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Abstract

Background: Pattern recognition technology allows for more intuitive control of myoelectric prostheses. However,
the need to collect electromyographic data to initially train the pattern recognition system, and to re-train it during
prosthesis use, adds complexity that can make using such a system difficult. Although experienced clinicians may

be able to guide users to ensure successful data collection methods, they may not always be available when a user

needs to (re)train their device.

Methods: Here we present an engaging and interactive virtual reality environment for optimal training of a
myoelectric controller. Using this tool, we evaluated the importance of training a classifier actively (i.e., moving
the residual limb during data collection) compared to passively (i.e., maintaining the limb in a single, neutral
orientation), and whether computational adaptation through serious gaming can improve performance.

Results: We found that actively trained classifiers performed significantly better than passively trained classifiers for
non-amputees (P < 0.05). Furthermore, collecting data passively with minimal instruction, paired with computational
adaptation in a virtual environment, significantly improved real-time performance of myoelectric controllers.

Conclusion: These results further support previous work which suggested active movements during data collection

can improve pattern recognition systems. Furthermore, adaptation within a virtual guided serious game environment
can improve real-time performance of myoelectric controllers.

Keywords: Amputee, Electromyography, Upper-limb prostheses, Pattern recognition, Virtual rehabilitation, Virtual
guided training, Serious gaming, Real-time adaptation, Myoelectric control

Background

In the US, more than 600,000 people are estimated to be
living with an upper limb amputation as a result of
trauma, dysvascular disease, or cancer [1]. Although
prostheses have been in use for centuries [2], they still
lack the functionality and dexterity of a human hand/
arm, resulting in device abandonment and diminished
functional outcomes [3, 4].

Myoelectric devices—which are controlled by electro-
myographic (EMGQG) signals generated by contraction of re-
sidual muscles—provide many benefits over body-powered
prostheses. Along with providing more degrees of freedom
(DOFs) and the addition of net power to assist in grasping
heavy items, myoelectric devices are typically more intuitive
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to control. The user can control the prosthesis by contract-
ing muscles that would be used to perform desired postures
(e.g., hand open, wrist flexion) in an intact limb [5], in con-
trast to body-powered devices, where shoulder movements
are used to control the hand.

Pattern recognition (PR) techniques can be used to
control myoelectric devices. Typically, EMG activity in-
formation recorded from the residual limb is used to
train an algorithm to recognise which muscles are con-
tracting and at what level during a given movement (e.g.
hand open). Once trained, the PR system monitors the
user’s muscle contractions and uses this information to
estimate what movement the user is attempting to
perform.

Although PR may provide improved control of myo-
electric devices, it has some disadvantages. Typically, PR
users collect EM@G signals from each hand/wrist posture
with the arm in one position—either by their side or
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parallel with the ground [6-8]. Although this passive
data collection approach allows high classification rates
in offline analysis, it does not necessarily translate well
to real-time performance [9]. Previous studies have
shown that active data collection—i.e., moving the arm
during data collection, or simply collecting multiple sets
of data for each posture in a variety of arm orientations,
may improve real-time control [10-14]. Teaching
end-users or inexperienced clinicians the subtleties of
how to properly collect data to train a PR control system
can be complex and time consuming. Clinicians and en-
gineers with experience and a priori knowledge of PR
control systems can readily identify poor habits and mis-
takes in data collection, providing users the best chance
of reliable control of their prosthesis. However, involving
these professionals is expensive, and they are not always
available when training needs to be performed.

Past research has shown the benefits of online compu-
tational adaptation—the process of improving classifica-
tion rates by incorporating additional data in real-time—
for overall better performance [15-17]. Likewise, virtual
rehabilitation and serious gaming have been used in re-
cent years as alternative methods to facilitate myoelec-
tric training [18-23]. The work introduced here
combines these two research areas.

We present a tool for guiding the training of a PR sys-
tem for myoelectric prosthesis control, using a virtual
reality (VR) interface to create an engaging, interactive
environment. We evaluate the importance of actively
training a classifier (i.e., with the arm in different posi-
tions) versus the traditional method of passive training
(with the limb held in a single neutral position) and
show that serious gaming and computational adaptation
of a classifier can improve myoelectric control in
real-time.

Methods
Sixteen individuals with intact limbs (ITL: eight male,
eight female, aged between 22 and 35, with forearm cir-
cumferences between 21 and 29 cm), and four subjects
with major upper limb amputations (AMP: three male,
one female, aged between 31 and 69, with forearm cir-
cumferences between 20 and 27 cm, all with traumatic
amputations occurring between four and 45 years ago,
three transradial level, one wrist disarticulation level)
were recruited for this study. AMP individuals had vary-
ing experience with myoelectric control and PR, ranging
from use within a research environment to daily use of a
PR-controlled myoelectric system, including the
Complete Control system (Coapt LLC). Thus all AMP
individuals could be considered at least intermediate
users of the technology used in this study.

Half of the ITL subjects (n = 8) were randomly placed
in an ‘adaptation group, where new data were applied to
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the existing classifier to improve posture estimation,
while the remaining subjects (7 =8) were placed in a
‘fixed group;, where performance was not computation-
ally adapted. Subjects were not told which group they
were in until after the study, and both groups performed
the same study. For the AMP population, all participants
(n=4) were placed in a separate adaptation group, and
there was no fixed group. ITL individuals had a broader
range of myoelectric PR experience then the AMP
group, with some with extensive experience and others
with no experience at all.

Hardware and signal processing

Two custom-fabricated EMG acquisition armbands (a
small and a large size) were created to collect EMG data,
perform PR on the collected data, and track movement
of the arm/residual limb (Fig. 1a). The armband included
six pairs of stainless steel dome electrodes (Motion Con-
trol Inc.) with inter-electrode spacings of approximately
2.5cm. Signals were amplified using a TI ADS1299
bioinstrumentation chip programmed with a hardware

Fig. 1 Technology used in Study. a Side-by-side view of the armbands
used in this study, showing dome electrodes. Ruler (cm) used for scale; b
Participant interacting in the virtual environment. The EMG embedded
armband (blue) was wrapped around the subject’s upper forearm, while
the VR tracker (green) and VR headset (red) tracked the subject’s
movements and displayed the virtual environment
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gain of eight, sampled at 1000 Hz, and digitally filtered
with a passband between 35 and 350 Hz. PR was per-
formed using an embedded system on module (Logic
PD SOMDM3730). Data were binned into 200 ms win-
dows with a 175 ms overlap, resulting with a classifier
estimation decision every 25 ms. Window size and over-
lap were selected based on previous work that recom-
mended an optimal window length of between 150 and
250 ms [24], and a delay of no more than 100 ms [25].
Mean relative value, waveform vertical length, zero
crossing, slope change, and auto-regressive features from
a 6th order model were extracted from the data [26, 27],
and classified with a linear discriminant analysis (LDA)
algorithm. An estimate of movement velocity was con-
structed using an advanced proportional control algo-
rithm as described by Scheme et al. [28], and the speed
was smoothed using a velocity smoothing ramp as de-
scribed by Simon et al. [29]. Classification and propor-
tional control speed were processed on the embedded
system and transmitted over Wi-Fi to a desktop com-
puter (Alienware Aurora R5, Intel i7-6700, 16 GB RAM,
NVIDIA GTX 1080). The data were then used to control
objects in a virtual environment, which was developed in
Unity (Version 2017.1.0f3). The VR system (HTC Vive)
comprised a headset and tracking puck, both worn by
the subject. The headset tracked participants’ head
movements and displayed the virtual environment. The
tracking puck was attached to the EMG armband and
tracked subjects’ arm movements (Fig. 1b).

Experimental tasks

The armband size that best fit the user was donned cir-
cumferentially around the forearm, just distal to the
elbow. Hand/wrist postures used to train the classifier
included no motion, hand open, hand close, wrist prona-
tion, wrist supination, wrist flexion, and wrist extension.
Both ITL and AMP subjects performed the same proto-
col, except that AMP subjects did not train or perform
the wrist flexion/extension postures. AMP individuals
typically use their affected muscles less following ampu-
tation, resulting in weaker strength [30]. To minimise fa-
tigue, which may occur faster than in ITL individuals,
the flexion/extension postures were removed in the
AMP group. The five postures correspond to the func-
tionality available in commercial prostheses, as no com-
mercial flexor/extensor device currently exists. The
experiment was split into three sections: initial data col-
lection and training, real-time testing of control, and the
gaming environment, with or without adaptation.

Data collection and training

Each subject first collected data within the virtual envir-
onment using a PR training ‘wall’ (Fig. 2). This interface
displayed the different postures and tracked the number
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of data sets collected for each posture. Each subject col-
lected seven sets of data (lasting 2.5s each) for each of
the postures. The first five sets were used to train the
classifier, and the final two sets were used as testing data
for offline analysis. Feature extraction and LDA classifi-
cation was performed in real-time, and an updated con-
trol model was built after each data set was collected to
allow participants to test the classifier’s performance.
Data were collected using one of two methods:

e DPassive: The subject kept their arm in a single
orientation, with their arm parallel to the floor and
their elbow at a 90° angle, while collecting data for
each of the postures. Their upper arm was held
parallel to and against their body and remained still
during data collection.

e Active: The subject was asked to move their arm
freely around their workspace during each
movement. They were encouraged to extend/flex
their elbow and move their arm into a variety of
orientations, such as pointing their arm upwards
towards the ceiling and downwards towards the
floor.

Three-dimensional target achievement control test

The target achievement control (TAC) test is a Fitts’-law
style test that evaluates real-time myoelectric perform-
ance using a virtual 2D arm on a computer screen [31].
Here we present a 3D version of this test, in which par-
ticipants must match a pseudo-randomly selected hand/
wrist posture (hand open, wrist flexion, etc.) while also
physically moving their limb or residual limb into one of
three orientations: —45° (arm pointing towards ground),
0° (arm parallel with ground), and +45° (arm pointing
upwards) (Fig. 3a). All required movements (except no
motion) appeared randomly in each of the three orienta-
tions, twice. This resulted in 36 patterns per trial for the
ITL subjects (six postures * three orientations * two re-
peats) and 24 patterns for the AMP population (four
postures * three orientations * two repeats).

After a pseudo-random posture appeared in a pseudo-ran-
dom orientation, the subject had 20's to move their virtual
limb to overlap with the target posture (Fig. 3b). After suc-
cessfully achieving the posture, the virtual limb changed
from blue to green. The subject then had to maintain the
posture for two seconds until an audible tone was played to
indicate success (Fig. 3c). If the subject failed to hold the pos-
ition, an alternative tone was presented to indicate a miss.

Pattern classification adaptation through serious gaming
User perspective

The user was placed within a virtual forest, and, in lieu of
the virtual arm used in the 3D TAC test, the trained PR
system was used to control a virtual crossbow. The user
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Fig. 2 The pattern recognition collection ‘wall’ provided the user with feedback on their data collection progress. The titles and images indicated
which postures they needed to perform. The numbers beneath the titles indicated the number of sets completed for each posture, and a green
checkmark overlay on the image indicated when data collection for a posture was complete (see ‘No Motion’ for a completed set). The red square
under the images increased in size horizontally and changed colour from red, to yellow, to green as a set was completed to show the participant that
data were being collected. The red circle above the images turned green when the classifier estimated that class. During data collection, the subject
could also perform some postures to determine how well the classifier was estimating their movements

faced a single direction and was presented with the task of  Technical elements
‘breaking’ cubes that pseudo-randomly appeared in one of  Each arrow represented a window of EMG data, and ar-
16 discrete positions in front of them (Fig. 4a). Cubes ini- rows were fired at a rate of one every 25 ms. For both
tially had a nondescript image on each face (Fig. 4b), but  groups, all postures (seven for ITL and five for AMP
once the user aimed the crossbow at the cube, a target subjects) pseudo-randomly appeared as cubes through-
posture was revealed, together with a coloured border out the game, except for the first three cubes, which
(e.g., a blue border for the hand-close posture, Fig. 4c).  were always ‘no movement’ to stabilise any unintention-
The user attempted to perform that posture, and for every  ally firing arrows at the start of the game. The serious
estimate made by the PR system, the crossbow fired an  gameplay had two modes, depending on whether the
arrow, which was colour-coded for each posture (e.g., red  user was in the adaptation or fixed group.
for no motion, blue for hand-close, etc.). The crossbow For subjects in the adaptation groups (ITL and AMP),
also had a laser sight that helped the user aim at the cube. =~ EMG information for every arrow that hit a cube during
Aiming the crossbow at the cube and performing the re- gameplay was applied to the classifier for that posture
quired hand/wrist posture increased the cube’s size until it ~ (Fig. 4d). Thus, although only correct posture estima-
eventually ‘broke’. Aiming at the cube could be achieved tions increased the cube size and facilitated gameplay,
either through flexion/extension at the elbow (keeping the  data from every arrow (including incorrect ones, pre-
upper arm immobile against the body), or with a straight sented visually as different coloured arrows) were ap-
arm and flexion/extension at the shoulder. Either method  plied to the classifier (Fig. 4e). The game finished once
was acceptable and did not change results, as in both sce-  the group reached an adaptation limit, which is detailed
narios the user had to move their forearm to the same below in the Protocol section.
angle to point the crossbow at the cube. For the fixed group (ITL only), the gameplay remained
Each cube disappeared after three seconds, starting the same, they received the same visual and audible
from when the user first aimed the crossbow at the feedback as the adaptation group, and the game ended
cube. If the user fired only correct arrows (i.e., they were  once they reached a time limit of five minutes, which
attempting the correct posture) from the moment they  was approximately the amount of time it took the adap-
aimed at the cube, it took 2.5s to break, which, together  tation group to reach their adaptation limit. An add-
with a specific sound, indicated success. Incorrect ar- itional video file shows a visual description of the serious
rows (e.g., arrows generated by a wrist flexion posture  game protocol (see Additional file 1).
hitting a cube showing hand-close) did not increase the
cube size. If the user was unable to break the cube Protocol
within the time limit, the cube disappeared; these failed  Familiarisation stage
attempts were paired with a different sound to indicate  To reduce learning effects, users were given six practice
an unsuccessful effort. The user continued to break attempts for the initial data collection and the 3D TAC
cubes until a finish message was presented. test. For each attempt, the data were reset and recollected
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Fig. 3 Limb orientation during study. a Image showing an intact limb subject with their limb in each of the three orientations: —45°, 0°, and +
45° (left to right respectively); b Image showing the subject’s view during the 3D TAC test. The subject is tasked with moving their virtual arm
(blue) to overlap with the target arm (red); ¢ The limb turns green as an indication that the arm is correctly positioned, and the user must hold
this position for two seconds

before the 3D TAC test was performed. This familiarisa- 3. A first attempt at the crossbow serious game. The
tion stage was performed to ensure that any improve- game finished once the participant collected a data
ments seen between experimental testing blocks were a ratio of 1:1 (new data to initial data) for adaptation
result of adaptation, and not due to the subject simply get- participants, or after five minutes for the fixed

ting better from experience or learning the test. group.

Each subject was also allowed one practice run of the 4. A second TAC test to determine changes in real
crossbow game to learn how to play. As performance in time control after the first attempt at the crossbow
the crossbow game was not evaluated, subjects did not game (referred to as block?).
need to become familiar with it. 5. A second attempt at the crossbow serious game.

Finishing once the participant reached a data ratio
Testing stage of 2:1 (new data to initial data) for adaptation
The testing protocol consisted of: participants, or after five minutes for the fixed
group.
1. Initial data collection using the PR training wall. 6. A final TAC test to determine changes after the
2. A TAC test to determine baseline performance, second attempt at the crossbow game (referred to

referred to as block®. as block®).
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Fig. 4 Virtual interface and environment. a From the user's perspective, a cube could appear in one of four vertical positions (two on either side of the
user), and four horizontal positions, some appearing above the user and some appearing below; b When the user was not aiming the crossbow at a
cube, a non-descript image was displayed; ¢ Once the user aimed the crossbow at the cube, the target posture was revealed; d Image shows the user
beginning to interact with a cube. The target is 'hand open’ (green) and the user is volitionally performing a hand open posture, which is resulting in
green arrows being fired; e Image shows the moment just before the cube ‘breaks’. The cube has increased in size; however, the image shows the
pattern recognition system mis-estimating, as the arrows fired are cyan (indicating a wrist flexion posture). Although arrows generated from incorrect
postures did not increase the cube size, the information was added to the classifier in the adaptation group

Each subject performed this protocol twice: once while
performing the initial data collection passively, with their
limb in the neutral position, and again while actively
moving their limb during data collection. The order of
passive and active data collection was randomised for
each subject, with half of the subjects per population
(i.e., eight subjects for ITL and two for AMP) starting
with passive and the other half starting with active data
collection. The TAC test and game were performed in
the same way for each data collection method.

Performance evaluation
During the TAC test, the following testing metrics were
determined:

o DPostures Completed: The number of pseudo-random
target postures successfully achieved out of 36 (ITL) or

24 (AMP); as demonstrated in Fig. 3c. A score of 100%
would mean the subject got all postures, whereas a
score of 0% would mean none were achieved.

Posture Completion Time: The average amount of
time taken to achieve each pseudo-random target
posture (maximum of 20 s). The time was reformat-
ted into a proportionally scaled value and flipped, so
a score of 100% would indicate that the subject got
to each posture instantaneously (within zero sec-
onds), whereas a score of 0% would mean each at-
tempt timed out after 20s.

Classifier Efficacy: An altered representation of
the classifier success rate. Processed window
estimates (est!’”) were calculated as a success
(equal to one) if the classifier predicted

(est,,) either ‘no motion’ (nm) or the correct
pseudo-random target posture (¢ - e.g. hand
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open), as seen in (1). Window estimates which
predicted any other posture were deemed un-
successful (equal to zero). The classifier effi-
cacy was calculated as the ratio of correct to
incorrect estimations across the total number
of windows (N) and multiplied by 100 to ob-
tain the percentage, as seen in (2). A score of
100% would mean the classifier successfully es-
timated the intended target posture. A score of
0% would mean that all estimates were incor-
rect, suggesting either poor control over the
virtual limb, or a poorly trained classifier.

1, ifest, =t
estt® = < 1, if est, = nm (1)
0, else
N
oro
e'ﬁflass — <Zn}l\[es n >100 (2)

e Movement Efficacy: The efficacy of the movement
was evaluated by combining the classifier
estimation with proportional control. Thus, this
metric expressed both the altered classifier
success rate (1) and the volitional speed used to
move the virtual limb (prop,), as seen in (3). The
multiplication in (3) created a similar vector to
that seen in (1) whereby incorrect classifier
estimations set prop?™ to zero, and correct
estimations (represented by estimations matching
the target posture or ‘no motion’) set prop?® to
the proportional value of that window () and
posture. Movement efficacy (4) was calculated as
the summation of the processed proportional
information (3) divided by the summation of
unprocessed proportional data (prop, - which
contains all windowed proportional information,
regardless of correct estimation), and then
multiplied by 100 to obtain the percentage. A
correct estimation paired with an intense
contraction (which was represented by a high
proportional value) resulted in higher overall
movement efficacy than the same correct
estimation with a weak contraction/proportional
value. A score of 100% would mean the subject
controlled the movement correctly and
smoothly, straight to the target. Likewise, a
score of 0% would show the subject had poor
control over the virtual limb and failed to move
to the target.
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propt”® = prop,“est?”’ (3)

eﬁcmnvement _ ZN prOpﬁm 100 (4)
n=1 prop,

These metrics were calculated for each repeat of the test-
ing protocol for both passive and active collection methods,
and changes were presented as percentages for each block.
Finally, the offline accuracy of the classifier, between blocks,
was calculated and averaged over all postures.

Statistics

Statistical analysis was performed in Minitab (version
18.1). ITL and AMP populations were evaluated separ-
ately with different models for each. Statistics were per-
formed using a mixed effects model with population
subject identifier as a random factor, and block (block’,
block?, block?), data collection type (passive or active),
and (for ITL only) adaptation type (fixed or adaptation
group), as fixed factors. The mixed effect model was per-
formed separately for each testing metric (postures com-
pleted, posture completion time, classifier efficacy, and
movement efficacy). The model was performed with 2nd
order interactions, restricted maximum likelihood vari-
ance estimation, and a Kenward-Roger approximation
test method for fixed effects. Pairwise comparisons were
performed using a Bonferroni (95% confidence level)
method. To further analyse statistical change between
blocks, of which the mixed model is incapable of report-
ing, an independent analysis of variance (ANOVA) test
was also performed (subject identifier as random factor,
adaptation level as fixed). ITL and AMP populations
were again evaluated separately, as well as separate tests
for data collection type and adaptation type (ITL: adap-
tation and fixed, AMP: adaptation only).

Results

Intact limb population

Figure 5 shows the metric score across testing blocks for all
tested metrics (higher is better). Table 1 shows the statis-
tical results of the mixed model. Collection method and the
2nd order interaction between collection method and adap-
tation group were significant factors (P < 0.01) for all met-
rics, as was block level (P<0.01 for postures complete,
completion time, and movement efficacy, P < 0.05 for clas-
sifier efficacy). In the adaptation group with passive collec-
tion, the ANOVA showed significant improvements
between block' and block® for the count and classifier
efficacy metrics (P<0.05), and significant improve-
ments between block' and block® for all metrics
(count, classifier: P<0.01; time, movement: P < 0.05).
None of the metrics showed significant improvements
between block? and block® (P> 0.05). Separate
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Fig. 5 Intact limb population results. Score for each tested metric between blocks for the intact limb population’s adaptation and fixed groups.
Block' (black) shows the baseline result for each metric, whereas block? and block® (grey and white, respectively) show the change following
adaptation (or lack thereof). Error bars are the standard error of the mean

ANOVA tests showed no significant change (P> 0.05)
between any of the blocks for the remaining ITL
group permutations (adaptation group with active col-
lection, fixed group with passive collection, fixed
group with active collection). Table 2 shows the
model summary with R* values between 80 and 86%,
depending on the metric tested, whereas Table 3
shows the offline accuracies of the adaptation and
fixed groups (higher is better). As no adaptation was
performed in the fixed group, their accuracies remain
unchanged between blocks.

Amputee population
Figure 6 shows the metric score across testing blocks for
the AMP population.

Table 4 shows the statistical results of the mixed model
for the AMP population. Only posture completion time for
block level and the classifier efficacy metric for collection
method were found to have significant effects (P < 0.05).
Separate ANOVA tests showed no significant change (P >
0.05) between blocks in any of the AMP permutations
(adaptation group with passive collection, adaptation group
with active collection).

Table 1 Statistical and classification results for the intact limb population: mixed model results for fixed effects

Term F-Value P-Value
Count Time Classifier Movement Count Time Classifier Movement

Blocks 6.34 6.22 439 520 0.003t+ 0.003tt 0016t 0.008tt
Collection (active/passive) 121.34 135.07 241.14 162.64 0.000t+ 0.000t+ 0.0001t 0.000t+
Groups (adaptation/fixed) 1.20 1.11 0.54 143 0.293 0.309 0473 0.252
Blocks*Collection 1.96 0.64 1.90 1.54 0.148 0.529 0.157 0.221
Blocks*Groups 0.68 041 213 043 0.508 0.667 0.127 0.650
Collection*Groups 4345 36.73 56.32 36.02 0.000t+ 0.000tt 0.000tt 0.0001

* indicates an interaction between two terms. tt indicates significance of P < 0.01, T indicates significance of P < 0.05, no symbol indicates no

significance (P > 0.05)
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Table 2 Statistical and classification results for the intact limb population: mixed model summary

Standard Error of the Estimate (S) R’

Count Time Classifier Movement Count Time Classifier Movement
12.60 7.56 7.12 6.28 79.70% 81.50% 86.11% 83.00%

Table 5 shows the model summary with lower R*
values between 65 and 75% depending on metric, and
Table 6 shows the offline accuracies for the amputee
adaptation group.

Discussion

Figure 5 shows a clear advantage to training actively
compared to the traditional passive data collection
method. The data presented in Table 1 suggest that the
method of collecting training data is a significant factor
(P<0.01) that impacts the resulting real-time control
performance in people with intact limbs. These results
support previous recommendations made in offline stud-
ies that training with the limb in a variety of orienta-
tions, or moving the limb during data collection, results
in better control [13, 14]. However, these results differ
from recent real-time control results evaluating changes
in residual limb positions when using a regression-based
control algorithm [10]. It is possible that the
regression-based control is more resilient to changes in
residual limb position; however, it is also possible that
the inclusion of six (in the current trial) rather than four
(in the prior study) postures is responsible for this
difference.

Our statistical model also showed a significant inter-
action term (P<0.01) between the data collection
method (active/passive) and the adaptation group (adap-
tation/fixed). The mixed model was limited in that it re-
ported significant improvements during adaptation with
the passive training method but did not specify at which
stage such improvements were made, and therefore
ANOVA tests were applied. The significant improve-
ments between blocks for the ITL group, with adapta-
tion and passive collection, suggests that adaptation
through the serious game could be used as an automated
method to help guide collection of improved training

Table 3 Statistical and classification results for the intact limb
population: offline classification accuracies (%)

Passive Active

Block'  Block®  Block®  Block!  Block’®  Block®
Adaptation 90.65 8840 87.83 83.38 79.82 7840
Fixed 89.55 89.55 89.55 84.79 84.79 84.79

Offline classification accuracies across adaptation and fixed groups, and
passive and active data collection methods (classification accuracies are the
same for each block in the fixed demographic as no adaptation was
performed and therefore the data used in offline accuracy

remained unchanged)

data to provide similar performance to actively collected
data supervised by an expert.

Offline analysis of results (Table 3) showed a decline
in accuracy across blocks for both training data collec-
tion methods. This was expected, due to the narrowing
feature space between postures as the variety of data is
increased, resulting in a more complex dataset that di-
minished the performance of the classifier. This also
agrees with prior work showing that it is possible to have
better online control using PR systems with lower classi-
fication accuracies [21], and other work showing that
offline performance metrics correlate only weakly with
control [32].

The AMP group had differing results from the ITL
participants. AMP participants performed better than
the ITL group and showed a less pronounced and
non-significant difference between collection methods
and testing blocks (Fig. 6). This is possibly because of a
reduced number of postures (five opposed to seven in
the ITL group), or because changes in residual limb po-
sitioning affect amputees differently due to biomechan-
ical differences, which may include, for example, the
lack of hand and forearm weight, or differing muscle
structure following amputation. It is worth noting that
all participants had significant myoelectric experience,
both within a controlled environment and in the home,
and one of the participants had undergone targeted rein-
nervation surgery, which has been shown to improve
myoelectric performance [33]. However, performance
within the ITL group did not correlate with PR experi-
ence, as some users with no myoelectric experience per-
formed far better than some with considerable
experience. Thus, PR experience may not have affected
performance in the AMP group. It is possible that per-
formance correlates with understanding of PR concepts,
rather than with experience in using PR.

The offline analysis (Table 6) also showed differing re-
sults compared to the ITL population. Although the pas-
sive data collection method also showed a decline in
accuracy across blocks, albeit much less distinct, the ac-
tive collection method showed an increased accuracy in
block?, and then a slight decrease again in block®. These
results further suggest that the amputee population has
a different response to the different training methods,
which may be less influential than in the ITL
demographic.

It was assumed that during the crossbow adaptation
game, the user was performing the correct posture
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according to what was shown on the cube, and that in-
correct arrows fired were due to misclassification and
not because the user performed the wrong posture. If
the user performed a different posture to that indicated
on the cube, the classifier would become saturated with
incorrect data. To reduce this risk, subjects were in-
formed that the aim of the game was accuracy and not
speed, thus there was no benefit in trying to progress
through the game faster, which could result in misread-
ing the cube and performing the wrong posture.

As part of this study, each subject was given six train-
ing trials before testing to familiarise them with the
protocol and to ensure that any improvements seen were
due to the adaptation and not due to increasing

familiarity with the test environment. To confirm this,
each metric was averaged across all AMP subjects for
both the last training session (the sixth repeat of the data
collection/testing protocol) and the baseline result for
their first testing session. A paired ¢-test showed no sig-
nificant difference (P >0.05) across any metric between
the final training and first testing session. This suggests
that by the final training session the subject’s perform-
ance had plateaued, and that the performance improve-
ments seen were due to the adaptation and not due to
more experience in the virtual environment.

Although our results show that the addition of infor-
mation from many varied limb positions can improve
myoelectric control, we expect that improvements would

Table 4 Statistical and classification results for the amputee population: mixed model results for fixed effects

Term F-Value P-Value

Count Time Classifier Movement Count Time Classifier Movement
Blocks 1.69 3.71 0.64 1.07 0.217 0.0491 0.542 0.369
Collection (active/passive) 322 249 460 353 0.093 0.136 0.0491 0.080
Blocks*Collection 0.12 0.14 042 050 0.892 0.872 0.665 0618

* indicates an interaction between two terms. 1 indicates significance of P < 0.05, no symbol indicates no significance (P > 0.05)
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Table 5 Statistical and classification results for the amputee population: mixed model summary

Standard Error of the Estimate (S) R’
Count Time Classifier Movement Count Time Classifier Movement
6.63 6.96 544 6.72 65.11% 63.39% 72.75% 75.31%

be more substantial with the inclusion of active arm
movement during adaptation. Much like the baseline
collection for the active collection method, moving the
arm in a variety of positions during adaptation, as op-
posed to keeping the arm still, could have further bene-
fits for control and is an objective of future work.
Addition of such information would be computationally
guided, much as performed in the crossbow game now,
which would accomplish our goal of obtaining an opti-
mally trained classifier while reducing the need for
trained professionals.

Other future work includes customising and identify-
ing each subject’s adaptation needs, so that the classifier
is optimised on an individual basis. As previously men-
tioned, subject performance was varied, and in many
ways, unpredictable. Subjects with PR experience did
not always perform well, and some novice users per-
formed exceptionally well.

Conclusion
This study shows that an actively trained classifier
performs better than one trained in a single, neutral

orientation, and that adaptation within a virtual
guided serious game environment can improve
real-time performance of myoelectric controllers;

however, this was only significant in the ITL group in
this study.

These results concur with previous work showing
that data collection during active movement and in a
variety of arm orientations and positions can signifi-
cantly improve classification and control of a myo-
electric prosthesis. Furthermore, we have shown that
collecting data, with minimal instruction, in the trad-
itional neutral orientation can be significantly im-
proved through a computationally guided tool using
virtual reality and serious gaming.

Although the virtual training tool is not designed to
replace professional interaction or clinical care, it can as-
sist with training or retraining a PR system in a home or

Table 6 Statistical and classification results for the amputee
population: offline classification accuracies (%)

Passive Active
Block' Block? Block® Block' Block? Block?
Adaptation 94.95 9443 93.13 86.73 89.25 88.25

Offline classification accuracies across the adaptation group, and passive and
active data collection methods

semi-controlled environment. Future work will include
reducing the technological requirements by porting this
tool to mobile devices and using less computationally
heavy and expensive systems.

Additional file

Additional file 1: Annotated video which demonstrates the serious
game protocol. (MP4 7707 kb)

Abbreviations

AMP: Amputee; DOF: Degree(s) of freedom; EMG: Electromyographic/
electromyography; ITL: Intact limb; LDA: Linear discriminant analysis;

PR: Pattern recognition; TAC: Target achievement control; VR: Virtual reality

Acknowledgements

The authors would like to thank all participants in this study, as well as the
engineering and clinical teams at the Center for Bionic Medicine for their
assistance and help. The authors would also like to thank Ann Barlow, PhD
for editing the manuscript.

Funding
The US Army’s Congressional Directed Medical Research Program Grant
(W81XWH-15-2-0035) supported this research.

Availability of data and materials
The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.

Authors’ contributions

Study concept and design: LH, RW; Acquisition of data: RW; Analysis and
interpretation of data: RW, LH; Drafting of the manuscript: RW; Obtained
funding: LH; Administrative, technical, or material support: RW; Study
supervision: LH. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Approval was obtained from the Northwestern University Institutional
Review Board and informed consent was obtained from each participant
prior to completing the study. All methods and experiments were performed
in accordance with relevant guidelines and regulations.

Consent for publication

All participants in this study gave explicit verbal and written content to be
included in any identifiable or non-identifiable figures, videos, or other media
for any form of publication purpose (including online open-access articles).

Competing interests

LH has a financial interest in Coapt, LLC, a company that sells myoelectric
control systems. No Coapt products or materials were used in this study. RW
has no competing interest to declare.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Center for Bionic Medicine, Shirley Ryan Ability Lab, Chicago, IL 60611, USA.
7Depar‘[mem of Physical Medicine & Rehabilitation, Northwestern University,
Chicago, IL 60611, USA. *Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA.



Woodward and Hargrove Journal of NeuroEngineering and Rehabilitation

Received: 1 August 2018 Accepted: 2 January 2019
Published online: 16 January 2019

References

1.

20.

21.

22.

Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R.
Estimating the prevalence of limb loss in the United States: 2005 to 2050.
Arch Phys Med Rehabil. 2008;89(3):422-9.

Wellerson TL. Historical development of upper extremity prosthetics. Orthop
Prosthet Appl J. 1957;11(3):73-7.

Biddiss E, Chau T. Upper-limb prosthetics: critical factors in device
abandonment. Am J Phys Med Rehabil. 2007,86(12):977-87.

Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey
of the last 25 years. Prosthetics Orthot Int. 2007,31(3):236-57.

Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, et al.
Literature review on needs of upper limb prosthesis users. Front Neurosci.
2016;,10(MAY):1-14.

Englehart K, Hudgins B. A robust, real-time control scheme for multifunction
myoelectric control. IEEE Trans Biomed Eng. 2003;50(7):848-54.

Saridis GN, Gootee TP. EMG pattern analysis and classification for a
prosthetic arm. IEEE Trans Biomed Eng. 1982,BME-29(6):403-12.

Resnik L, Helen HH, Winslow A, Crouch DL, Zhang F, Wolk N. Evaluation
of EMG pattern recognition for upper limb prosthesis control : a case
study in comparison with direct myoelectric control. J Neuroeng
Rehabil. 2018;15(1):23.

Ortiz-Catalan M, Rouhani F, Branemark R, Hakansson B. Offline accuracy: a
potentially misleading metric in myoelectric pattern recognition for
prosthetic control. In: Proceedings of the Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC); Milan,
2015. p. 1140-3.

Hwang HJ, Hahne JM, Mller KR. Real-time robustness evaluation of
regression based myoelectric control against arm position change and
donning/doffing. PLoS One. 2017;12(11):1-22.

Geng Y, Zhou P, Li G. Toward attenuating the impact of arm positions on
electromyography pattern-recognition based motion classification in
transradial amputees. J Neuroeng Rehabil. 2012,9(1):74.

Geng Y, Chen L, Tian L, Li G. Comparison of electromyography and
Mechanomyogram in control of prosthetic system in multiple limb
positions. In: IEEE-EMBS International Conference on Biomedical and Health
Informatics; Hong Kong, 2012. p. 788-91.

Scheme E, Fougner A, Stavdahl CADC, Englehart K. Examining the adverse
effects of limb position on pattern recognition based myoelectric control.
In: Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC); Buenos Aires; 2010. p.
6337-40.

Fougner A, Scheme E, Chan ADC, Englehart K, Stavdahl @. Resolving the
limb position effect in myoelectric pattern recognition. IEEE Trans Neural
Syst Rehabil Eng. 2011;19(6):644-51.

Sensinger JW, Lock BA, Kuiken TA. Adaptive pattern recognition of
myoelectric signals: exploration of conceptual framework and practical
algorithms. IEEE Trans Neural Syst Rehabil Eng. 2009;17(3):270-8.

He J, Zhang D, Jiang N, Sheng X, Farina D, Zhu X. User adaptation in long-
term, open-loop myoelectric training: implications for EMG pattern
recognition in prosthesis control. J Neural Eng. 2015;12(4):1-11.

Hahne JM, Dahne S, Hwang H-J, Muller K-R, Parra LC. Concurrent adaptation
of human and machine improves simultaneous and proportional
myoelectric control. [EEE Trans Neural Syst Rehabil Eng. 2015;23(6):1128.
Resnik L, Etter K, Klinger SL, Kambe C. Using virtual reality environment to
facilitate training with advanced upper-limb prosthesis. J Rehabil Res Dev.
2011;48(6):707.

Bouwsema H, Van Der Sluis CK, Bongers RM. Effect of feedback during
virtual training of grip force control with a myoelectric prosthesis. PLoS
One. 2014,9(5):1-15.

Lambrecht JM, Pulliam CL, Kirsch RF. Virtual reality environment for
simulating tasks with a myoelectric prothesis: an assessment and training
tool. J Prosthetics Orthot. 2011;23(2):89-94.

Hargrove L, Losier Y, Lock B, Englehart K, Hudgins B. A real-time pattern
recognition based myoelectric control usability study implemented in a virtual
environment. In: Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). Lyon; 2007. p. 4842-5.
Terlaak B, Bouwsema H, Van Der Sluis CK, Bongers RM. Virtual training of the
myosignal. PLoS One. 2015;10(9):1-14.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

(2019) 16:11 Page 12 of 12

Lamounier EA Jr, Lopes K, Cardoso A, Soares AB. Using augmented reality
techniques to simulate myoelectric upper limb prostheses. J Bioeng Biomed
Sci. 2012;2:1-6.

Smith LH, Hargrove LJ, Lock BA, Kuiken TA. Determining the optimal
window length for pattern recognition-based myoelectric control: balancing
the competing effects of classification error and controller delay. IEEE Trans
Neural Syst Rehabil Eng. 2011;19(2):186-92.

Farrell TR, Weir RF. The optimal controller delay for myoelectric prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):111-8.

Huang Y, Englehart KB, Hudgins B, Chan ADC. A Gaussian mixture model
based classification Scheme for myoelectric control of powered upper limb
prostheses. IEEE Trans Biomed Eng. 2005;52(11):1801-11.

Hargrove L, Englehart K, Hudgins B. A training strategy to reduce
classification degradation due to electrode displacements in pattern
recognition based myoelectric control. Biomed Signal Process Control. 2008;
3(2):175-80.

Scheme E, Lock B, Hargrove L, Hill W, Kuruganti U, Englehart K. Motion
normalized proportional control for improved pattern recognition-based
myoelectric control. IEEE Trans Neural Syst Rehabil Eng. 2014;22(1):149-57.
Simon AM, Hargrove LJ, Lock BA, Kuiken TA. A decision-based velocity ramp
for minimizing the effect of misclassifications during real-time pattern
recognition control. IEEE Trans Biomed Eng. 2011;58(8):2360-8.

Krajbich JI, Pinzur MS, Potter BK, Stevens PM. Upper limb prosthetic training
and occupational therapy. In: Atlas of amputations and limb deficiencies.
4th ed. AACS; 2016. p. 355.

Simon AM, Hargrove LJ, Lock BA, Kuiken TA. The target achievement control
test: evaluating real-time myoelectric pattern recognition control of a
multifunctional upper-limb prosthesis. J Rehabil Res Dev. 2011;48(6):619-27.
Jiang N, Vujaklija |, Rehbaum H, Graimann B, Farina D. Is accurate mapping
of EMG signals on kinematics needed for precise online myoelectric
control? IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):549-58.

Huang H, Zhou P, Li G, T a K. An analysis of EMG electrode configuration for
targeted muscle reinnervation based neural machine interface. IEEE Trans
Neural Syst Rehabil Eng. 2008;16(1):37-45.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Hardware and signal processing
	Experimental tasks
	Data collection and training
	Three-dimensional target achievement control test
	Pattern classification adaptation through serious gaming
	User perspective
	Technical elements

	Protocol
	Familiarisation stage
	Testing stage

	Performance evaluation
	Statistics

	Results
	Intact limb population
	Amputee population

	Discussion
	Conclusion
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

