
Subject maintains self-preferred walking
speed
Operator calculates the gait speed

Kinesthetic Cue Walk
(KCW + 0%, KCW + 20%,
KCW + 40%)

Walk with only HCD’s kinesthetic cue
Speed is set to normal gait speed + 0%,
+ 20% and + 40% in separate trials

Integrated Cue Walk
(ICW + 0%, ICW + 20%,
ICW + 40%)

Walk with both VFD’s tactile cue and
HCD’s kinesthetic cue
Speed is set to normal gait speed + 0%,
+ 20% and + 40% in separate trials

Two trials per condition were performed with a break of 1 min
between iterations

Fig. 2 Block diagram of device communication. The individual
devices (HCD, VFD, the smartphone and the wireless EMG
recording sensors) were connected to the PC via wireless
communication channels
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Results
Gait speed was calculated during NCW walking trial and
was regulated with the HCD during KCW and ICW tri-
als. It was an imposed parameter, except in the TCW tri-
als, and all other measures were observed to evaluate
the effects of haptic cues on the subjects. During TCW
trials patients regulated the gait speed according to their
comfort. Gait speed of the participants (Mean ± SD) dur-
ing various walking trials is shown in Table 3. Descrip-
tive statistics of the other measured parameters (Mean ±
SD) from the post-experiment data analysis are also pre-
sented in Table 3. Figure 3 shows the activation profiles
of the studied paretic muscles under different walking
conditions of a representative subject. Furthermore, out-
puts of one-way ANOVA and two-way ANOVA are pre-
sented in Table 4 and Table 5, respectively. All presented
outcomes of the multiple comparison post-hoc tests are
obtained after application of Bonferroni correction. No
post-hoc analysis was performed for the parameters that
did not show any statistical significance in main effect
and/or interaction.
Post hoc tests using the Bonferroni correction revealed

(see Fig. 4) that the SSR was significantly lower in ICW
+ 0% condition than NCW (P-value = 0.003, Cohen’s d =
1.18) and KCW+ 0% (P-value = 0.009, Cohen’s d = 1.00)
conditions. Likewise, SSR was significantly lower in
TCW condition than NCW (P-value = 0.002, Cohen’s d

= 1.23) and KCW+ 0% (P-value = 0.011, Cohen’s d = 1.
06) conditions. However, no significant difference was
found between NCW and KCW+ 0%, and TCW and
ICW+ 0%.
Moreover, post hoc tests also revealed (see Fig. 5. (a))

that the %NPA of Paretic VMO in Stance was signifi-
cantly higher in ICW + 0% condition than NCW (P-
value < 0.001, Cohen’s d = 3.59) and TCW (P-value < 0.
001, Cohen’s d = 4.08) conditions. Likewise, it was sig-
nificantly higher in KCW+ 0% condition than NCW (P-
value < 0.001, Cohen’s d = 3.64) and TCW (P-value < 0.
001, Cohen’s d = 4.09) conditions. However, no signifi-
cant difference was found between NCW and TCW, and
KCW+ 0% and ICW+ 0%. Similarly, post hoc tests using
the Bonferroni correction revealed (see Fig. 5. (b)) that
the %NPA of Paretic SMT in Stance was significantly
higher in ICW+ 0% condition than NCW (P-value = 0.
003, Cohen’s d = 1.61) and TCW (P-value < 0.001,
Cohen’s d = 1.35) conditions. Likewise, it was signifi-
cantly higher in KCW+ 0% condition than NCW (P-
value = 0.032, Cohen’s d = 1.31) and TCW (P-value = 0.
001, Cohen’s d = 1.09) conditions. However, no signifi-
cant difference was found between NCW and TCW, and
KCW+ 0% and ICW+ 0%.
Simple main effects were tested for post-hoc analysis

due to the significant interaction of Haptic Cue and Gait
Speed on Stance Symmetry Ratio. During ICW trials,

Table 3 Details of the observed parameters during various walking trials

Trial
Parameter

NCW TCW KCW + 0% ICW + 0% KCW + 20% ICW + 20% KCW + 40% ICW + 40%

Gait Speed (m/s) 0.456 ± 0.164 0.485 ± 0.174 0.456 ± 0.164 0.456 ± 0.164 0.546 ± 0.196 0.546 ± 0.196 0.638 ± 0.229 0.638 ± 0.229

RMS of ML
Tilt (degrees)

4.614 ± 1.085 4.530 ± 1.058 4.385 ± 1.223 4.482 ± 1.133 4.600 ± 1.003 4.676 ± 1.290 4.698 ± 1.110 4.775 ± 1.081

Stance Symmetry
Ratio

1.109 ± 0.030 1.076 ± 0.023 1.101 ± 0.022 1.079 ± 0.024 1.078 ± 0.021 1.076 ± 0.020 1.096 ± 0.012 1.092 ± 0.015

%NPA of Paretic
VMO in Stance

19.693 ± 3.238 20.867 ± 2.215 29.461 ± 1.979 30.067 ± 2.484 34.622 ± 1.699 34.969 ± 2.084 35.689 ± 1.619 35.536 ± 1.740

%NPA of Paretic
VMO in Swing

10.950 ± 0.875 11.061 ± 0.541 11.373 ± 0.674 11.665 ± 0.787 11.657 ± 0.732 11.643 ± 0.675 11.586 ± 0.544 11.752 ± 0.651

%NPA of Paretic
SMT in Stance

13.495 ± 1.058 13.614 ± 1.307 15.029 ± 1.274 15.293 ± 1.172 16.575 ± 0.830 16.229 ± 0.674 16.589 ± 0.818 16.559 ± 1.023

%NPA of Paretic
SMT in Swing

7.641 ± 0.393 7.618 ± 0.366 7.803 ± 0.309 7.909 ± 0.290 7.951 ± 0.167 7.895 ± 0.255 7.998 ± 0.249 8.051 ± 0.245

%NPA of Paretic
TBA in Stance

15.410 ± 1.496 15.272 ± 1.879 15.331 ± 1.614 15.815 ± 1.422 15.949 ± 0.953 16.235 ± 1.025 16.194 ± 1.849 16.173 ± 1.449

%NPA of Paretic
TBA in Swing

4.765 ± 0.401 4.726 ± 0.405 4.738 ± 0.328 4.777 ± 0.414 4.853 ± 0.211 4.929 ± 0.309 4.869 ± 0.376 4.851 ± 0.387

%NPA of Paretic
GCM in Stance

15.317 ± 1.584 14.852 ± 1.872 15.915 ± 1.135 15.379 ± 1.440 15.676 ± 1.413 15.462 ± 1.778 16.469 ± 0.909 16.484 ± 1.079

%NPA of Paretic
GCM in Swing

4.726 ± 0.505 4.810 ± 0.374 4.662 ± 0.391 4.780 ± 0.325 4.857 ± 0.469 4.827 ± 0.309 4.824 ± 0.292 4.894 ± 0.539

The values for these parameters were recorded during each trial for each participant and are tabulated as Mean ± SD. A decrease in RMS of ML tilt relative to
NCW indicated reduced trunk sway. Fall in stance symmetry ratio relative to NCW indicates improved temporal gait symmetry. Increase in %NPA is an indication
of improved paretic muscle activity
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significant difference was found between ICW+ 0% and
ICW+ 40% (P-value = 0.047, Cohen’s d = 0.13), and ICW
+ 20% and ICW+ 40% (P-value = 0.002, Cohen’s d = 0.
09); suggesting increase in gait speed from 0% to 20%
did not deliver any significant improvements and in-
crease of gait speed to 40% slightly worsened the SSR
(see Fig. 6. (a)). During KCW trials, significant difference
was found between KCW+ 0% and KCW+ 20% (P-value
= 0.003, Cohen’s d = 1.10), and KCW+ 20% and KCW+
40% (P-value = 0.047, Cohen’s d = 0.99); suggesting in-
crease in gait speed from 0% to 20% did deliver signifi-
cant improvements but further increase of gait speed to
40% worsened the SSR (see Fig. 6. (a)). A statistically sig-
nificant improvement in SSR was observed between

KCW and ICW at 0% increased gait speed (P-value =
0.001, Cohen’s d = 1.00) (see Fig. 6. (b)) but it was
not statistically significant at higher gait speeds (20%
and 40%). In Summary, application of tactile cue at
preferred gait speed (0%) shows improvements in
SSR; increase in gait speed up to 20% using KCW
also influences improvement in SSR but further in-
crease is not beneficial.
No significant interaction between Haptic Cue and

Gait Speed on %NPA of Paretic VMO in Stance led to
post-hoc analysis of Haptic Cue (ICW and KCW) separ-
ately (see Fig. 7. (a)). In ICW trials, significant difference
was found between ICW+ 0% and ICW + 20% (P-value
= 0.001, Cohen’s d = 2.13), and ICW+ 0% and ICW +

Fig. 3 EMG activity profiles of a representative subject’s paretic muscles during trials. Paretic muscle activity profiles of a representative subject
were calculated from the mean of 5 gait cycles. Here, the horizontal axis represents one full gait cycle beginning from stance phase of paretic leg
and the vertical axis represents filtered EMG activity signal values in microvolts
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Table 5 Results of two-way repeated measures ANOVA

Parameter Factor F P-value partial eta squared

RMS of ML Tilt Haptic Cue (1, 9) = 0.484 0.504 0.051

Gait Speed (1.253, 11.277) = 1.511 0.247 0.144

Interaction (2, 18) = 0.003 0.997 < 0.001

Stance Symmetry Ratio Haptic Cue (1, 9) = 14.448 0.004 0.611

Gait Speed (2, 18) = 11.786 0.001 0.572

Interaction (2, 18) = 9.988 0.001 0.529

%NPA of Paretic VMO in Stance Haptic Cue (1, 9) = 3.627 0.089 0.287

Gait Speed (2, 18) = 66.556 < 0.001 0.881

Interaction (2, 18) = 0.575 0.572 0.060

%NPA of Paretic VMO in Swing Haptic Cue (1, 9) = 0.741 0.412 0.076

Gait Speed (2, 18) = 0.359 0.703 0.038

Interaction (1.275, 11.477) = 0.655 0.471 0.068

%NPA of Paretic SMT in Stance Haptic Cue (1, 9) = 0.045 0.836 0.005

Gait Speed (1.208, 10.875) = 5.968 0.028 0.399

Interaction (2, 18) = 1.269 0.305 0.124

%NPA of Paretic SMT in Swing Haptic Cue (1, 9) = 0.548 0.478 0.057

Gait Speed (2, 18) = 1.643 0.221 0.154

Interaction (2, 18) = 1.905 0.178 0.175

%NPA of Paretic TBA in Stance Haptic Cue (1, 9) = 0.909 0.365 0.092

Gait Speed (2, 18) = 0.829 0.453 0.084

Interaction (2, 18) = 0.231 0.796 0.025

%NPA of Paretic TBA in Swing Haptic Cue (1, 9) = 0.323 0.584 0.035

Gait Speed (2, 18) = 1.848 0.186 0.170

Interaction (2, 18) = 0.608 0.934 0.008

%NPA of Paretic GCM in Stance Haptic Cue (1, 9) = 0.673 0.433 0.070

Gait Speed (2, 18) = 2.234 0.136 0.199

Interaction (2, 18) = 0.205 0.816 0.022

%NPA of Paretic GCM in Swing Haptic Cue (1, 9) = 0.387 0.549 0.041

Gait Speed (2, 18) = 1.370 0.276 0.132

Interaction (2, 18) = 0.284 0.756 0.031

Statically significant p-value and subsequent effect size are indicated in bold

Table 4 Results of one-way repeated measures ANOVA

Parameter F P-value partial eta squared

RMS of ML Tilt (3, 27) = 0.414 0.745 0.044

Stance Symmetry Ratio (3, 27) = 21.204 < 0.001 0.702

%NPA of Paretic VMO in Stance (3, 27) = 146.095 < 0.001 0.954

%NPA of Paretic VMO in Swing (3, 27) = 2.752 0.062 0.022

%NPA of Paretic SMT in Stance (1.683, 15.151) = 19.371 < 0.001 0.793

%NPA of Paretic SMT in Swing (3, 27) = 2.537 0.078 0.220

%NPA of Paretic TBA in Stance (3, 27) = 0.380 0.768 0.085

%NPA of Paretic TBA in Swing (3, 27) = 0.059 0.981 0.006

%NPA of Paretic GCM in Stance (3, 27) = 1.431 0.255 0.137

%NPA of Paretic GCM in Swing (3, 27) = 0.620 0.608 0.058

Statically significant p-value and subsequent effect size are indicated in bold
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40% (P-value < 0.001, Cohen’s d = 2.55). While, no statis-
tically significant difference existed between ICW+ 20%
and ICW+ 40%. Similarly, during KCW trials, significant
difference was found between KCW+ 0% and KCW+
20% (P-value < 0.001, Cohen’s d = 2.79), and KCW+ 0%
and KCW+ 40% (P-value < 0.001, Cohen’s d = 3.44).
However, no significant difference existed between
KCW+ 20% and KCW+ 40%. Also, no significant inter-
action between Haptic Cue and Gait Speed on %NPA of
Paretic SMT in Stance led to post-hoc analysis of Haptic
Cue (KCW and ICW) separately (see fig. 7. (b)). Signifi-
cant improvement of muscle activity was found between
KCW+ 0% and KCW+ 20% (P-value = 0.029, Cohen’s d =
1.43) only.

Discussion
Our proposed system provides the user with an experi-
ence of over-ground walking. The overloading of upper
limb is restricted by the design of haptic cane device
(HCD) which increases involvement of lower limb par-
etic muscles. Contact of the user with the handle of
HCD provides a continuous proprioceptive input; it
serves the purpose of assisting balance. Meanwhile, the

tactile cue provided by vibrotactile feedback device
(VFD) enhances the gait modification through afferent
signals of vibration. In this study we combined the
promising prospects of kinesthetic and tactile haptic
cues to comprise a novel integrated cue system.

Effects of haptic cues delivered at preferred gait speed
The HCD allows the users to only apply limited load on
the upper limb and encourages them to involve their
paretic lower limb in order to achieve increase in muscle
activity. In the No Cue Walk (NCW) and Tactile Cue
Walk (TCW) trials, the participants possibly used com-
pensatory and adaptive mechanisms of the nonparetic
leg and trunk in motor control, where they coped with
existing deficits including biomechanical changes rather
than by regaining the appropriate sequence of muscle
activation [67]. Whereas, with the introduction of the
HCD in Kinesthetic Cue Walk (KCW) and Integrated
Cue Walk (ICW) trials, the users tend to engage their
paretic lower limb muscles more actively. Similar to our
results, using an instrumented cane for restricted load-
ing of upper limb led to increase in EMG of paretic leg
muscles [30]. Vastus medialis obliquus (VMO) and semi-
tendinosus (SMT) are the muscles vital in maintaining
the upright body posture during stance phase of gait
[32]. Thus, increased activation of these muscles at pre-
ferred gait speed also contributed to postural control
during walking. Motor training to induce the use of the
affected side increases activity in the lesioned hemi-
sphere [68]. Therefore, the provision of a kinesthetic cue
may facilitate the post-stroke gait rehabilitation by in-
creasing paretic muscle activity.
Stroke disrupts the ability to maintain posture and

equilibrium during walking [69]. With the use of HCD
subjects may increase their base of support, thus allow-
ing a greater range of center of mass motion while main-
taining stability. Subject’s contact with the HCD also
provides proprioceptive augmentation, which is benefi-
cial in improving postural stability [30, 70]. Therefore,
the contribution of kinesthetic cues from the hand to

Fig. 5 One-way repeated measures ANOVA of Precentage of Non-Paretic Peak Activitiy. (a) %NPA of Paretic VMO in Stance was significantly
higher in ICW + 0% and KCW + 0% trials. (b) %NPA of Paretic SMT in Stance was significantly higher in ICW + 0% and KCW + 0% trials. Here: *⇒
P ≤ 0.05, **⇒ P≤ 0.01, ***⇒ P≤ 0.001

Fig. 4 One-way repeated measures ANOVA of Stance Symmetry
Ratio. Stance Symmetry Ratio shows statistically significant variations
among different modes of haptic cues at preferred gait speed of the
participants. Here: **⇒ P ≤ 0.01
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postural control suggests that the HCD may be useful
not only in creating biomechanical advantages; but also
in providing additional spatial orientation information
for control of balance during overground walking. This
is evident from the results obtained where the trunk
sway (RMS of ML Tilt) of participants was better, albeit
not statistically significantly so, during trials with HCD
(KCW and ICW), as compared to those without it
(NCW and TCW).
Hemiparesis is the most common impairment among

the subjects who suffer a stroke, which can result in
asymmetry of gait. In post-stroke gait, increase of the
vertical ground reaction forces through the healthy limb
is positively correlated with temporal asymmetry [71].
Therefore, musculoskeletal health of the non-paretic
limb is also negatively affected by an asymmetric post-
stroke gait. Stance symmetry ratio (SSR) is correlated
with swing time and step length symmetry ratio, thus it
can indicate improvements in gait symmetry [72]. A
stance ratio of 1 is desired for normal/healthy walking
condition [73]. Application of external cues using vibra-
tory stimulation during gait may control gait parameters
and improve gait performance in chronic stroke patients

[34]. The afferent signals due to vibration increase the
excitability of several segments of the spinal cord and
could facilitate triggering of locomotor-like movements
[74, 75]. High-frequency low-amplitude mechanical vi-
brations, applied to a muscle-tendon unit, generate affer-
ent fiber discharges because of the activation of muscle
spindles [74]. The modulation of afferent inputs alters
the excitability of the corticospinal pathway [75] as well
as the activation of cortical motor regions [76]. During
low-amplitude biceps muscle tendon vibration, most of
the functionally linked primary motor cortex cells re-
spond mainly with excitatory firing [76]. At preferred
gait speed during TCW trials, tactile cue induced sub-
stantial improvements in stance symmetry (as expected).
This result may be due to increase of somatosensory af-
ferent signals. Similarly, step-synchronized vibration
stimulation of the soles improved gait steadiness in
Parkinson’s disease patients with predominantly balance
impairment, presumably by enhancing sensory feedback
[77]. Proprioceptive afferents can play a key role in cali-
brating the spatial motor frame of reference and provide
a powerful sensory augmentation to the central nervous
system [78]. Moreover, gait speed and balance (Table 3)

Fig. 7 Two-way repeated measures ANOVA of Precentage of Non-Paretic Peak Activitiy. (a) Statistically significant increase of %NPA of Paretic
VMO in Stance was found at higher gait speeds. (b) Statistically significant increase of %NPA of Paretic SMT in Stance existed between KCW + 0%
and KCW + 20% only. Here: *⇒ P ≤ 0.05, **⇒ P≤ 0.01, ***⇒ P≤ 0.001

Fig. 6 Two-way repeated measures ANOVA of Stance Symmetry Ratio. Due to significant interaction simple main effects were obesereved for
post-hoc analysis. (a) Increase in gait speed from 0% to 20% exhibited improvements in SSR and further increase of gait speed to 40% worsened
it. (b) Statistically significant improvement in SSR was found between KCW and ICW at 0% increased gait speed only. Here: *⇒ P ≤ 0.05,
**⇒ P ≤ 0.01, ***⇒ P ≤ 0.001
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were not disturbed by provision of the tactile cues. Tact-
ile cue is a constant vibration during swing phase to re-
duce the spasticity and improve the smoothness of
motion in lower extremity during gait cycle, hence con-
tributing towards improvement of gait symmetry. Tem-
poral asymmetry is correlated with motor recovery [79].
Therefore, the provision of a tactile cue may facilitate
post-stroke gait rehabilitation by improving the temporal
stance symmetry.
The trunk sway of participants during walking as seen

from the RMS of ML Tilt (Table 3) was similar in KCW
+ 0% and ICW+ 0% but was better (not statistically sig-
nificant) as compared to NCW trial. Increase in percent-
age of non-paretic peak activity (%NPA) of paretic
muscles, VMO and SMT, was evident and alike in KCW
+ 0% and ICW+ 0% as compared to NCW trial. Like-
wise, similar improvements of SSR in TCW and ICW +
0% trials were observed as compared to NCW trial.
Thus at preferred gait speed, subjects tend to walk with
increased symmetry and muscle activity due to the com-
bined effects of HCD and VFD assimilating without dis-
ruption in balance.

Effects of haptic cues delivered at increased gait speed
Gait speed is considered to be an important marker of
deficit severity and functional ability after stroke [80].
Thus, speed gains resulting from the application of
HCD’s kinesthetic cue may become the object of consid-
erable interest in future clinical studies on gait rehabili-
tation. Post-stroke gait at increased speeds may allow
more appropriate timing of lower limb muscles, im-
proved movement coordination, and possibly facilitation
of intra-limb and inter-limb energy transfers [81]. There-
fore, the increase in muscle activity at higher gait speeds
could be beneficial for post-stroke gait training. No sta-
tistically significant difference according to Haptic Cues
in %NPA of paretic muscles existed as HCD was utilized
in both conditions (ICW and KCW). On the other hand
statistically significant difference in %NPA of paretic
muscles, VMO and SMT, according to gait speed was
observed, mainly attributed to the increase in gait speed.
We observed that participants could comfortably in-

crease their gait speed while utilizing the proprioceptive
augmentation through HCD. This proprioceptive aug-
mentation aided the subjects in balance control during
walking in KCW and ICW trials. No statistically signifi-
cant difference at various walking speeds in RMS of ML
tilt and no statistically significant difference according to
Haptic Cues in RMS of ML tilt existed, as these trials in-
cluded use of HCD.
Statistically significant improvement in SSR observed

between KCW and ICW at 0% increased gait speed is at-
tributed to the involvement of tactile cue. Whereas, no
statistically significant difference in SSR at increased gait

speeds (+ 20% and + 40%) was observed between KCW
and ICW. This may be due to the increased influence of
gait speed on temporal asymmetry as compared to that
of tactile cue. As, post-stroke ambulatory subjects who
are severely asymmetric appear more likely to exhibit
improved temporal symmetry at their faster walking
speeds [40]. For both ICW and KCW trials, increase in
gait speed from 0% to 20% exhibited improvements in
SSR and further increase of gait speed to 40% worsened
it. This may be attributed to the limitations of hemipare-
tic gait. Level of gait functionality in post-stroke ambula-
tory subject limits the potential to increase the walking
speed and introduces the need for compensations on the
non-paretic side [82].

Implications and future work
The suggested integrated cue system comprises of two
independent devices (HCD and VFD) operated through
a personal computer; however, for a patient self-usable
system certain possible modifications are necessary
which include the fusion of HCD and VFD into a single
device, and making the device operable (data collection
and monitoring) with a smartphone. The improvements
in gait parameters, as observed during the use of inte-
grated cues by the participants, including stance sym-
metry ratio and percentage of non-paretic peak activity
will benefit the sub-acute unilateral hemiparetic stroke
suffering individuals to overcome gait deficiencies.
Nevertheless, it is essential to observe the translation of
these improvements in clinical measures of gait rehabili-
tation (Functional Gait Assessment, 6 Minute Walk
Test, Dynamic Gait Index, Timed Up and Go, etc.) fol-
lowing a gait training study using the proposed system.
Observations with a small group of participants is a limi-
tation of this study; thus further studies are necessary to
explore the effects of the proposed system in detail with
greater diversity of participants and grouping them into
categories of different functional abilities and gait
speeds. The future continuation of this research will in-
clude evaluation of the level of persistent gait improve-
ment and long-term performance retention in
participants. The eventual goal of this research is to de-
vise a system that can be used in non-laboratory settings
for gait rehabilitation of individuals with sub-acute
stroke.

Conclusions
The purpose of this paper was to identify the benefits of
combining kinesthetic and tactile cues during over-
ground walking, with preferred and increased gait
speeds, delivered to individuals with unilateral hemipare-
tic stroke. The subjects could utilize the proposed inte-
grated cue system at increased gait speeds, but the most
significant benefits of the system were exhibited during
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user-preferred gait speed trials. At preferred gait speed,
subjects tend to walk with increased temporal stance
symmetry and paretic muscle activity without disruption
in balance; thus indicating that combining the haptic
cues was beneficial. Similar improvements were ob-
served with 20% increase in the gait speed, where the
improved muscle activity and gait symmetry more likely
to have been induced by the increase in gait speed. On
the other hand, those improvements faded away with
further increase in gait speed due to the limitations of
hemiparetic gait. This demonstrates that the efficacy of
the proposed system is influenced by gait speed. In light
of the above-mentioned observations, the integration of
haptic cues may benefit post-stroke gait rehabilitation by
inducing simultaneous improvement in gait symmetry
and muscle activity.
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