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Myocontrol is closed-loop control:
incidental feedback is sufficient for scaling
the prosthesis force in routine grasping
Marko Markovic1†, Meike A. Schweisfurth1,2*† , Leonard F. Engels3, Dario Farina1,4 and Strahinja Dosen1,5

Abstract

Background: Sensory feedback is critical for grasping in able-bodied subjects. Consequently, closing the loop in
upper-limb prosthetics by providing artificial sensory feedback to the amputee is expected to improve the prosthesis
utility. Nevertheless, even though amputees rate the prospect of sensory feedback high, its benefits in daily life are still
very much debated. We argue that in order to measure the potential functional benefit of artificial sensory feedback,
the baseline open-loop performance needs to be established.

Methods: The myoelectric control of naïve able-bodied subjects was evaluated during modulation of electromyographic
signals (EMG task), and grasping with a prosthesis (Prosthesis task). The subjects needed to activate the wrist flexor muscles
and close the prosthesis to reach a randomly selected target level (routine grasping). To assess the baseline performance,
the tasks were performed with a different extent of implicit feedback (proprioception, prosthesis motion and sound).
Finally, the prosthesis task was repeated with explicit visual force feedback. The subjects’ ability to scale the prosthesis
command/force was assessed by testing for a statistically significant increase in the median of the generated commands/
forces between neighboring levels. The quality of control was evaluated by computing the median absolute error (MAE)
with respect to the target.

Results: The subjects could successfully scale their motor commands and generated prosthesis forces across target levels
in all tasks, even with the least amount of implicit feedback (only muscle proprioception, EMG task). In addition, the
deviation of the generated commands/forces from the target levels decreased with additional feedback. However, the
increase in implicit feedback, from proprioception to prosthesis motion and sound, seemed to have a more substantial
effect than the final introduction of explicit feedback. Explicit feedback improved the performance mainly at the higher
target-force levels.

Conclusions: The study establishes the baseline performance of myoelectric control and prosthesis grasping force. The
results demonstrate that even without additional feedback, naïve subjects can effectively modulate force with good
accuracy with respect to that achieved when increasing the amount of feedback information.

Keywords: Myoelectric prosthesis, Baseline, Routine grasping, Grasping force, Sensory feedback, Closed-loop control

* Correspondence: MeikeAnnika.Schweisfurth@haw-hamburg.de
†Marko Markovic and Meike A. Schweisfurth contributed equally to this work.
1Applied Rehabilitation Technology Lab (ART-Lab), Department of Trauma
Surgery, Orthopedics and Plastic Surgery, University Medical Center
Göttingen, Georg-August-University, 37075 Göttingen, Germany
2Faculty of Life Sciences, Hochschule für Angewandte Wissenschaften
Hamburg, Ulmenliet 20, 21033 Hamburg, Germany
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Markovic et al. Journal of NeuroEngineering and Rehabilitation  (2018) 15:81 
https://doi.org/10.1186/s12984-018-0422-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-018-0422-7&domain=pdf
http://orcid.org/0000-0003-0329-8407
mailto:MeikeAnnika.Schweisfurth@haw-hamburg.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
The hands are an essential part of our body and our most
important tool to interact with the world. Not only do we
grasp, move, and explore objects using the hands, but they
also contribute to our interaction and communication
with other living beings through the language of gestures.
This refined control of the hands is due to a seamless inte-
gration of feedforward motor commands and an elaborate
network of sensory feedback (i.e., touch, temperature,
nociception, proprioception, kinesthetic feedback) we
receive [1].
The loss of a hand in people with transradial amputation

can have a pronounced effect on the performance of
daily-life activities and the general quality of life. The
state-of-the-art in recovering hand function in persons
with transradial amputation is to equip them with myo-
electric prostheses. These systems are controlled through
the activity of the hand and wrist flexor and extensor mus-
cles in the residual limb, recorded by surface electromyog-
raphy (sEMG). This is a robust and intuitive control
scheme for simple, single degree of freedom grippers,
since the muscles that were originally used to control the
hand and wrist are now employed to open (extensors) and
close (flexors) the prosthesis. However, the restoration of
lost functions is only partial, as commercially available
myoelectric prostheses do not provide explicit sensory
feedback about the prosthesis state. The only exception is
a recently presented system [2] providing a simple feed-
back of touch onset using a single vibration motor embed-
ded in the distal part of the prosthesis.
Sensory integration is crucial for motor execution, adap-

tation and learning [3]. Therefore, as long as no sensory
feedback is provided, prosthetic hands are believed to re-
main suboptimal assistive devices, rather than full bionic
hand replacements [4]. Researchers have implemented dif-
ferent methods to provide reliable, intuitive feedback to
the user [5]. Most solutions follow the general approach
known as sensory substitution [6], in which an alternative
sensory modality is used to compensate for the lost sense.
In this, the prosthesis is equipped with sensors measuring
the system state (joint angles) and interaction with the
environment (grasping force), and the sensor data are
transmitted to the user through electrical or mechanical
stimulation eliciting tactile sensations [7]. The feedback
information is coded by changing stimulation parameters,
intensity and/or frequency (parameter modulation) and/or
location (spatial modulation). In electrical stimulation,
low-intensity electrical current pulses are delivered to the
skin through surface electrodes, activating superficial skin
afferents [8], or directly to the peripheral nerves [9] and/
or brain [10] using implantable interfaces. The most com-
mon method to deliver direct mechanical stimulation, on
the other hand, is to use vibration motors [7]. These can
be simple pager vibrators [11–13] with a single input

controlling both intensity and frequency, or more ad-
vanced voice-coil devices [14], which can modulate the
stimulation parameters independently (two control in-
puts). The prosthesis grasping force was considered most
often as the variable to feed back [5], as it cannot be easily
assessed visually (contrary to joint angles, for example).
However, even in the absence of explicit force feed-

back from the prosthesis, the control is not completely
“open-loop” since the users can still rely on incidental
information sources. First, the prosthesis responds pro-
portionally, that is, the stronger the contraction of the
user muscles, the faster the velocity of closing and hence
the higher the resulting contact force when grasping.
Therefore, the user can rely on the proprioceptive feed-
back from the remaining muscles (sense of contraction)
to control the force. In addition, the user can exploit
visual feedback to estimate and adjust the velocity of
closing, and thereby indirectly and predictively the
resulting grasping force [15]. This strategy can be facili-
tated by additional cues, such as the sound from the
motor and the perception of vibrations transmitted
through the socket. Finally, humans are capable of in-
ternalizing the dynamics of the system they are control-
ling [16, 17]. They can use these internal models to
operate the system predictively through precomputed
feedforward commands. This process translates, at least
partly, to the control of prosthetics [18]. For example, it
was shown that prosthesis users are able to scale the
applied grasping forces in an anticipatory manner de-
pending on the perceived state of the target object (fra-
gile vs. rigid) [19].
Prosthesis users can exploit implicit feedback sources

in their daily use of the prosthetic device [20, 21]. How-
ever, the quality of control achievable by using incidental
feedback has never been systematically investigated. This
assessment is important because it represents the base-
line performance of “open-loop” control. Such baseline
can then be used as a reference to evaluate explicit feed-
back strategies. This could contribute to clarifying the
role of feedback and to quantifying the benefits of
closing the loop in upper-limb prosthetics, especially
because there is no unanimous agreement whether and
to what extent explicit feedback is functionally useful for
prosthesis control. Studies on the topic are indeed often
contradictive [14, 22–24] and/or inconclusive [25].
In most studies, a specific solution was presented, and

the prosthesis performance with feedback was compared
to that without the feedback. These are important devel-
opments that can demonstrate the effectiveness of a par-
ticular feedback interface. However, such studies do not
explicitly reveal the reasons why the presented feedback
improved or failed to improve the performance. To ad-
dress the latter, basic studies in controlled conditions
should be performed to investigate the general nature of
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the mechanisms governing closed-loop control in pros-
thetics. The present study aims at closing that gap in the
literature by investigating the role of incidental and
explicit feedback sources in prosthesis control. We first
determined the “open-loop” baseline and then compared
it to the performance achieved using ideal explicit feed-
back. The subjects’ task was to control the magnitude of
muscle activation and prosthesis grasping force. In the
baseline condition, the subjects relied on natural pro-
prioception from their muscles plus visual and audio
cues related to prosthesis movement, whereas in the
explicit feedback condition, the information on the gen-
erated grasping force was shown on a computer screen.
The aim was to assess the impact of different amounts
of implicit feedback on prosthesis force control and to
investigate if and how much the performance can be im-
proved by supplementing the implicit sources with expli-
cit force information.

Materials and methods
Ethics and consent
Ten able-bodied subjects (22 ± 3 yrs., 6 men, 4 women)
participated in the experiment. Subjects were informed
about the experiment both in writing and orally. The
study was approved by the Ethics committee of the
University of Göttingen (04/2016). All experiments were
conducted in accordance with the declaration of Helsinki,
and all participants provided written informed consent
prior to participation in the experiments.

Experimental setup
The experimental setup consisted of: 1) a Michelangelo
hand controlled proportionally using a single dry EMG
electrode with embedded amplification, filtering and
rectification circuit (13E200, Otto Bock Healthcare
GmbH, Vienna, AT); 2) a wooden block to be grasped
by the prosthesis; and 3) a standard desktop computer
with a 22″ screen. The control-loop was implemented in
Matlab Simulink 2015b (MathWorks, US) using a flex-
ible test bench for the assessment of the closed-loop hu-
man manual control [26] and executed on the host PC
in real time at 100 Hz. Since it has an integrated rectifi-
cation and filtering circuit, the EMG electrode outputs
the envelope of the acquired EMG (smoothed signal).
The provided EMG envelope was sampled at 100 Hz by
the embedded prosthesis controller and sent to the host
PC via a Bluetooth link, where it was additionally filtered
using a 2nd order Butterworth low-pass filter with a cut-
off frequency of 2 Hz. Visual feedback for the subject
was displayed on the computer screen. The average
Bluetooth communication latency was around 80 ms.
The subjects sat comfortably in front of a desk with the

computer screen positioned approximately 75 cm away
from them (Fig. 1). The prosthesis was securely fixed to

the surface of the table, between the subject and the com-
puter monitor. Therefore, the subjects had a clear view of
the prosthesis and could also hear the motor sound, with
the peak frequencies in the range from 170 Hz to 500 Hz
corresponding to different prosthesis closing speeds
(20–100% of maximum speed). A rigid object was fixed to
the prosthesis’ thumb, so that when the prosthesis closed,
it grasped the object. Prior to the experiment, the optimal
placement for the EMG electrodes was determined by
palpating the ventral aspect of the forearm during wrist/
hand flexion movement. The skin was prepared with a
small amount of abrasive gel (everi, SpesMedica, IT), and
an elastic band was used to strap the electrode firmly to
the forearm. The subjects kept their arm in a comfortable
semi-upright position, resting their elbow on a cushion
placed on the desk and maintained the same position
throughout the experiment. Importantly, the subjects’
wrist was left free and unimpaired during the experiment.
The analog electrode gain was adjusted so that the signal
fluctuated around 85% of the amplifier saturation level
when the subjects performed maximum muscle activation,
exploiting thereby the full range of the analog amplifier.

Experimental tasks
The experiment comprised three parts in which the sub-
jects controlled two output variables, namely, the level of
muscle contraction (EMG task) or the level of grasping
force when controlling the prosthesis (Prosthesis task).
The grasping force was controlled in two tasks, first with-
out (Prosthesis task without feedback) and then with an
explicit visual force feedback shown on the computer
screen (Prosthesis task with feedback). The generated and
reference muscle activations and prosthesis forces were all
normalized to the interval [0%, 100%], as explained below.
In the EMG task (Fig. 1a), the prosthesis was turned off,

and no feedback was provided during the task. The sub-
jects were asked to contract their hand/wrist flexor mus-
cles (the hand was not) to reach a given target level and to
maintain the contraction until the trial counter expired
(2 s, Fig. 2a1). After each contraction, the subjects had to
relax the muscles to initiate a new trial. The filtered myo-
electric command was used as the momentary estimate of
the muscle activation level. To normalize the signal, the
maximum activation was measured as the strongest con-
traction that the subjects could maintain for 2 s without
fatiguing. The muscle signal maximum was defined as the
average of five measurements. Finally, the muscle activa-
tion signal was normalized by linearly mapping the range
between 10 and 100% of the obtained maximum to the
interval [0%, 100%]. A myoelectric prosthesis generally
operates proportionally, and the level of muscle activation
is therefore translated into the magnitude of grasping
force. Therefore, the role of the EMG task was to assess
how well the subjects could generate the commands to
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the prosthesis (i.e., muscle-activation levels) by relying
only on the natural proprioception from their own mus-
cles (sense of contraction).
In both prosthesis tasks (Fig. 1b-c), the subjects were

asked to close the prosthesis using the power grip (all

fingers) so that a given target level of force was generated
upon contacting the object. The task was performed by
contracting the hand/wrist flexor muscles to close the
prosthesis from the fully opened position. While the EMG
calibration remained the same as in the EMG task, the

A B C

Fig. 1 Setup in EMG task (a), Prosthesis task without feedback (b), and Prosthesis task with feedback (c). The desired level of normalized muscle
activation (EMG task) or prosthesis force (Prosthesis tasks) was shown on the computer screen (full line, L5). All other levels were indicated with
dashed lines. The lowest level was not used as target level (see text for further explanation). In the Prosthesis task without feedback, the subjects
could see and hear the prosthesis but did not see the level of generated force. In the Prosthesis task with feedback, they additionally received
visual feedback on the generated force (bar in c)

A1 B1

A2 B2

Fig. 2 a Example time course of the generated signals during a trial in the EMG task (a1) and in the Prosthesis Task (a2). The time windows used for
computing the trial outcomes are marked, in the EMG task being the median EMG (a1, light grey) and in the Prosthesis tasks being the maximal force
extraction and the median EMG before touch onset (a2, light and dark grey, respectively). b Exemplary sequence of target levels (black circles) and
generated myoelectric commands and prosthesis forces (crosses) in the EMG task (b1) and the Prosthesis task without feedback (b2). The median
absolute error in each trial (length of the line) was used for performance analysis. The first ten trials (indicated by the vertical dashed black line) were
regarded as the familiarization phase of the task and thus excluded from the analysis
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force was normalized with respect to the maximum pros-
thesis force (~ 100 N). The myoelectric signal proportion-
ally controlled the velocity of closing and the resulting
grasping force. The prosthesis input-output function was
rather linear, so that the normalized myoelectric input
produced approximately the same magnitude of the nor-
malized grasping force (i.e., X % of EMG led to X % of
force). The subjects were instructed to activate the flexor
muscles to the level that they estimate would lead to the
desired grasping force and then maintain the contraction
until the prosthesis closed (Fig. 2a2). Therefore, the sub-
jects performed virtually the same protocol as in the EMG
task, but this time they could observe the prosthesis
response, that is, closing motion as well as motor sound.
Since the prosthesis was non-backdrivable and the sub-
jects controlled only the prosthesis closing (using a single
EMG channel), the force could not be decreased after
contact. When the prosthesis closed around the object,
the subject could relax his/her muscles and the prosthesis
opened automatically 1.75 s after touch onset.
In the Prosthesis task without feedback no explicit

force feedback was given (Fig. 1b). The aim was to assess
if the subjects would generate better myoelectric com-
mands than in the EMG task, by activating the muscles
more consistently and accurately, if they received
additional incidental feedback (prosthesis motion and
sound plus muscle proprioception). Here, the subjects
were instructed to focus and rely on all the feedback
cues available. In addition, the forces generated in this
test established the baseline of force control with no ex-
plicit force feedback.
In the Prosthesis task with feedback the measured max-

imum force was shown on the computer screen, revealing
to the subject the force that they were generating in that
trial (Fig. 1c). The aim was to assess if the subjects would
further improve the generation of myoelectric commands
and/or the quality of force control, if they were provided
with explicit feedback on the generated forces. The sub-
jects were instructed to follow the same strategy as in the
two previous tasks, that is, to close the hand using one
continuous contraction so that the generated force was
produced directly upon contacting the object, without the
need to steer the force once the hand was closed. There-
fore, the visual feedback was not used to modulate the
muscle activation (prosthesis force) during an ongoing
trial. Instead, the feedback provided the outcome of the
present trial (generated grasping force) and the subject
used this information to adjust the muscle activation in
the next grasp. Again, the subjects were instructed to
focus and rely on all available feedback cues.

Experimental protocol
The tasks were ordered according to the increasing
amount of feedback information, that is, the subjects first

performed the EMG task (proprioception), followed by
the Prosthesis task without feedback (proprioception, pros-
thesis), and finally the Prosthesis task with feedback (pro-
prioception, prosthesis, force). This sequence was chosen
so that, in each new task, the subjects were provided with
additional feedback sources, thereby preventing unwanted
across-task learning effects [18], which could potentially
mask the impact of less feedback on performance. In each
trial, the aim was to produce the indicated level of muscle
activation (EMG task) or force (Prosthesis tasks), as ex-
plained in the previous section. The full signal range [0%,
100%] was divided into six equal intervals, and the middle
points of the intervals, from the second to the sixth, were
adopted as the five target levels (upper five dashed lines,
Fig. 1). It should be noted that, due to the inherent coup-
ling mechanism in the prosthesis, generating a command
to close the prosthesis at the minimum velocity consist-
ently produced forces within the 2nd interval (see [27] for
a comparable discussion). This is the reason why the first
interval was not considered as target. The subjects were
informed about that coupling, and as will be discussed in
the following paragraph, they knew how to exploit it. The
trials were organized into 20 sequences of 5 trials, and
within each sequence, all target levels appeared once in a
randomized order (Fig. 2b1 and b2). Therefore, there were
100 trials per task, with 20 trials per target level (out of
which the last 18 were used for analysis, see section Data
Analysis). To prevent fatigue, the subjects took a 2-min
break after 50 trials. In each trial, the target level was indi-
cated on the computer screen, textually (L2 to L6) and as
a horizontal line on the vertical bar (Fig. 1a).
Before starting the EMG task, the subjects were trained

on how to produce the maximum (100%) and minimum
value (just above zero) of the myoelectric command. To
this aim, they were provided with visual feedback of the
myoelectric command and asked to generate the respect-
ive values for several consecutive trials. Once they were
sufficiently accurate in reaching them, they repeated the
same task with eyes closed. The training was finished
when they could generate the maximum/minimum myo-
electric command five times in a row without relying on
the visual feedback. At this point, it was assumed that the
subjects had calibrated their control of muscle activation
(EMG task). The subjects then performed the sequence of
grasping trials. They were instructed to use the learned
minimum/maximum values as a reference to scale their
motor commands to the target level indicated in the trials.
Importantly, before starting the Prosthesis task the sub-
jects were introduced in detail to the basics of the pros-
thesis operation, including proportional control, the linear
relation between closing velocity and generated force, and
the non-backdrivability. The prosthesis closing and force
control was demonstrated by closing it, via artificially-gen-
erated signals, at the maximum and minimum velocity for
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several times. The subjects were also allowed to close the
prosthesis five times without receiving explicit force feed-
back, in order to get familiar with its control.

Data analysis
The trial outcome in the EMG task (generated myoelec-
tric command) was the median of the generated muscle
activation, computed over the last 1-s window of the 2-s
trial duration (Fig. 2a1). In the Prosthesis tasks, the max-
imum of the generated grasping force (generated force)
and the median EMG in the last 200 ms before touch on-
set (generated myoelectric command) were used as trial
outcomes (Fig. 2a2). The time offset of 200 ms was intro-
duced because of the prosthesis’ mechanical inertia; that
is, the time delay for building up the grasping force in re-
sponse to a given EMG command. To account for the
subjects’ familiarization with the experimental condition,
the first ten trials of each task were excluded from the
analysis. The Kolmogorov-Smirnov tests showed that the
data were not normally distributed; consequently, we used
non-parametric tests for statistical analysis and median
and interquartile range to report the results. The signifi-
cance level was set to a Type-I error level of 0.05 (p < 0.05)
in all tests described below.

Scaling across target levels
The goal of this analysis was to evaluate, separately for
each of the three tasks, if the subjects could successfully
scale their myoelectric commands and generated pros-
thesis forces according to the indicated target levels. To
this aim, the medians of the generated muscle activations
and prosthesis forces were determined for each target
level and subject and statistically compared across target
levels within the same task. A Friedman test was applied
to evaluate statistically significant differences between
levels 2 to 6. If present, Bonferroni-Holmes-corrected
Wilcoxon signed-ranks tests were used to assess statisti-
cally significant differences between the neighboring levels
(four tests per Friedman test). The analysis revealed how
many statistically different levels of myoelectric com-
mands and prosthesis forces the subjects could generate.
In the ideal case, this would be equal to the number of tar-
get levels (five).

Performance between tasks
Myoelectric command generation was analyzed separately
from force generation. The goal of this analysis was to as-
sess if and how the amount of feedback altered the repro-
ducibility of myoelectric commands and consequently the
quality of force generation. To gain a more detailed insight
into the impact of feedback in prosthesis force control, a
level-wise force analysis was performed between the two
Prosthesis tasks (with vs. without explicit feedback). The
exact procedures for these two analyses are described in the

remainder of this paragraph. Levels 2 and 6 were excluded
as the prosthesis control was very different from the other
levels. Namely, when aiming at level 6, the subjects often
saturated both EMG command as well as the prosthesis
force (normalized myoelectric commands and forces were
close to 100%). Therefore, the true distribution of the gen-
erated myoelectric commands and prosthesis forces at level
6 could not be captured. For the target level 2, the subjects
exploited the coupling inherent in the prosthesis, as ex-
plained in the section Experimental Protocol. They realized
that to reach the 2nd level, they simply needed to produce
the minimal myoelectric command to close the prosthesis
at the minimum velocity, as the prosthesis could not gener-
ate lower forces. Therefore, they consistently undershot in
the produced EMG (see Fig. 3a2 and a3). For the remaining
levels 3 to 5, the median absolute error (MAE), defined as
the absolute difference between the generated and desired
muscle activation/prosthesis force, was calculated to assess
the performance. The MAE was determined separately for
each task (also for myoelectric command and force in the
Prosthesis task), target level, and subject. To perform an
overall analysis, the mean MAE across target levels was cal-
culated for each subject and task. A Friedman test was ap-
plied to compare the overall performance in myoelectric
command generation between the three tasks. If the test in-
dicated significant differences, the tasks were compared
pairwise using Bonferroni-Holmes-corrected Wilcoxon
signed-rank tests. This analysis was performed to evaluate
how the amount of feedback contributed to the control
performance. Similarly, for the Prosthesis tasks the quality
of force control (average MAE across levels 3 to 5) with
and without explicit feedback was statistically compared
using a Wilcoxon signed-rank test. To assess the
force-control impact on individual levels, the same analysis
was additionally performed separately for target levels 3 to 5.

Results
Scaling across target levels
Figure 3 depicts the distribution of the per-subject me-
dians of the generated muscle activations and grasping
forces across target levels in each task. For level 2 in the
Prosthesis task, the subjects generated forces close to the
target level while undershooting substantially with the myo-
electric commands (compare Fig. 3a2, a3, b2 and b3),
exploiting the coupling mechanism described in the section
Experimental protocol. For level 6, the subjects often satu-
rated the commands as well as the forces, as discussed
above, resulting in (artificially) dense distributions and me-
dians close to 100%. Generally, the results demonstrated
that the subjects could successfully scale their generated
muscle activations and/or forces according to the indicated
target levels, even without any direct feedback on the con-
trolled variable. In each task consistently (p < 0.05 in each
Friedman test), the overall medians of the generated muscle
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activations and grasping forces significantly increased (p <
0.05 after Bonferroni-Holmes correction) from one target
level to the next, for all the neighboring levels, clearly show-
ing the subjects’ scaling ability. The range between the over-
all medians in the extreme levels was 66% for the EMG
task, 88% in the EMG envelope and 74% in force for the
Prosthesis task without feedback, and 76% in the EMG en-
velope and 71% in force for the Prosthesis task with feed-
back. The addition of the feedback sources seemed to have
a beneficial effect on the scaling, as the dispersion of the
subject-specific medians became lower, observable by com-
paring the interquartile ranges (the length of the box-
plots), from Fig. 3a1 over a2 to a3 and from b2 to b3.

Performance between tasks
Figure 4 shows the overall MAE (across levels 3 to 5, as de-
scribed in the Methods) for the generated muscle activations
and grasping forces for each task, assessing the quality of
myoelectric-command generation and prosthesis-force con-
trol between the tasks. The overall median MAE of the gen-
erated muscle activations was largest for the EMG task
(22%), lower in the Prosthesis task without feedback (15%)

and lowest in the Prosthesis task with feedback (12%). The
pairwise differences were all statistically significant, as re-
vealed by a Friedman test (p < 0.001) and significant
post-hoc comparisons. Adding prosthesis motion and sound
to proprioception significantly improved the command gen-
eration performance (EMG task vs. Prosthesis task without
feedback), and providing explicit visual feedback improved
the myoelectric control even further (Prosthesis task without
feedback vs. with feedback). In the Prosthesis task, the im-
proved myoelectric control also resulted in more accurate
force generation, as the MAE of the generated forces de-
creased slightly but significantly when the explicit force feed-
back was introduced (Fig. 4, forces, 13% vs. 14% in the
Prosthesis task with vs. without feedback). The quality of
force control for each individual target level is presented in
Fig. 5. The explicit feedback was not beneficial for level 3 but
significantly improved force control at the higher levels (4
and 5, median improvement of 4% and 6%, respectively).

Discussion
There have been no systematic studies so far assessing
the baseline ability of human subjects to generate

EMG envelope

Force

A1

B2A2

A3 B3

Fig. 3 Distribution of generated muscle activations (a1 to a3) and prosthesis forces (b2 to b3) for each target level. For the EMG task (a1, light
grey) and the Prosthesis task without (a2, b2, dark grey) and with (a3, b3, black) feedback, the distribution of the (per-subject) median of muscle
activations (a) / forces (b) is visualized using boxplots, depicting the overall median (circle), interquartile range (box), maximal/minimal values
(lines) and outliers (pluses). Black continuous lines denote the target levels, black dashed lines the level of saturation. For each task, significant
differences between the muscle activations / forces generated while aiming at the neighboring target levels are marked with an asterisk (p < 0.05,
Bonferroni-Holmes corrected). For levels 4 to 6, the median percentage of saturations per subject is given
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myoelectric commands and control a prosthesis force at
a range of levels in “open-loop”, that is, with no explicit
feedback on the grasp outcome. We have investigated
incidental and explicit feedback in the context of pros-
thesis grasping. However, it is likely that the insights
could be generalized to controlling other prosthesis
functions. For example, the subjects might be able to
control the wrist rotation speed (e.g., rotate slowly or

quickly) using muscle proprioception and motor sound,
without even looking at the hand. Finally, it should be
emphasized that implicit and explicit feedback are com-
ponents of the larger human motor control scheme that
needs to be considered in its totality in order to properly
model and understand closed-loop prosthesis control.
This includes, among others, the ability of the subject to
learn, predict, and adapt [19, 28–30], which is likely to
have a substantial effect on the use and relevance of the
feedback in general (either explicit or implicit).
Our results demonstrated that even in naïve users, the

control without explicit feedback is not completely blind
(open loop) but, on the contrary, surprisingly good. This
could explain the unexpected outcome in some studies
[13, 14, 25], where artificial feedback failed to provide
any benefit. In other studies, the task was to produce few
force levels (e.g., low, medium and high) [9, 12, 31] and
the present experiment demonstrated that the subjects
can already do more than that even with only minimal
implicit feedback (muscle proprioception). Nevertheless,
we argue that this type of feedback is useful for gross con-
trol tasks (force control during routine grasping); more
delicate tasks, such as individual finger control in a dexter-
ous prosthesis [32] or the use of prosthesis for haptic ex-
ploration [33], would still require artificial tactile feedback.
Looking at the EMG task only, this study shows that

the feedback obtained through muscle proprioception is
an important feature inherently available in myocontrol,
essentially making myocontrol closed-loop control. This
feedback source would not be present with other types
of interfacing, such as nerve interfacing for motor com-
mands without a target muscle. Using muscles for con-
trol is therefore very beneficial not just because they
provide good control signals, but also because they pro-
vide very intuitive feedback.
The subjects could indeed generate five distinct levels,

but they would not necessarily match the actual target
levels, as the mean absolute error was between 10 and
20%. The quality of myoelectric control consistently
improved with the addition of more feedback sources.
Increasing the amount of implicit information, from pro-
prioception only to proprioception and prosthesis mo-
tion and sound, and finally providing explicit feedback,
steadily decreased the error in generating myoelectric
commands. Interestingly, the improvement was more
substantial when introducing the prosthesis (EMG task
to Prosthesis task without feedback) compared to when
adding explicit feedback on top of prosthesis motion and
sound (Prosthesis task without feedback to Prosthesis
task with feedback). The improvement in myoelectric
control due to explicit feedback translated into better
force control, but this benefit was modest overall.
The explicit force feedback significantly improved the

performance when the uncertainty of myocontrol was
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Fig. 4 Overall performance in generating myoelectric commands
and prosthesis forces for each task. For the EMG task (E, light grey),
and the Prosthesis task without (P-, dark grey) and with (p+, black)
feedback, the (per-subject) median absolute errors (MAEs), averaged
across target levels 3 to 5, of the muscle activations and prosthesis
forces are visualized using boxplots, depicting the median (circle),
interquartile range (box), maximal/minimal values (lines) and outliers
(pluses). Significant differences in MAE between the tasks are
marked with an asterisk (p < 0.05, Bonferroni-Holmes-corrected in
case of the myoelectric commands)
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Fig. 5 Performance in generating prosthesis forces for each analyzed
target level. For the Prosthesis task without (P-, dark grey) and with
(P+, black) feedback, the (per-subject) median absolute errors (MAEs) are
visualized using boxplots, depicting the median (circle), interquartile
range (box), maximal/minimal values (lines) and outliers (pluses).
Significant differences in MAE between the tasks are marked with an
asterisk (p < 0.05)
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high, since the EMG signals become more variable as
the contraction level increases [34]. Overall, these results
point to the importance of considering the implicit feed-
back when designing a closed-loop prosthetic system. In
the present study, for example, the impact of increasing
the implicit feedback on performance was more substan-
tial than that of introducing the explicit information. It
should also be considered that the provided explicit sen-
sory feedback was ideal, being provided as continuous
visual feedback. In reality, no feedback modality could
provide such an accurate feedback on EMG or force in a
real-life application. Therefore, the improvement ob-
served here should be the very best that feedback can
provide; yet, its benefit was rather small.
However, it should be noted that the controllability in the

Prosthesis task was somewhat limited due to the inherent
characteristics of a myoelectric prosthesis. The non-back-
drivability, high impedance, and non-linear effects due to
friction, especially while the prosthesis is closed around the
object, might be a reason why the improvement in per-
formance with the explicit feedback was limited. Effectively,
this has prevented the subjects from exploiting the force
feedback in real-time (i.e., within a single trial). Instead, the
explicit feedback was used intermediately, on a trial-to-trial
basis. The subjects used the feedback to assess the task out-
come, and based on the discrepancy between the intended
and generated force level, they adjusted their motor com-
mand in the next trial. Finally, although the two tasks in
the present study have been performed using a Michelan-
gelo hand prosthesis, the general mechanisms of prosthesis
operation (proportionality, non-backdrivability) are com-
mon to most commercial systems and, therefore, allow us
to interpret the study conclusions in a more general and
broader relevance. Likewise, the first condition (EMG task),
demonstrating the vital role of muscle proprioception dur-
ing myocontrol, is fully device independent.
Generally, the good baseline performance (Prosthesis

task without feedback) suggests that force-feedback in-
terfaces require a reasonably good resolution (< 15%) in
order to have a chance to provide a benefit (increased
performance with respect to the baseline), especially at
the higher force levels. This is valuable information and
should be considered in the future design of feedback
interfaces.

Study limitations
In the present study, the forearm muscles have been used,
since they are relevant for controlling hand prostheses.
However, we believe that the subjects would be able to ex-
ploit the incidental feedback in a similar manner when
using other muscles, e.g., upper arm (transhumeral pros-
thesis). Nevertheless, this needs to be confirmed experi-
mentally, as the controllability (fine vs. gross movements)
and proprioception might be somewhat different.

We only tested a homogenous group of naïve
able-bodied subjects. Proprioceptive feedback from the
muscles is also available to people with amputation, albeit
somewhat different depending on the extent of amputa-
tion, shortening of muscles, and changes of attachment
points. General skills as well as the interpretation and ex-
ploitation of the visual and auditory cues should be simi-
lar, and in addition, a person with amputation could
exploit the incidental cues available through the prosthesis
socket. Therefore, we expect that the results would not be
significantly different in naïve persons with amputation,
and even more so, the general conclusions regarding the
importance of incidental feedback in prosthesis control. In
experienced people with amputation, the baseline per-
formance is likely to be even better than suggested here,
due to extensive prosthesis use [35].
It would certainly be interesting to further compare

performance with prosthesis users, considering also their
age and level of physical activity, as these factors might
influence muscle proprioception [36, 37] but also vision
and audition, which deteriorate with age.
Next, the present study has been purposefully con-

ducted in well controlled laboratory conditions to obtain
isolated insights into different feedback components, as
explained in Introduction. Therefore, there was no back-
ground noise that could mask the prosthesis sounds, the
hand was always clearly visible, and the task consisted of
repeatable grasping of the same object. These conditions
might facilitate the reliance on implicit feedback. In daily
life, however, users will most likely encounter more chal-
lenging circumstances, which could make explicit feed-
back more important. For example, in our recent study,
we have demonstrated that explicit feedback becomes
relevant when the task complexity increases [38]. Hence,
it is all the more important to validate our findings in
amputees.

Conclusion
This study provides a first systematic investigation of how
implicit (proprioception, prosthesis sound, vision of the
prosthesis) and explicit feedback (visual force information)
interact to influence the performance of grasping force
control. We showed that muscle proprioception alone
already allows to scale the grasping forces. Adding the in-
cidental feedback from the prosthesis improved the accur-
acy of this scaling by decreasing the deviations from the
target levels. Importantly, the improvement was more
substantial when increasing the amount of incidental feed-
back than when the explicit force feedback was intro-
duced. These insights emphasize that a myoelectric
interface already provides closed-loop control with good
performance. Therefore, artificial feedback needs to be
carefully designed to outperform this baseline and become
truly effective.
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