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Abstract

Background: Phase synchrony has extensively been studied for understanding neural coordination in health and
disease. There are a few studies concerning the implications in the context of BCls, but its potential for establishing
a communication channel in patients suffering from neuromuscular disorders remains totally unexplored. We
investigate, here, this possibility by estimating the time-resolved phase connectivity patterns induced during a
motor imagery (M) task and adopting a supervised learning scheme to recover the subject’s intention from the
streaming data.

Methods: Electroencephalographic activity from six patients suffering from neuromuscular disease (NMD) and six
healthy individuals was recorded during two randomly alternating, externally cued, Ml tasks (clenching either left or
right fist) and a rest condition. The metric of Phase locking value (PLV) was used to describe the functional
coupling between all recording sites. The functional connectivity patterns and the associate network organization
was first compared between the two cohorts. Next, working at the level of individual patients, we trained support
vector machines (SVMs) to discriminate between “left” and “right” based on different instantiations of connectivity
patterns (depending on the encountered brain rhythm and the temporal interval). Finally, we designed and realized
a novel brain decoding scheme that could interpret the intention from streaming connectivity patterns, based on
an ensemble of SVMs.

Results: The group-level analysis revealed increased phase synchrony and richer network organization in patients.
This trend was also seen in the performance of the employed classifiers. Time-resolved connectivity led to superior
performance, with distinct SVMs acting as local experts, specialized in the patterning emerged within specific
temporal windows (defined with respect to the external trigger). This empirical finding was further exploited in
implementing a decoding scheme that can be activated without the need of the precise timing of a trigger.

Conclusion: The increased phase synchrony in NMD patients can turn to a valuable tool for Ml decoding.
Considering the fast implementation for the PLV pattern computation in multichannel signals, we can envision the
development of efficient personalized BCl systems in assistance of these patients.
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Background

According to World Health Organization (WHO) ap-
proximately 15% of the global population experiences
some kind of disability with a 2-4% being reported as
severe.! Brain Computer Interfaces (BCIs) receive con-
tinuous attention as an emerging technology for re-
habilitation and restoration of communication in people
with disabilities. BCIs create a communication channel
between the brain and machines, such as computers, as
they “translate” brain signals into machine commands
without requiring any muscle or peripheral nerve activity
[1, 2]. The idea of “mind reading” was first conceived by
Berger [3], but only in the past few years BCI implemen-
tations were made plausible. BCIs can be implemented
with various approaches, but electroencephalography
(EEG) has been proven to be the most popular choice
due to its non-invasiveness, low cost and advantage of
being employed with minimal effort even in home
environments.

EEG-based BClIs can be categorized as exogenous or en-
dogenous depending on whether external stimulation is
provided to the user. Event-related (evoked) potential,
ERP(EP), BClIs belong to the exogenous BCIs as the brain
activation is measured after a specific event (or delivered
stimulus). Most often visual stimuli are encountered, since
they are more naturally perceived, with the most notable
examples being transient [4], code-modulated [5] and
steady-state [6, 7] visual responses to flickering patterns.
While exogenous BCIs achieve high performance, their
design inherently contradicts with the perspective of asyn-
chronous (i.e. self-paced) BCls, and this is the main reason
why endogenous BCls currently receive significant atten-
tion, even though a considerable training period, that can
last from a couple of days to several months, is required
for the user before harnessing such a system. The most
prominent paradigm of endogenous BClIs is the one that
requires the user to perform a mental task, including
movement imagination of limb(s) or even tongue [8-12],
speech imagination [13, 14] and mental arithmetic [15,
16]. In the case of movement imagination, called hereafter
motor imagery (MI), particularly, brain decoding usually
relies on the sensorimotor rhythm (SMR) detected in the
EEG signal from the electrodes located over the
sensory-motor cortex, the part of the brain that is associ-
ated with planning, control and execution of voluntary
movements [17].

MI related modulations in brain activity, associated
with both p and B rhythms over the sensorimotor areas
are often reported in EEG studies and the approach of
event-related desynchronization/synchronization (ERD/
ERS) that estimates the power increase/decrease during
the MI task or once it is completed, has been developed
to capture them [18-20]. A second popular approach is
the technique of common spatial patterns (CSPs) [21]
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and its alternatives [22-25], where spatial filtering is
combined with classification so as to decode the
intended movement. Signal-amplitude characteristics,
derived in the time domain, are exploited in all these
approaches. Phase synchrony has recently entered into
the picture and led to novel alternative ways in decod-
ing an indented movement by describing the functional
inter-areal interactions during MI [26, 27]. The metric
of phase locking value (PLV) is usually employed and
features from either the static or dynamic connectivity
patterns, as they emerge over the sensor space, have
been demonstrated to facilitate the effective decoding
of user’s intentions [28, 29].

In the related literature of MI-BClIs, there are only a
few studies that deal with the option of a self-initiated
motion. In two of them, Scherer et al. [30] and Chae et
al. [31], a two-stage classification scheme is adopted.
The first stage takes over the detection of (the onset of)
an Ml-event, while the second stage performs the final
read out (i.e. the direction of the movement). Addition-
ally, a “brain switch” has been implemented based on
the B rhythm rebound (i.e. ERS) that appears at the end
of a particular MI event. Either a simple thresholding
scheme [32] or linear discriminant analysis [33] is
employed to flag a significant departure from the on-
going activity that corresponds to an “idling” (baseline)
state. Once an MI event is detected, the associated com-
mand is given to the actuator.

The above mentioned MI-BCI approaches have been
investigated in several studies with participants suffer-
ing from motor disabilities, including amyotrophic lat-
eral sclerosis (ALS) [34, 35], spinal cord injury (SCI)
[36, 37], multiple sclerosis (MS) [38, 39] and chronic
strokes (CS) [40, 41]. However, only a limited number
of studies have been done on people suffering from
neuromuscular disease (NMD) [42]. In contrast with
SCI and CS, NMD is a progressive condition that often
initiates with the affection of specific group of muscles
and finally spreads to many other groups, resulting in
gradual loss of a patient’s fine motor skills. Therefore,
significant mental effort is required by the patients to
make a move or even attempt to move their limbs in
their everyday life for several years, prior to the
complete loss of their movement control. In this direc-
tion, the initial motivation of this study was to examine
how NMD-patients, as novice BCI users, would per-
form in simple MI tasks (imagination of left/right hand
movement) without any training and/or feedback. We
hypothesized that, due to long-lasting self-organization,
phase synchrony would govern their re-configured
brain networks and could be detected in the sensor
space when they were cued to imagine a limb move-
ment (which for them is almost equivalent to try to
realize the same movement).
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The contribution of this paper is threefold. We first
show that NMD patients are characterized by increased
level of both phase-synchrony and network organization
with respect to healthy controls. Next, we demonstrate a
nearly optimal performance for a decoding scheme that
exploits, in a personalized fashion, the connectivity pat-
terns emerging during cued imaginary movement. Fi-
nally, we describe a novel algorithmic procedure that
could adapt the proposed decoding scheme for a
self-paced BCI scenario and provide a “proof-of-con-
cept” using the available data. Besides the documented
effectiveness, our proposal is supported by the computa-
tional efficiency of the adopted PLV implementation (see
Appendix).

Methods

Participants

A total of twelve individuals (7 males and 5 females,
aged 36.08 + 6.45) participated in this study, separated
into two groups. More specifically, the first group con-
sists of six people suffering from NMD and the second
of six able-bodied with a matching socio-demographic
profile. Table 1 provides information about each partici-
pant, while a more detailed description (e.g. inclusion
criteria, clinical characteristics) can be found in [43]. All
subjects had normal or corrected-to-normal vision and
none of them had taken any psycho-active or
psycho-tropic substance. Participants had no prior ex-
perience with SMR protocols, or any other BCI protocol.
Prior to the experimental session, subjects and their
caretakers were informed about the experimental pro-
cedure. A consent form, thoroughly read, was signed by
the participants or in cases of inability by their care-
takers. The experimental protocol was approved by the
Ethical Committee of MDA HELLAS.

Experimental environment

During the experimental procedure, participants were
seated in a comfortable armchair placed 50 cm from a
22-in. Liquid Crystal Display with the EEG cap attached
on their scalp. In cases where subjects used a wheelchair,
appropriate modifications were made to make them feel

Table 1 Subject Demographics
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as comfortable as possible. Throughout the entire
process, subjects were instructed to place both hands in
the armrests and to minimize any kind of upper limb
movement in order to minimize the artifactual activity.

Experimental design

The experimental procedure required the subjects to im-
agine the movement of their left or right hand. Prior to
the MI task, a 3 min recording of resting state was real-
ized. The cue for the initiation of movement imagination
was given by a red arrow (onset), appearing either on
the left or right side of the screen, pointing in the same
direction and indicating the corresponding imagery
movement. The arrow remained on the screen for ap-
proximately 5 s, indicating the continuation of move-
ment imagination to the subject. Once the arrow
disappeared from the screen, subjects could rest and
prepare themselves for the next arrow appearance. Prior
to the arrow presentation, a fixation cross was displayed
on the screen for 3 s, indicating the beginning of a new
trial. Figure 1 illustrates the sequence of events during a
single trial. The experimental session was divided in two
sub-sessions performed during the same day, each one
consisting of 20 random arrow appearances, equally dis-
tributed among the two classes, resulting in 40 trials (20
for each imagery movement class). Between the two ses-
sions subjects had the opportunity to rest for five to 10
min. OpenVibe,> a free and open-source platform was
used to design the experimental protocol and to
synchronize the EEG recording with the timestamps
from the visual triggers.

EEG recording

The brain activity was recorded, with a sampling fre-
quency of 256 Hz, using the BePlusLTM Bioelectric
Signal Amplifier,> an EEG scanner with 61 + 2 (ground
and reference) electrodes placed according to the 10—
10 International System. Using an electro-conductive
cream, the impedance for all electrodes was set bellow
10KQ) before beginning the recording in every session.

Able-bodied subjects NMD patients

Participant ID Gender Age Participant ID
S1 F 46 P1
S2 F 31 P2
S3 M 40 P3
S4 M 43 P4
S5 F 39 P5
S6 M 29 P6

Gender Age Condition

M 35 SMA I

M 44 Muscular Dystrophy

M 32 Muscular Dystrophy Type I

F 36 Tunesian Muscular Dystrophy
M 25 Duchene Muscular Dystrophy
F 33 Tunesian Muscular Dystrophy
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Fig. 1 The timeline of the experimental procedure (depicted for a single-trial)
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Pre-processing

During the offline processing, the EEG signals were band-
pass filtered within (0.5-45 Hz) with a third-order Butter-
worth filter (applied in zero-phase filtering mode), prior to
the trial segmentation so as to avoid edge effects. The seg-
mentation process resulted in 20 trials for each MI task
(left and right) and 20 trials for the resting state. Using a
procedure based on spectral analysis and working for each
subject independently “bad” sensors were identified visu-
ally and excluded from further analysis. It is important to
stress out here than on average no more than 5 sensors
were rejected and the remaining (“good”) ones, denoted
hereby as Ngensor (56 < Ngensor < 61), were employed in the
subsequent average re-reference procedure. Independent
component analysis (ICA) [44] was then used as a means
to reduce artifacts that usually arise from eyes, muscles or
cardiac pulse. Using a semi-supervised procedure that
employed the ranking of independent components (ICs),
based on kurtosis /skewness and the visual inspection of
their spectra and topographies, artifactual components
were identified and removed before reconstructing the
multichannel single-trial data. For the purposes of this
work, seven commonly used EEG frequency bands were
defined: 6 (1-4) Hz; 6 (4-8) Hz; al (8—-10) Hz; a2 (10-13)
Hz; 1 (13-20) Hz; B2 (20-30) Hz; y (30-45) Hz and the
neural activity of each brain rhythm was examined inde-
pendently. Once again, band-pass filtering was imple-
mented via third-order Butterworth filters, applied in
zero-phase mode.

PLV-measurements and functional connectivity patterns

Phase synchronization is a well-established concept for
describing the coordinated function of distinct neural as-
semblies based on the recorded signals. When studied at
the level of sensor space, the brain signals recorded at
distinct sites are used (by one of the available estimators)
to detect whether the relative phases of the underlying
oscillatory processes bear any systematic relation across
time. The Phase Locking Value (PLV) measurement, in-
troduced by Lachaux et al. [45], is a very popular estima-
tor of phase synchrony, with the great advantage of
computational simplicity that motivated its use in the
context of MI-BCIs. Considered as a function, PLV gets
as input two signal traces and outputs a scalar ranging
between 0 and 1, with 1 indicating the functionally

coupling between the brain areas associated with the sig-
nals and 0 indicating functional independence. Given a
pair of single-trial signals x;(t) x,(t), with k,» = 1...Ngensor
and t=t;... tp, from distinct recording sites, PLV is
estimated as follows:
PLV (xii, %) = 725 | 201 exp(i Ag(t))[ (1)

with A@(t) = ¢i(t)-¢.(t) denoting the difference between
the instantaneous phases of the two processes and
discrete time parameter t running along the latencies of
interest (for instance the 5 s interval during the presen-
tation of an arrow on the screen). Each phase signal
¢i(t) is derived by applying the Hilbert transform to the
corresponding band-limited brain activity xi(t). In our
implementation, the PLV computations extend to every
pair of sensors, by efficiently parallelizing the computa-
tions implied by eq.(1), as shown in Appendix. In this
way, for each frequency band, an [Ngensor X Nsensor]
matrix is formed with entries W\, = PLV(xy,x,). Adopting
the popular perspective of complex networks, this
matrix is treated as a weighted adjacency matrix W en-
capsulating the connectivity pattern of a graph that
spans the sensor space and reflects the brain’s functional
organization. Considering the symmetry in PLV mea-
surements, PLV(xy,Xx;) = PLV(x,xi) and the fact that all
diagonal elements W, equal 1, it is easy to realize that a
more economical description of a connectivity pattern
can be obtained by vectorizing the upper triangular part

Nensor X (Nsensor—1 .
% elements Wy, with

of W, i.e. gathering all
r <k in a single vector, denoted as vec(W).

Network metrics

The functional connectivity graph defined by W matrix,
with nodes the recording sites and edges the links be-
tween the sites weighed by the associated pairwise
PLV values, can be characterized based on network
topology metrics [46, 47]. In our study, the network
characterization was based on weighted graphs and
aimed at revealing the self-organization tendencies of
the underlying cortical network and contrasting them
between healthy and NMD condition. Towards this end,
the following three well-known metrics were estimated
and compared between recording conditions (rest vs MI),
as well as, physiological states (health vs NMD).
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Strength equals to the sum of connectivity weights at-
tached to a given node. It may serve, approximately, as a
centrality measure, indicating the importance of the associ-
ated brain region within the observed network organization:

Sk = Z Wi (2)

r=k

Global/Local Efficiency is a metric which expresses how
efficiently information is transferred via the network, at a
global/local level. Network’s efficiency is directly linked
with the concept of shortest paths, which in our case were
estimated after turning the functional coupling strengths
Wi, to pairwise distances dj,=1-wy, and applying the
Dijkstra’s algorithm. Adopting the formulation of global
efficiency (GE) as defined in (Latora and Marchiori [48]):

1

GF = oD 2 T ®)
k,rzk
with [, denoting the length of shortest path between
nodes (i.e. sensors) r and k.

Local efficiency (LE) is estimated by first restricting the
above computations to each subgraph Gy, containing the
neighbors of a node k, and then integrating across nodes:

1
LE = LE(k)
sensors ¢ 1 1
= — 4‘
Nensors ; NGk (NGk _1) L’JGZGk lii ( )

Time-indexed patterns of functional connectivity

In an attempt to track more precisely the dynamics of cor-
tical self-organization during MI, we derived multiple in-
stantiations of the connectivity pattern for each single-trial,
by means of a stepping window that confined the integra-
tion in eq. (1) within successive (overlapping) temporal seg-
ments. The width of window, T, dows» Was defined
according to the “cycle-criterion” (CC) [49, 50], that adapts
the temporal resolution so as 3 cycles from the lowest fre-
quency of the band-limited brain signal to be included at
each step along the time-axis.* In this way, a sequence
vec(W([t]), T=1,2...N; was derived that encapsulated the
evolving functional connectivity during a single event of
hand movement imagination. This sequence is indexed via
discrete variable T, differing from the original time variable
t of the signals, to indicate that a lower temporal resolution
may be utilized for reducing computational burden and
memory storage. The motivation for analyzing the dynam-
ics of connectivity patterns stemmed from previous studies,
which had demonstrated that transiently formed couplings
during MI [34, 35], may be useful for brain decoding.

Feature screening

The number N, of features corresponding to the derived
PLV measurements was high. This number was ranging
from 1596 to 1830, depending on the number of “bad”
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sensors, in the case of “static” connectivity patterns, where
one vector vec([W]) was assigned to each single trial. This
number had to be multiplied by the number of employed
steps when we were dealing with time-indexed connectivity
patterns (vec(W[t])). This was an extremely high number of
features, relatively to the small number of available trials.
Apart from the theoretical issues raised by the “curse of di-
mensionality”, it was clear that not all possible couplings
would carry highly discriminative information useful for the
task of decoding left from right MI [51]. For this reason, we
resorted to a “filter” approach for selecting features. Specific-
ally, we utilized the Matlab’s rankfeatures® command (with
the option of “Wilcoxon” criterion), so as to rank the fea-
tures (coupling strengths or time-resolved coupling strengths
between pair of recording sites) and select the most reliable
ones to participate in the subsequent design of a classifier.
More specifically, in the case of static connectivity pat-
terns the operation of this command, denoted as follows

Score(r) = rankfeatures ( {VBC< leftWi)}

{Vec(rightw/j)} ),
J=1:Ntriais

r=1,2...N pgirg (5)

. )
i=1:Ntriais

resulted in a vector of scores reflecting the relative dis-
criminative power of each coupling. Feature selection
was accomplished by identifying the set of 10 most dis-
criminative couplings.

For the case of time-indexed connectivity, we adopted
a distinct procedure that elaborated on the temporal pat-
terning of the functional connectivity as this was unfold-
ing during ML The previous command was applied
repeatedly at every latency 1 of the stepping window
resulting in a time-indexed score

Score(r,t) = rankfeatures ( {vec( leﬁW"[T])}

. )
i=1:Ntriais

{vec( righth[T])} ) (6)

J=1:Nriais

To identify the most important features among the
(Npairs:N;) available ones, a permutation test was applied.
The available connectivity patterns from “left” and “right”
trials were randomly partitioned, several times, into two
groups and the computations implied by eq.(7) were
repeated for every random splitting. The computed
{24295 core(,T)} 1. nrand Measurements were used to form
a “baseline” distribution of scores associated with the
random case, where no differences between imagin-
ation of a left and right hand movement would be
detectable. From the formed distribution, the value of
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Score-index corresponding to the margin of 99.9%
was identified and utilized as a threshold, thrgg g,
that was applied to the actual Score(r,t) measure-
ments so as to keep only the statistical significant
couplings (p-value <0.001). After this trimming step
that zeroed most of the measurements, a sparse matrix
appeared that contained some spurious entries (associated
with couplings that occasionally become significant for
short lasting intervals). An additional data-sieving step
(based on simple rowwise median filtering) was applied
that eliminated most of them. The rationale behind this
last step was the detection of couplings that could be con-
sidered as both “useful” and “stable” regarding their dis-
criminatory power. Such a reinforcement of consistency
in time was motivated by the need for an economical de-
coding procedure and the possibility of making it func-
tional without knowing the absolute timing (as it will be
explained later). A pair-dependent profile was derived by
the sequence of these operation as shown below, where
the operator H(-) denotes Heaviside step function operator
and 1~ is column-vector of N ones.

I(r,t) = H( Score(r, t)-thrgg 9% ),
r=1,2,..Npairs ,t=1,2,..Nt
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Profile(r) = 1.1V (7)

Finally, feature selection was accomplished by de-
tecting the non-zero entries in this profile. A demon-
stration of this sequence of algorithmic steps can be
seen in Fig. 2.

SVM-classifiers as Ml-direction decoders

Support Vector Machines (SVMs) constitute a family of
well-established classification algorithms [52], that is
very popular among BCI practitioners [53, 54]. In the
basic binary formulation, the training algorithm of SVM
is designed to determine the optimal hyper-plane that
separates two classes, while maximizing the margin be-
tween them. It selects the single hyperplane that guaran-
tees optimal generalization, meaning that it can cope
better with new (unseen) data. The class of an unseen
pattern is determined based on its relative position with
respect to the learned hyperplane, while a confidence
level for this decision can be estimated by considering
its distance to the hyperplane [55]. For the purposes of
this study, a linear hyper-plane was selected for the
Ml-direction decoding as it provided satisfactory results
at low computational load (a combination of high im-

1 [ NpanxNe | = runningMedian,,,, ., (I) portance for online implementations). In all cases
p
a Cc constantly discriminative pairs
4
3
200 = 2 200 L
1
600 600 [
& ks
Q o
T+ b T+
0.04
1000 10001
0.03
S
8 0.02
1400
0.01 1400
0 .- 1 L J
3 5 Time (sec) 7 1 3 W score 2 0 50 sum of latencies 150
Fig. 2 Feature Selection procedure: a The latency dependent Wilcoxon score for all sensor pairs. b The definition of a “global” threshold based
on the distribution of Wilcoxon scores in randomized data. ¢ The selected subset of couplings that continuously exceed this threshold for
intervals longer than 100 msec (i.e. temporally consistent discriminative couplings)
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reported below, SVM classification had been employed
in a “personalized” mode. This trend, that ultimately led
to subject-specific brain decoding, was initiated very
early during the stage of feature selection. For each trial
of an MI movement, the selected discriminative features
(depending on subject and brain rhythm) were used to
form the input pattern to be used in SVM training and
validation.

The performance of the SVM-based binary classifica-
tion (“left” vs “right”) was measured, for each subject in-
dependently, under the two different feature-screening
procedures, which in turn led to two distinct classifica-
tion scenarios: one based on static and one based on “in-
stantaneous” connectivity (sub)patterns. Classification
performance was expressed in terms of accuracy, and
carefully validated using a cross-validation scheme that
was dependent on the scenario.

The validation and testing procedure was performed
on a single-subject basis. In the reported results (with
the exception of the results referred to self-paced MI), a
leave-one-out-cross-validation (LOOCV) scheme had
been employed to validate the accuracy of the proposed
methodology. The use of LOOCV was motivated by the
restricted amount of trials available (the sample was not
big enough to employ other validation schemes like 70—
30% training-test splitting of the dataset). In the LOOCV
scheme, 2N-1=39 trials were selected as the
training-set and the remaining one was used as the un-
known sample that the SVM had to associate with a
class. The procedure was repeated, cyclically, 40 times
and the accuracy was defined based on the 40 predic-
tions obtained from the 40 trials.

We need to clarify here that in the case of static
scenario, the feature selection had been embodied in
the LOOCYV validation scheme (i.e. it was realized 40
times). However, this was not the case for the decod-
ing of time-indexed connectivity patterns (vec(W([t])),
in which the features should show a consistency
across time. In the latter case the feature selection
was accomplished outside the LOOCYV session of the
SVM. Since the number of candidate features (pair-
wise couplings at multiple instances) was roughly 150
times higher than the available number of trials and
therefore the danger of overfitting was even higher
than in the case of static connectivity patterns we
resorted to bootstrapping [56]. Having in mind to es-
tablish a procedure that could also be employed in a
potential implementation of a personalized BCI, in
which only a small training data-set would be avail-
able for crafting the decision function and the overall
training should be completed within a reasonable
time before the actual use of the BCI system, we pro-
ceeded as follows. We repeatedly form (by sampling
with replacement) 30 sets of 2Ny, and the
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procedure described in eq.(7) was applied to every
bootstrap-resample resulting in an ensemble of curves
{b""tfiProfile(r)}boou= 1.30. Feature selection was ac-
complished, by averaging these profiles and threshold-
ing the obtained average curve.

An SVM-ensemble for self-paced Ml decoding

The high performance of the SVM-decoders working with
time-resolved connectivity patterns, vec(W/[t]), motivated
us to search for a decoding scheme that could operate
without the need for an external trigger that would initiate
a trial. The original idea was that a “local” SVM tailored to
deal with patterns from latency 1, would show a high
confidence level about its prediction only within a
time-interval around that latency. Adopting this consider-
ation, connectivity patterns could continuously feed (i.e.
as streaming data) to the particular SVM and its decision
would be activated only whenever a certain level of confi-
dence was reached. While this idea seemed to work well
(after trial-averaging) when applied to the available
MlI-trials, it had the tendency to produce false-positive de-
tections at the level of single trials (see Fig. 3b). This led
us to consider not just one “time-indexed” SVM (the earli-
est one with the highest performance, that would satisfy
the need for a speedy response), but also a sequence of
them {SVM}, i= Tsel 1Tsel 2--Tset v With the scope of
making more stringent the decision about detecting an
MI event. Assuming a trigger-agnostic scenario, these
SVMs will run in parallel resulting in a time-indexed vec-
tor Z(1) = [21(1),22(1),...,2"(1)] %, with entries

Z'(t) = SVM' (FeatureExtraction( vec(Wt]))),
i= Tsely» Tselyy -y Tsely (8)

Each entry z' denotes the confidence of a selected clas-
sifier multiplied by the sign of its prediction (+/- is asso-
ciated with “right”/“left” movement), i.e. a real number
within [-1 1]. Deviating from the standard approaches
for combining classifiers (e.g. voting), in the proposed
scheme the classifiers’ output are combined based on
temporal patterning (that reflects their relative position-
ing in time, which is associated with the optimal per-
formance in the cued trials). An “instantaneous”
classification index is derived by averaging the individual
signed confidences after imposing the predefined lags

1 M
Zensemble (t) =3 Zi Zl(t + TS@li) (9)

M
It is important to note, here, that such an SVM-ensemble
formation is feasible and computational tractable, thanks to
the prior selection of a unique set of “stable” couplings (via
bootstrapping over a small available training set). The sug-
gested SVM-ensemble scheme is supported by two
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instantaneous SVM-predictions is shown for three exemplar single trials (first three columns in every row) along with the corresponding pattern
resulted from averaging the individual ST profiles across all trials (right most column). Each SVM outputs a classification score ranging within

[— 1 1], with the sign indicating the movement side and the magnitude reflecting its confidence

experimental observations. First, the time-indexed accuracy  includes the obtained results for all frequency bands
of the locally defined SVMs showed multiple, and recording conditions. The statistically significant
easy-detectable, peaks (e.g. Figure 3a). This led to an easy (p <0.05) pairs stand out as colored entries in the
automation for selecting the SVMs.® Second, there was no ~ shown matrices. The color in these entries reflect the
pair of SVMs among the selected “local” ones in the ensem-  sign of the observed differences. It was computed based
ble, that showed significant similarity.” The latter fact on the medians of the groups (med({PLV()}N™P) —
means that all the selected SVMs were defining different med({PLV(.)}<° ) and clearly indicates (since only

separating-hyperplanes in the space of common features. red hue is observed) an increased coupling in the pa-

tients group compared to the control group, mostly in
Results low and high brain rhythms. It is important to mention
Group analysis of pairwise couplings here, that increased functional couplings was found in

The first part of our analysis was devoted to confirming all frequency bands, although not clearly observed
the hypothesis that there were significant differences be- when a common color code was used. The topological
tween NMD patients and controls regarding the strength  representation of the statistically significant functional
of functional couplings. To this end, a single connectiv-  couplings is provided in Additional file 1: Figure SI,
ity pattern was first derived (by trial-averaging) for each  with the edge-width reflecting the difference in strength
subject, brain rhythm and recording condition (ie. between the group-level medians of each pairwise
“rest”, “left”, “right”). To facilitate inter-subject compari-  coupling and the node-size the number of edges that
sons, all the connectivity patterns were confined to the have survived the statistical test (p <0.05) and are inci-
unique set of sensors that were identified as “good” sen-  dent to the node. It is clear, that the NMD group is
sors in all subjects. Then, a statistical comparison of the = characterized by enhanced connectivity even in the
medians (derived at group level) in every pairwise coup-  resting state. In the two MI-conditions, the majority of
ling of the connectivity patterns was performed. The nodes being part of the statistical significant couplings
Wilcoxon rank sum test was repeatedly applied and the follow a distributed pattern, which occasionally in-
results were corrected for multiple testing, by means of cludes the primary and supplementary sensory-motor
false discovery rate (FDR; a=0.05) [57]. Figure 4, area (for instance, in “left” ay, f; and y rhythms).
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Fig. 4 The results from the statistical comparison (Group-level analysis) of averaged connectivity patterns between patients and controls. Each
pairwise coupling was compared independently, for every band and recording condition, by means of Wilcoxon rank sum and the significant
ones (p < 0.05; corrected for multiple comparisons) are indicated as non-zeroed entries of a “connectivity matrix’, with a color code that
encapsulates the difference in strength (of the median values in the corresponding groups). Red hue has to be interpreted as higher coupling in

patients and green hue as higher coupling in controls, while color intensity reflects the strength of this effect. The absence of green hue in the
diagrams clearly indicates the increased coupling in patients group compared to the control group

40

20

Group analysis of network metrics significant differences (p-value < 0.01, bonferroni-corrected)
Next, we compared the network organization associated in the level of network-metrics, which resulted from the
with the functional connectivity patterns as a means to  group-analysis of the corresponding measurements (NMD
further justify the observed differences between the two  patients vs controls) performed using the Wilcoxon
groups in terms of pairwise coupling strengths. The rank sum test. It is easy to observe that despite the lack
three metrics of Strength, GE and LE were first applied  of statistically significant differences in case of Strength
at the single-trial level (to “static” Ws) and then averaged  (which practically corresponds to integrating the coup-
to derive a triad of measurements for each subject, brain  ling strength across sensors), the other two metrics re-
rhythm and experimental condition. Figure 5 compares garding the network’s efficiency (i.e. GE and LE) depict
these measurements, after deriving group-medians. The significant differences for rhythms faster than 8 Hz,
stars in the bars of patients’ graphs indicate the statistically =~ where MI spectral activity is expected to be found. The
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Fig. 5 Contrasting the functional network organization between patients and controls using the standard networks metrics of strength, global-
efficiency (GE) and local efficiency (LE). The median values, have been computed across the subjects of each group, and presented for all brain
rhythms. Statistically significant differences between the two groups have also been detected (using Wilcoxon rank sum test) and indicated with
a star symbol in the corresponding bar of the patients’ barplot
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observed differences in these two topological metrics
(which reflect how efficiently the information flows
within the brain network), are related to brain coordin-
ation and, hence, can be attributed to the NMD condi-
tion itself and the way it affects the patient’s brain
reorganization during its progression. Interestingly,
differences in network organization during MI-tasks
were detected in «, rhythm, even though the pairwise
couplings did not show, individually, any difference
between groups based on their PLV-levels (see Fig. 4
and Additional file 1: Figure S1).

Personalized MI decoding - SVM classification based on
static patterns

In the third stage of our analysis, we attempted to de-
code the MI-imagery direction based on the single-trial
functional connectivity patterns and compared the per-
formance between the two cohorts. We employed a lin-
ear SVM in conjunction with standard, statistical,
feature screening. The scope of this screening was to
confine the SVM design within the space spanned by the
10 most informative functional couplings. To reduce the
possibility of overfitting, this feature selection step had
been included in the LOOCV scheme (i.e. it was per-
formed every time an SVM was about to be designed
from the set of trials that had been reserved for train-
ing). The classification accuracy of the “left vs. right” de-
coding task for each subject and brain rhythm is shown
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in Fig. 6, where it can be justified that working at a per-
sonalized level was indeed necessary, since performance
(and frequency-band of optimal performance) varied a
lot across subjects. It is evident that the accuracy levels
for the patients group are significantly higher, with five
out of six subjects exceeding 75% accuracy and even the
subject with the lowest accuracy (i.e. P3) for this group
reaches 65%. It is also interesting to notice that for the
NMD group the highest accuracy is associated with 1
(13-20 Hz) band in four subjects (i.e. P1, P2, P4, P6).
On the other hand, half of the control subjects do not
surpass the level of 60% accuracy in any of the frequency
bands, with subject S5 standing as the best subject for
the control group, as it is the only case were 80% of the
trials were correctly classified. To confirm rigorously the
hypothesis that BCI-naive patients can perform better
than controls in the employed MI tasks, we gathered the
highest performance level from each individual in two sets of
accuracies, {"MPAccuracies);_ 16 / {©""®Accuracies}; - ;6
and applied the Wilcoxon rank sum test that revealed a stat-
istical significant difference (p < 0.05, one-tailed).

For comparison purposes we have included, as Additional
file 1: Figure S2, the results from decoding MI-direction
based on power spectral density (PSD) estimates,
where the feature screening was applied to the en-
semble of PSD measurements (that included the mea-
surements from every sensor and brain rhythm).
Overall, the decoding performance stays below 75%
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(except for patient P5), i.e. lower than in the case of
PLV measurements. In addition, there is no statistically sig-
nificant advantage for the NMD group over the controls
considering the highest performance level from each individ-
ual (p =043, one-tailed). Similar trends were obtained from
a decoding scheme based on CSPs (see Additional file 1:
Figure S3).

Personalized MI decoding - SVM classification based on
time-varying patterns

At the expense of increased computations and algorithmic
complexity, we then moved to decoding MI-direction from
time-varying connectivity patterns for the NMD-patients.
Both the beneficial phase-synchrony based representation,
for the brain activity in this clinical group, and the fact that
MI-BCIs have remained largely unexplored for NMD pa-
tients led us to study deeper the relevant dynamic patterns
of connectivity. Supporting evidence, regarding the dy-
namic nature of the underlying phenomena, was offered by
the feature screening procedures, since the scores acquired
by dynamic patterns were often higher than the ones ob-
tained from static patterns.® Working at a personalized
level, we first identify the set of functional couplings that
showed a stable and highly discriminative behavior (using
bootstrapping and eq.(7)). These couplings have been in in-
cluded in Fig. 7. The fixed set of selected entries were ex-
tracted, in every single-trial, from the time-indexed
connectivity patterns, vec(W[t]), which had been computed
with a time-step of 350 ms. The vectors were used to de-
sign and evaluate an “instantaneous” SVM (i.e. SVM")
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that corresponds to each latency and also follows a
LOOCV scheme. The performances of this decoder
were estimated by comparing the time-indexed pre-
dictions with the class labels of the trials and inte-
grating the results across trials.

Figure 8 shows the corresponding performance curves
for the “instantaneous” SVM classification scheme. At
every latency the performance was estimated based on
the selected couplings (shown in Fig. 7). It is clear, that
there is variability among subjects. There are subjects
(P1, P3 and P6) reaching the highest accuracy within the
first second and maintaining the high performance for
the full trial length. On the other hand, subjects P2 and
P4 do as well achieve the highest performance levels
within the first second but do not maintain it for the tri-
al’s full length. Such a trend could be interpreted as de-
clining engagement to the task. Finally, one subject (P5)
showed deterioration in performance after the first sec-
ond. The observed variability can be attributed to the
subject’s devotion to the task, how he/she performed it,
and possibly to the type of NMD. Overall, this classifica-
tion scheme appears to lead to optimal performance
earlier in time.

In quest of self-paced MI decoding

Finally, we explored the possibility of decoding
phase-connectivity patterns in a way that could be used
in a future implementation of a self-paced MI-BCI,
where the user would initiate the MI events at will. Since
there were no recordings of self-initiated MI events, we

o) 0 a4

applied for each patient and brain rhythm independently

Fig. 7 The statistically significant and temporally consistent couplings as detected by means of a permutation test (random re-labeling of trials),
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Fig. 8 The classification performance in the “left” vs “right” task, when the selected couplings (shown in Fig. 7) are used to form multiple time-
resolved patterns associated with each trial

decided to partially “simulate” the case by exploiting the
resting-condition recordings and devising a scheme that
would mark a time instance as the beginning of an
Ml-event (“left” or “right”) only when the temporal pat-
terning in the streaming connectivity-data was deviant
from the patterning in the baseline (rest) condition. To
this end, 20 trials were extracted from each patient’s
resting-state recording and “baseline” time-resolved con-
nectivity patterns (extending for 8 s) were formed, based
on the same signal-analytic pipeline used in the case of
Ml-trials. Since the purpose of this analysis was the reli-
able detection of dynamical transitions in brain state
(from “idle” to an MI event), the connectivity patterns
from resting state and, also, the MI events were derived
with high temporal resolution (based on a step of
20 msec), so as to emphasize the temporal aspects of the
detection task. To ease the presentation of the results re-
ported in this section, Fig. 9 depicts graphically the
employed algorithmic steps.

A training set consisting of 10 trials from each class
(“left”, “right” and “rest”) was formed and utilized in a
two-stage data-learning process. During the first-stage,
only the Ml-related single-trial connectivity patterns
(e ec(Wt]}; - 1.10 and {F8vec(W[t]};  1.10) Were used
for a) the feature-selection, b) the training of all “instant-
aneous” SVMs, c) the selection among them, of those
that populated the ensemble {SVM'}. The feature

selection step is exemplified in Fig. 2, for subject P2’s
connectivity patterns from a; rhythm. The selection of
SVMs is exemplified in Fig. 3a, while the application of
the SVM-ensemble in some trials (from all recording
conditions) is demonstrated in Fig. 3b, where the vectors
of successive predictions appear as columns in the
shown heat-maps. The right-most panels in Fig. 3b in-
cludes the corresponding trial-averaged heat-maps,
where a “diagonal” pattern is emerging in both cases of
“triggered” MI-events but not in the case of
resting-state. It was exactly this discrepancy, that the
stratified combination of the outputs of the SVMs par-
ticipating in the ensemble, tried to reveal, in a computa-
tionally tractable way, by means of eq.(9).

During the second stage, the temporal traces corre-
sponding to the single-trial “instantaneous” readouts from
the SVM-ensemble were derived for the above mentioned
Ml-related connectivity patterns and, in addition, for the
baseline-related ones {***'vec(W'[t]};_1.10. Figure 10
demonstrates the estimated traces of Classification Index,
Zensemble(t), in continuation of the example shown previ-
ously in Figs. 2 and 3. It is evident that a peak is identifi-
able, just after the 3rd second (onset), for both the “left”
and “right” conditions. On the contrary, the traces derived
from the rest condition trials do not illustrate any compar-
able peak. In an attempt to quantify these observations,
and simultaneously complete the design of a totally
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self-paced MI-decoding scheme, we used these 30 profiles
(as training data) to craft a decision rule, that based on
streaming data (a segment of SVM-ensemble readout)
would decide if the observed temporal patterning in
Classification Index corresponded to baseline condition or
to an MI event and, hence, should trigger the command
associated with the sign of the trace from the
SVM-ensemble. To accomplish the data-learning task, we
extracted multiple segments, of 0.5 s width, from the
singe-trial traces shown in Fig. 10 and confined within the

intervals indicated via vertical dotted lines. These 100
segments were corresponding to the “MI-event” class (re-
gardless direction). An equal number of segments were
extracted from the baseline condition, but this time with-
out any restriction about the time interval. These seg-
ments constituted the “baseline” class patterns. Both type
of segments were used for training a binary-SVM (with a
radial basis function kernel) to discriminate an MI event
from the baseline state. The trained “SVM-switch”, was
then fed with the streaming SVM-ensemble readouts,
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Zensemble(t), resulted from the testing set of trials. Figure
11, exemplifies this step by first depicting the “instantan-
eous” single-trial readouts form the SVM-ensemble
(formed in Fig. 3a) for the three recording conditions (Fig.
11a) and, then, the corresponding single-trial traces of the
instantaneous confidence of the SVM-switch (all the con-
secutive segments had been fed to this classifier) (Fig.
11b). Using as threshold, the confidence level of 0.5, we
obtained only 2 false positive (FP) detections in all three
recording conditions (please notice that this would had
also been the case if a high confidence level had appeared
within the first 3 s interval of a MI trial), and no false
negative ones. After referencing these counts to the number
of trials, we estimated two probabilistic indices regarding the
observed probabilities of FP and FN (here 2/30 and 0/30
respectively).

The overall procedure was repeated after different ran-
domized partitions of the data (i.e. Monte-Carlo cross
validation scheme), and the results (after averaging
across 100 splits) were tabulated in Table 2. The brain
rhythms had been selected according to the performance
levels shown in Fig. 8.

The very low probabilities of misdetection and false
alarm, in conjunction with the very high performance
of the individual MI-decoders participating in the en-
semble, make the combined scheme (SVM-ensemble
& SVM-switch) potentially suitable for self-paced
MI-decoding (see Fig. 9).

Discussion

NMD is a condition that gradually affects the muscula-
ture and eventually leads to the loss of any voluntary
muscle control. The reflections of NMD on the
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electroencephalographic brain activity, under the per-
spective of establishing efficient BCIs, have rarely been
studied [42]. It was the scope of this study to examine
the differences in the functional brain organization be-
tween NMD patients and healthy individuals in a
motor-imagery paradigm that, traditionally, is considered
fruitful for endogenous BCIs. Rhythm-specific connect-
ivity patterns during motor imagery and resting state
were derived and used, first, to contrast the two cohorts
in terms of coupling strength and network organization
and, then, to explore different possibilities for MI-event
decoding and detection schemes, in NMD patients. Spe-
cial attention was paid to dynamic patterns of functional
connectivity in an attempt to identify faster ways to per-
form MI decoding and relax the dependence of this de-
coding from external triggering.

Overall, the reported results provide empirical evi-
dence about the hypothesis that NMD patients could
perform well in MI tasks, without any training, due to
the equivalence, for them, of performing an imagery
movement and an actual one; or, equivalently, due to the
fact that the disease’s progression simulates a long train-
ing phase. More specifically, the pairwise phase-coupling
was found statistically elevated in NMD patients (Fig. 4
and Additional file 1: Figure S1) and the network
organization (associated with faster rhythms) significantly
higher (Fig. 5). In addition, MI-decoding, worked out in a
personalized manner, was performed more efficiently in
patients than in controls (Fig. 6). It is important to notice
that Phase-synchrony representation resulted in a more
reliable decoding than signal-power representation
(compare Fig. 6 with Additional file 1: Figure S2) and CSP
approach (Additional file 1: Figure S3).
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Table 2 FP/FN for the SVM-switch

Participant ID P1 P2 P3 P4 P5 P6
brain rhythm a; a4 B, as a4 a,
FP 2.2% 3.5% 7.2% 3.9% 7.2% 2.7%
FN 14% 2.0% 53% 2.1% 3.3% 14%

Moreover, our results also showed that direction decod-
ing can be performed, almost equally well, by training
time-indexed SVM-decoders using phase synchrony pat-
terns that are regularly sampled from the post-stimulus
time interval (Fig. 8) opening the possibility of reducing the
response time in cued MI-based BCIs. This observation led
to a lagged combination of distinct SVM-decoders that all
operated in the same feature space (Fig. 2) but trained with
different time-indexed instantiations of the training set of
phase synchrony patterns (Fig. 3a). The introduced combin-
ation of SVM-activations acts as an optimal filter that can
run in real-time and reliably trigger the recognition of an
Ml-event (Fig. 11), the direction of which is conveyed by
the polarity of the assembled classification-index.

The importance of this work stems from fact that (to
the best of our knowledge) there is only one paper that
tackles the same problem that is MI-BCI for NMD
patients [42]. In line with our work, the authors demon-
strate the successful use of BCL. However, MI-decoding is
based on time-domain characteristics and requires signifi-
cant amount of training time (8—12 training sessions).

There are some novelty aspects in this work, that
need to be put in the context of contemporary practice
in neuroscience research and streaming data analysis.
First, we need to underline our choice to work with dy-
namic phase synchrony patterns, casting new empirical
evidence about the benefits of chronnectomics (“chronos”
= time + “connectomics”), an emerging branch of net-
work neuroscience that focuses on the dynamics of
brain-network (self)organization phenomena [58-61].
Phase locking computations can be implemented effi-
ciently from multisite recordings, as already has been
pointed out by a recent work [62] and indicated in the
Appendix. This computational efficiency, together with
the fact that the MI-related network reorganizations are
characterized by fast transitions, opens the possibility of
prompt MI-detection and decoding in nearly real-time.
The second point that deserves further consideration is
the SVM-ensemble formation and its use in filtering
mode (i.e. its application to streaming connectivity pat-
terns). While such an implementation of SVMs seems ra-
ther unusual in EEG-related research, it has already been
successfully employed for continuous speech recognition
(for instance [63, 64]).

Finally, the main limitations of this study need to be
discussed, starting with the restricted number of

(2018) 15:90

Page 15 of 18

available trials. Even though precautions were taken (by
means of cross-validation) to avoid overfitting, our
findings will wait the verification from further studies.
Particularly the self-paced MI-decoding scheme was
demonstrated and validated using a “crude simulation”.
This part of our study needs to be treated strictly as a
proof-of-concept, since trials from an independent
resting state recording were treated as extracts from
continuous data interrupted by Ml-events. Secondly,
although it is common practice in studies with people
with disabilities to include a restrained number of partic-
ipants [35-37, 40], as the recruitment process is not as
straightforward as in control population, it would be of
great importance to further validate the statistical differ-
ences between the groups by encountering higher num-
ber of NMD participants in the MI experimental
procedure. Thirdly, all the reported results were ob-
tained from off-line analysis, in which “cleaned” data
were employed (see Pre-processing section). It remains
to show that (whether) the proposed decoding scheme is
robust to artifacts like blinks; a possibility that rises since
it revolves around phase-descriptor. Alternatively, in a
realistic implementation one of the available real-time
artifact-removal techniques may be incorporated [65,
66]. Therefore, the evaluation regarding the methodol-
ogy’s performance in terms of challenging, real-time
conditions is yet to be explored and is considered to
be an intriguing part of any future actions aiming to
“build” a self-paced MI BCI. Moreover, a personalized
(subject-adaptive) data-learning scheme was pursued
for the purpose of Ml-decoding. This, inevitably,
makes necessary a small training set before a participant
can take advantage of the suggested MI-decoding mech-
anism. While principles of transfer learning maybe useful,
we tend to consider as best practice a small training ses-
sion in which self-initiated MI-events will be embedded in
a “relevant” baseline activity recoding (for instance, watch-
ing a videoclips sequence and “instruct” skipping the
current one by imagining a hand movement). Finally,
connectivity patterns were estimated at sensor level
and the issue of volume conduction was not ad-
dressed since favorable results were obtained readily
and the precise modelling was considered beyond the
scope of MI-BClIs.

Conclusions

NMD patients appear to possess an inherent advantage,
over healthy subjects, in the use of phase-synchrony
related MI-BClIs. Patient-specific data-learning proce-
dures have the potential for leading to effective brain
decoding schemes from the emerging connectivity
patterns, that can be implemented efficiently and,
when embedded in patient’s daily life, provide a cer-
tain level of autonomy.
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Endnotes
1http://www.who.int/disabilities/worlcl_report/ZO11/1”e
port/en/
*http://openvibe.inria.fr/
®http://www.ebneuro.biz/en/neurology/ebneuro/gali
leo-suite/be-plus-ltm
“For instance, in the case of 8 band ([f;, f,] = [1, 4]
Hz), and since the sampling frequency was f; = 256 Hz,
the size of window was T'yindow = %C X fo=3x256=7

68 samples.
*https://www.mathworks.com/help/bioinfo/ref/rank
features.html
®https://www.mathworks.com/help/signal/ref/find
peaks.html
"The correlation coefficient p(zi(t),zj(t)), Lj = 1..M,
averaged across trials, was lower than 0.2.
Si.e. max, (Score(r,7)>max,Score(r)) following the
notation of eq.(5) and eq.(6)).

Appendix
In the following Matlab-coded implementation of the
PLV-computations, the function receives as input the
multichannel-signal matrix (row-vectors correspond to
sensors) and outputs the square matrix W containing all
pairwise couplings

function
W=Fast_PLV_for_multichannel_signal(filtered_traces)

% PLV_Matrix = Fast_PLV_for_multichannel_signal(fil-
tered_traces)

% filtered_traces: [N_sensors x N_timepoints] matrix
of band-limited signals

% PLV_Matrix: [N_sensors x N_sensors| matrix of
pairwise PLVs

[Nsensors,Ntime] = size(filtered_traces);

Phases = angle(hilbert(filtered_signals’))’; Q = (exp(j*Phases));

W = (1/Ntime)*abs(Q * Q’)

Additional file

Additional file 1: Figure S1. Topographical representation of the
statistically significant functional couplings (shown in Fig. 4). In the
emerging graphs, the edge-width reflects the strength of the coupling
and the node-size the number of edges incident to that node. The
shown results correspond to Group-level analysis and reflect higher con-
nectivity in the NMD patients. Figure S2. The classification performance
in the state discrimination task (“left” vs “right”), when band-specific
power-spectral density estimates are employed. Figure S3. The classification
performance in the state discrimination task (‘left” vs “right”), when the
Common Spatial Pattern algorithm is employed in the 8-30 Hz frequency
band as described by Fabien Lotte [1]. (ZIP 819 kb)
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