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Abstract

Background: Assistive technologies aim to increase quality of life, reduce dependence on care giver and on the
long term care system. Several studies have demonstrated the effectiveness in the use of assistive technology for
environment control and communication systems. The progress of brain-computer interfaces (BCI) research together
with exoskeleton enable a person with motor impairment to interact with new elements in the environment. This
paper aims to evaluate the environment control interface (ECI) developed under the AIDE project conditions, a
multimodal interface able to analyze and extract relevant information from the environments as well as from the
identification of residual abilities, behaviors, and intentions of the user.

Methods: This study evaluated the ECI in a simulated scenario using a two screen layout: one with the ECI and the
other with a simulated home environment, developed for this purpose. The sensorimotor rhythms and the horizontal
oculoversion, acquired through BCI2000, a multipurpose standard BCI platform, were used to online control the ECI
after the user training and system calibration. Eight subjects with different neurological diseases and spinal cord injury
participated in this study. The subjects performed simulated activities of daily living (ADLs), i.e. actions in the simulated
environment as drink, switch on a lamp or raise the bed head, during ten minutes in two different modes, AIDE mode,
using a prediction model, to recognize the user intention facilitating the scan, andManualmode, without a prediction
model.

Results: The results show that the mean task time spent in the AIDE mode was less than in theManual, i.e the users
were able to perform more tasks in the AIDE mode during the same time. The results showed a statistically significant
differences with p < 0.001. Regarding the steps, i.e the number of abstraction levels crossed in the ECI to perform an
ADL, the users performed one step in the 90% of the tasks using the AIDE mode and three steps, at least, were
necessary in theManualmode. The user’s intention prediction was performed through conditional random
fields (CRF), with a global accuracy about 87%.

Conclusions: The environment analysis and the identification of the user’s behaviors can be used to predict the user
intention opening a new paradigm in the design of the ECIs. Although the developed ECI was tested only in a
simulated home environment, it can be easily adapted to a real environment increasing the user independence at
home.
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Background
It is estimated that one in six people in the world are
diagnosed with a neurological disorder and this number
is expected to rise considerable due to extensions of life
expectancy [1]. A neurological condition is a damage to
the brain, spinal column or nerves due to illness or injury
such as spinal cord injury, acquired brain damage, stroke,
motor neurons disease and locked in syndrome. Neu-
rological disorders are considered the primary cause of
disability in modern society [1, 2]. The debilitating conse-
quences of neurological disorders include communication
difficulties, impaired memory, inappropriate behav-
ior, physical disability, restricted independence, social
isolation and poor quality of life.
Assistive technologies aim to increase quality of life

[3–6], reduce dependence on care giver [7] and reduce
dependence on the long term care system [8]. Several
studies have demonstrated the effectiveness in the use
of environment control interfaces (ECI) for environment
control or communication through voice commands [9],
scan interfaces based on grid structure, eye tracking
[10–12] or brain-computer interface (BCI) based on P300
[13], among others. These software platforms actively aid
during the Activities of Daily Living (ADL) improving the
independence both at home and outside. However, these
platforms are based in a manual scan over the different
abstraction levels of the ECIs and the scan speed only
depends on the users familiarization with the system and
the configuration of the grids over the different menus.
Thus, introducing the user environment and behavior into
this loop will help the navigation agility in the ECIs.
On the other hand, The progress of BCI research

together with exoskeleton enables a person with motor
impairment to interact with new elements of the environ-
ment [14, 15]. Thus, this progress will deliver new scenar-
ios to BCI systems out of laboratories and move BCI into
the domestic environment. The AIDE project1 aims to
create new shared-control paradigm for assistive devices
that integrates information from identification of resid-
ual abilities, behaviors, emotional state and intentions of
the user on one hand and analysis of the environment and
context factors on the other hand. In this context, a hybrid
BCI model was chosen to control the ECI. It was devel-
oped as a fusion between non-invasive electroencephalog-
raphy (EEG) and electrooculography (EOG) system [16].
The EEG records the sensorimotor rhythms (SMR) called
event-related desynchronization (ERD) and event-related
synchronization (ERS) during a motor imagery (MI) task
[17] whilst the EOG records the horizontal oculoVer-
sion (HOV).
This paper aims to evaluate the ECI developed under the

AIDE project conditions, a multimodal system developed
to assist people with acquired brain damage or neuro-
degenerative diseases that need a wheelchair and has low

or any upper limbs mobility in their ADLs, in a simulated
environment able to detect the user intention through the
environment analysis and the identification of the user’s
behaviors, based on a conditional random fields (CRF)
model [18]. Thus, the handling of the interface was stud-
ied in two different ways, with and without the prediction
of the user’s intention. Users with neurological and mus-
cular diseases and spinal cord injury (SCI) tested the
system on a virtual home due to the early phase of the
project.

Methods
This study evaluated the ECI in a simulated scenario
under the AIDE project conditions, a multimodal inter-
face able to analyze and extract relevant information from
the environments as well as from the identification of
residual abilities, behaviors, and intentions of the user. It
consisted in a two screen layout: ECI and simulated room,
with an EEG and EOG data acquisition system (see Fig. 1).

Environment control interface
The environment control system used in this experi-
mentation was based in two main software components:
GRID3 from Smartbox2, a commercial augmentative and
alternative communication (AAC) solution, and SHX, a
specific developed software, presented in Fig 2. The ECI
had three different abstraction levels: 1) related with the
room (room menu), 2) related to the activities that can
be performed in a specific room (activity menu), and 3)
related to the actions regarding a specific activity (ADL
menu). The jump between two consecutive abstraction
levels will be named as step.
Levels one and two were specific grid sets, created in

GRID3, to be used in the context of the experimentation.
They include grids for the different rooms, communica-
tion, control a wheelchair and control an exoskeleton arm.
In all grids, a color code has been used: red for the alarm;
green for communication, computer control and digital
leisure; white for wheelchair and arm control (not used
in this experimentation); light blue for the rooms; dark
blue for environmental control activity. The dark blue cells
are referred to environmental control activities and linked
Grid3 with the SHX application. The user could scan
across the different cells, select one, and then confirm or
cancel the selection using the chosen signals (EOG, EEG,
eye tracking, etc.).
SHX is a custom build solution for environmental con-

trol management, level three. It allowed the user to easily
configure and select the actions programmed for a specific
activity. Different scenes for each of the possible activities
in every room were created. Here too, the user could scan
across the different cells, select one, and then confirm or
cancel the selection using the chosen signals (EOG, EEG,
eye tracking, etc.).
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a b

Fig. 1 Experimentation setup. The experimental setup was composed by two screens layout: ECI & Virtual home simulator, and an eye tracking
placed in the bottom screen. The users performed tasks in the simulated environment (a) and they also interacted with real elements (b)

Data acquisition
The acquisition of the brain activity was performed
with eight solid-gel electrodes placed according to
international 10-20 system placed at F3, C3, Cz, P3,
T7 and Mastoid, a reference electrode was placed
on C4 and the ground on FpZ. Furthermore, two

electrodes were placed on the outer canthus of the
eyes to the EOG signal recording. The EEG/EOG
signal was acquired via Bluetooth through the Neuro-
electrics amplifier (Enobio, Neuroelectrics, Barcelona,
Spain). Skin/electrode resistance was kept below
12 kOhm.

a

c

b

Fig. 2 Environment Control Interface. The ECI had three different abstraction levels: 1) related with the room, 2) related to the activities that can be
performed in a specific room and 3) related to the actions regarding a specific activity. An example menu of each level is shown in (a), (b) and (c)
respectively
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A real-time SMR-based BCI was implemented using
BCI2000, a freely distributed software for multipurpose
standard BCI platform [19]. EEG and EOG were recorded
at a sampling rate of 500 Hz, bandpass filtered at 0.4-
70 Hz and pre-processed using a small Laplacian filter.
Based on the maximum values for basal ERD, the ongoing
EEG signal associated with the specified SMR rhythm fre-
quency range (11-14 Hz) calculated from C3 electrode, a
subject’s individual motor imagery discrimination thresh-
old were set. The EOG discrimination thresholds were
calculated regarding the average amplitudes of horizon-
tal saccades. These individual parameters were obtained
from the training session and used for later online BCI
control [20].

Prediction model
The proposed ECI combines the environmental informa-
tion and context factors together with user’s behaviors
in order to detect the user intention. Thus, the input
information of the prediction model was a sequence
of data, the user is moving and looking at the envi-
ronment, that had to be labeled. In this context, dif-
ferent models were tested (time-delay neural networks,
decision trees, hidden markov model (HMM)...) and
the CRF model was chosen, showing the best results.
The CRF model is a probabilistic model for segmen-
tation and labeling sequence data. This discriminate
model takes into account not only the current state
but also the previous states to perform its prediction.
A conditional model specifies the probabilities of pos-
sible label sequences given an observation sequence
in contras of the generative models that make very
strict independence assumptions on the observation, for
instance conditional independence given the labels as
HMM [21].
In our case, the inputs of the system were: localiza-

tion, objects in the environment, object that the user
is looking at, temperature of the room, brightness of
the room and day time; the output was the ADL menu,
i.e. the most probable action that the user wanted to
perform that were directly linked with a specific ADL
(see Table 1.

Participants
Eight persons with different neurological pathology and
spinal cord injury participated in this study (37 ± 15
years old), their demographic and clinical characteris-
tics are listed in (Table 2). The subjects were evalu-
ated before the experiment with the barthel index [22].
All participants gave informed consent using their stan-
dard communication channel prior to participation in the
study. The protocol was approved by the Office Research
Ethics Northern Ireland - approval granted for project
(15/NE/0384).

Table 1 Correlation between the ADLs and ADL menu name, in
the third abstraction level

ADLs ADL menu ADLs ADL menu

Open/close
fridge

Drink or eat Switch on/off air
conditioner

Air conditioner

Open/close
microwave

Drink or eat Brushing teeth Teeth

Eating task Eat Washing face Face

Drinking task Drink Raise/lower the
bed head

Bed

Switch on/off
Music

Entertainment Raise/lower the
bed feet

Bed

Switch on/off PC Entertainment Open/close the
blinds

Blinds

Switch on/off TV TV Switch on/off the
light

Light

Experimental protocol
Subjects were sitting in his/her own wheelchair in front of
a table with two screens, as shown in Fig. 1. The screens
were used to show the ECI and the virtual home simula-
tor. Subjects used the AIDE multimodal interface, hybrid
EEG EOG system, to online control the ECI and preform
specific ADLs. Two modes were tested:

A) MANUAL mode: the user had to navigate through
the three abstraction levels in order to accomplish
the task showed in the virtual house. The objects
related with the corresponding task were surrounded
by a green color in the virtual house environment
and the task appeared in the right top corner.

B) AIDE mode: in this mode the prediction model was
used. The user had to look at the objects related to
the specific ADL, showed like in the other mode, and,
after the user’s intention prediction, the ECI directly
jumped to the corresponding ADL menu. Then the
user had to navigate like MANUAL mode. In case of

Table 2 Demographic and clinical characteristics of participants

ID Patient Sex Age Diagnosis Barthel score

1 Male 32 C4 SCI 4/20

2 Male 22 Duchenne
Muscular
Dystrophy

6/20

3 Male 55 Brain stem
strokes

16.5/20

4 Male 30 C4/C5 SCI 2/20

5 Female 20 C6/C7 SCI 10/20

6 Male 58 Ischemic Stroke 19/20

7 Male 55 Multiple Systems
Atrophy

5/20

8 Male 30 C6/C7 SCI 9/10



Bertomeu-Motos et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:10 Page 5 of 9

wrong prediction, the user had to manually go back,
the second abstraction level, and complete the
corresponding ADL. The observed objects were
online detected from the eye tracking Tobbi3 PCEye
go, placed on the virtual environment screen, and the
rest of the inputs were online simulated.

Each subject performed two experimental sessions in
two consecutive days. The first session was for training
and calibration purpose as well as for the familiariza-
tion with the systems to be controlled. This session lasted
around 60-80 min. In the last part of this session the
user learned how to use the hybrid EEG/EOG interface
in order to control the ECI. An example of MI and EOG
movements in the training session are shown in Fig. 3c
and d, respectively.
The second session lasted a maximum of 60 min. The

setup and familiarization phase took approximately 15
min (subjects have already tested the system in the first
session). They had 10 min to perform a predefined ADLs
list in both AIDE and Manual modes (all ADLs can be
observed in Table 1). Each ADL can be a single action, it
has a visual effect on the house simulator, e.g. swith on a
lamp, or an exoskeleton action, the simulator play a short
video showing the corresponding action, e.g. drink from
a glass. The order of the modes was randomly selected
and, before each mode, a baseline of 3 min was acquired.
During the break (5 min) and at the end of this session
the subjects answered the NASA task load index (tlx)
questionnaire [23].
The scan in the ECI was performed through looking-

right eye movements (Fig. 3b) implying a forward dis-
placement of the grid marker (Fig. 3a-e). Once the subject
stopped at one grid a customized time, chosen in the first
session, the ECI ‘switch off ’ the rest of the grids (Fig. 3f ).
Then, the next level or the action in the ECI was achieved
by on-line ERD detection, like the subjects learned during
the first session (Fig. 3a). On the other hand, if the user
did not want to click on this specific grid, in the phase
Fig. 3f, a looking-left eye movement returns the ECI to
the phase Fig. 3a. When the user performs an action, a
visual feedback is presented in the virtual home regarding
to the action performed (Fig. 3g) and he/she waited for the
next task.
After both modes, they were instructed to interact with

real elements through the ECI and watch a video using
objects of a multi-sensory room, as can be observed in
Fig. 1b.

Results
The users performed simulated ADLs during 10 min
in a virtual home using an ECI in both Manual and
AIDE modes. The number of the performed tasks with
respect to the mean time spent per user is presented

in Fig. 4a. Furthermore, it has been trained a Support
Vector Machine (SVM) model with Gaussian kernel
to estimate the boundary between both modes (yel-
low line in Fig. 4a). It should be noted that statistically
significant differences between both modes in terms
of number of tasks and mean tasks time is shown
(p − value < 0.001 using Wilcoxon test). The steps dis-
tribution that the users performed in both modes are
shown in Fig. 4c. ADLs manually omitted tasks were
excluded from the study due to the subject was blocked
during the ECI scan caused by frustration or fatigue over a
specific task.
On the other hand, the AIDE mode uses a CRF

model, previously trained with simulated data using the
same virtual home, to predict the user intention. Thus,
the confusion matrix of the prediction model regarding
the ADL menus is presented in Fig. 4b. In addition, the
results obtained through the NASA tlx questionnaire are
presented in Fig. 5.

Discussion
The AIDE project aims to develop a multimodal system in
order to help people with neurological diseases wearing a
wheelchair. The presented environment allowed the user
to navigate through a virtual house and perform several
ADLs using a developed ECI. Two modes were estudied,
theAIDEmode, that used a CRFmodel to predict the user
intention and ease the ECI scan, and the Manual mode,
that needed a complete scan through the ECI to perform
a specific ADL. The ECI was online controlled using the
AIDE multimodal system based on a combination of EEG
and EOG wireless acquisition system [17].
The results presented in Fig. 4a show the mean time

per task spent in the AIDE mode is less than in the Man-
ual mode being able to perform more tasks in the same
time, both modes show statistically significant differences
(p < 0.001). Furthermore, both modes can be easily clas-
sified by training a SVM model with Gaussian kernel, the
boundary is presented with a yellow line in Fig. 4a.
On the other hand, Fig. 4c shows the difference between

both groups in terms of steps, i.e. the ECI abstraction lev-
els that the user had to cross in order to perform a specific
ADL. It must be noticed that in the AIDE mode, the users
performed one step in the 90% of the tasks and three steps,
at least, were necessary in the Manual mode. Regarding
the AIDEmode, three steps were necessary only when the
CRF model realized a wrong prediction and, therefore,
the user had to return to the activity menu and select the
proper ADL menu. Although a bad prediction is some-
times performed, the multimodal system helps in terms of
location, i.e. the activity that the system predicts is always
related with the room where the user is, facilitating the
navigation. Perform five or seven steps in the Manual
mode implies that a wrong abstraction level was selected,
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a c

b d

Fig. 3Multimodal system processing for one ADL in AIDE mode. The user had to perform different actions in order to execute the corresponding
ADLs, in this example, the user had to switch on the TV, phases a-g show the behavior of both screens during the task. EEG (a) and EOG (b) signals
were acquired to online control the ECI in order to perform ADLs in a virtual house. When the task started (vertical purple line), the scan through the
ECI was performed by EOG activity detection [orange line in (b)], i.e. when HOV activity exceeded the threshold [indicated by the orange dashed
line in (b)] the grid marker moved forward (phases a-e). Once the subject stopped at one grid, a task confirmation was needed [indicated by the
vertical black line] and the ECI ‘switched off’ the rest of the grids indicating this purpose (phase f). The confirmation was performed by the detection
of SMR-ERD [indicated by red line in (a)] and the action was done, so the ADL finished (vertical dotted purple line). This ADL was performed in one
step, i.e. the user only needed to navigate through the last abstraction level to complete the task. Before the experimentation, the user was trained
in motor imagery (c) and EOG movement (d) to the set up the control system with the personalized parameters
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a

b c

Fig. 4 Environment control interface performance. The users performed two different trials with the same goal: complete as many tasks as possible
in 10 min by using theManualmode and the AIDE mode (a). Both modes have been used to train a SVM model with Gaussian kernel and find the
boundary between them [yellow line in (a)]. The interaction with the ECI was measured by steps that a user had to perform in order to complete the
tasks (c). Furthermore, in AIDE mode the user’s intention prediction was performed through CRF model and, therefore, the confusion matrix of the
model is obtained (b)

due to user confusion or lack of practice, and the user had
to go back in the ECI.
The AIDE mode uses a CRF model to perform the

predictions about the user’s intention. The model uses
the information of the virtual home and the object that
the user is looking at, acquired thought an eye tracking
device. The model was previously trained with simulated
data using the same virtual house environment. Thus,
Fig. 4b shows the confusion matrix of the prediction
model, regarding the ADL menu, with a global accuracy
about 87%. The CRF model, as it takes into account not
only the current state but also the previous states to per-
form its prediction, it could fail in the prediction of task
with common features. Therefore, the ADLs related to the
Drink menu are sometimes predicted as the ADLs related

with the Eat menu, in this case around the 50% of the
trials. In addition, TV and the Teeth menus are rarely
selected as Entertainment and Facemenu, respectively, by
the prediction model.
After each mode, the subjects answered the NASA tlx

questionnaire in order to assess the workload between the
modes, showed in Fig. 5. Unexpectedly, it has not sta-
tistically significant differences, so we can say that the
users do not notice subjective differences between both
modes in terms of workload. It can be explained because
it was the first time that the users handle the com-
plex multimodal control system (EEG+EOG) with this
ECI. We assume that, observing the results presented
in Fig 4, the workload should decrease, at least, in the
AIDE mode.



Bertomeu-Motos et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:10 Page 8 of 9

Fig. 5 NASA task load index. The subjects answered the NASA tlx questionnaire after each mode

Conclusion
The presented ECI allowed the users to perform simulated
ADLs with a multimodal control system. The platform
was tested in two different scenarios: Manual and AIDE
mode. The first one was presented as a simple ECI where
the user had to achieve the corresponding ADL. The
second mode used a CRF model to predict the user’s
intention through the environment analysis and identifi-
cation of the user’s behaviors. We conclude that, even the
users do not perceive subjective differences between both
modes in terms of workload, the AIDE mode helps the
user to perform mode ADLs, spending less time per task,
showing statistically significant differences with respect
to the Manual mode. This effect is caused by the user’s
intention prediction as the ECI jumps directly to the last
abstraction level of the ECI. The environment analysis and
the identification of the user’s behaviors can be used to
predict the user intention and will allow to speed up the
ECIs scan opening a new paradigm in the design of these
interfaces. Although the developed ECI was tested only in
a simulated home environment, it can be easily adapted
to a real environment increasing the user independence
at home.

Endnotes
1 http://aideproject.umh.es/
2 http://www.thinksmartbox.com
3http://www.tobii.com
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