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Altered muscle activation patterns (AMAP):
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activity patterns of hemiparetic gait with a
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Abstract

Background: Stroke survivors often have lower extremity sensorimotor impairments, resulting in an inability to
sufficiently recruit muscle activity at appropriate times in a gait cycle. Currently there is a lack of a standardized
method that allows comparison of muscle activation in hemiparetic gait post-stroke to a normative profile.

Methods: We developed a new tool to quantify altered muscle activation patterns (AMAP). AMAP accounts for
spatiotemporal asymmetries in stroke gait by evaluating the deviations of muscle activation specific to each gait
sub-phase. It also recognizes the characteristic variability within the healthy population. The inter-individual
variability of normal electromyography (EMG) patterns within some sub-phases of the gait cycle is larger
compared to others, therefore AMAP penalizes more for deviations in a gait sub-phase with a constant profile
(absolute active or inactive) vs variable profile. EMG data were collected during treadmill walking, from eight
leg muscles of 34 stroke survivors at self-selected speeds and 20 healthy controls at four different speeds.
Stroke survivors’ AMAP scores, for timing and amplitude variations, were computed in comparison to healthy
controls walking at speeds matched to the stroke survivors’ self-selected speeds.

Results: Altered EMG patterns in the stroke population quantified using AMAP agree with the previously
reported EMG alterations in stroke gait that were identified using qualitative methods. We defined scores
ranging between ±2.57 as “normal”. Only 9% of healthy controls were outside “normal” window for timing
and amplitude. Percentages of stroke subjects outside the “normal” window for each muscle were, Soleus = 79%;
73%, Medial Gastrocnemius = 62%; 79%, Tibialis Anterior = 62%; 59%, and Gluteus Medius = 48%; 51% for amplitude
and timing component respectively, alterations were relatively smaller for the other four muscles. Paretic-propulsion
was negatively correlated to AMAP scores for the timing component of Soleus. Stroke survivors’ self-selected walking
speed was negatively correlated with AMAP scores for amplitude and timing of Soleus but only amplitude of Medial
gastrocnemius (p < 0.05).

Conclusions: Our results validate the ability of AMAP to identify alterations in the EMG patterns within the
stroke population and its potential to be used to identify the gait phases that may require more attention
when developing an optimal gait training paradigm.
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Background
While a comprehensive, quantitative understanding of
walking in the post-stroke population includes assessment
of muscle activity patterns in addition to biomechanical
variables and clinical measures, existing techniques to
identify abnormal muscle activity have significant limita-
tions. Current techniques do not account for altered gait
mechanics (e.g., gait asymmetries that cause the same gait
phase to occur at different percentages of the gait cycle
between different hemiparetic subjects, as well as paretic,
non-paretic or control legs); robustly identify the onset or
termination of electromyographic (EMG) activity [1, 2]; or
acknowledge normal gait variability [3]. So far, only a few
tools have been proposed for quantitatively identifying
EMG abnormalities during walking post-stroke [1, 2, 4, 5].
However, one significant limitation of all these tools is that
they do not account for the asymmetries i.e. phase-specific
differences between healthy and post-stroke walking pat-
terns (we have further discussed the methodology and
limitations of these tools in comparison to the proposed
tool in the discussion section under AMAP and existing
tools for quantitative assessment of muscle activity). Since
phase-specific biomechanical demands constrain EMG ac-
tivity, a methodology to evaluate EMG abnormalities must
account for how prolonged or shortened phases of the gait
cycle contribute to asymmetric gait post-stroke. A second
limitation of existing techniques is that they typically lack
a robust method for identifying EMG “On/Off” activity,
and therefore can have poor inter-rater or intra-rater reli-
ability leading to inaccuracies in detecting gait events in
hemiparetic walking. A third limitation is the large
inter-individual variability within the healthy population
that is not accounted for by current methods, which may
result in over estimation of EMG pattern abnormalities
while evaluating deviations from an averaged normal pro-
file. Here we seek to develop a quantitative measure that
can recognize the characteristic variability within the
healthy population while quantifying deviations in the
amplitude and timing of stroke survivors’ EMG profiles
accounting for asymmetric hemiparetic gait.
Impaired muscle activity associated with abnormal gait

patterns is typical in stroke survivors. Abnormal muscle
coordination post-stroke includes: temporal deviations in
muscle activity patterns, for example, early plantar flexor
activity during stance, or early termination of tibialis
anterior activity during swing [6, 7], inappropriate level of
activation due to insufficient muscle activity and weakness
[8, 9], or co-activation of multiple muscles [6, 10]. Altered
muscle activation patterns following stroke contribute to
reduced gait speed [8, 11] and/or poor postural stability
[12]. Therefore, understanding abnormalities of muscle
coordination is important as dyscoordination can result in
significant gait deficits that further limit functional walk-
ing capacity post-stroke.

Current evaluations of abnormalities in locomotor
coordination tend to rely primarily upon biomechanical
measures as opposed to quantitative measures of EMG
activity. Biomechanical measures, while informative, do
not provide specific insight into the altered muscle
coordination patterns following stroke. For example,
paretic propulsion is associated with functional walking
ability [13]. Stroke survivors with lower levels of gait
impairment demonstrate that SO, MG, and GM on the
paretic side contribute towards forward propulsion
which is similar to healthy individuals. But, stroke sur-
vivors with greater gait impairments and decreased
muscle activity have limited contribution from SO, MG,
and GM on the paretic side, and compensatory activity
from RF and VM on the non-paretic side contributes
towards forward propulsion [14]. Therefore, evaluating
muscle activation patterns is important for clinicians to
develop interventions that can target specific biomechan-
ical task improvement. Recent studies have proposed ana-
lyses of modular organization of muscle activity [15, 16]
that identifies distinct muscle groupings potentially cor-
responding to biomechanical functions [17, 18]. The
modular organization has been used as a means to
express motor coordination complexity during walking
as a single integer value that represents the number of
independently activated muscle groupings. However, a
motor coordination complexity variable does not pro-
vide detailed information related to the abnormalities of
individual muscle activity during walking. Furthermore, by
limiting evaluation to a single integer value for each
individual affords limited ability to differentiate between
individuals. Therefore, there is a lack of a standard gait
metric that can be used for a muscle-by-muscle evaluation
to quantify the abnormalities of muscle coordination in
hemiparetic gait.
An analytical tool that quantifies muscle patterns in

hemiparetic gait needs to account for spatiotemporal gait
asymmetries. Simulation studies of human walking based
on computer-implemented musculoskeletal models have
demonstrated that muscle activity in healthy individuals
produce specific biomechanical outputs during the gait
cycle [17, 19]. The biomechanical consequences of muscle
activity during walking depend on the mechanical state of
the leg. Although the mechanical state of the leg may have
some inter-subject variation in a given phase due to
the large variability within the stroke population, this
variability is much less than the differences in activity
between different phases of the gait cycle. Specifically,
activation of a specific muscle during a given phase in
post-stroke gait is likely to have more similar biomechanical
consequences to activity in that same phase in a neuro-
logically healthy person than to activity matched to a given
percent of gait cycle (e.g., activity at the beginning of a
swing phase occurring at 75% of the gait cycle in a person
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with hemiparesis is most accurately compared to activity in
a neurologically healthy person at the beginning of swing
phase occurring at ~ 60% as opposed to matched mid-
swing activity occurring at 75% of time normalized gait
cycle). However, existing methods for assessing EMG
patterns for experimental walking data typically time
normalize the data by expressing it as a percentage of the
gait cycle [1, 2, 4]. While the alterations in muscle activity
have a causal relationship with the biomechanical devia-
tions, we posit that one cannot correctly evaluate deviations
of EMG patterns without controlling for the deviations in
the biomechanical consequences of muscle activity. There-
fore, evaluation of muscle coordination should be specific
to each gait sub-phase.
Typically used methods to identify periods of muscle

activity/inactivity during normal walking have especially
poor reliability within the stroke population. When identi-
fying temporal deviations of the EMG patterns, the
robustness of determining the “on/off” windows of muscle
activity can greatly influence the outcome. One frequently
proposed method to detect these windows of muscle
activity is visual inspection which has been reported to
have poor intra-rater reliability [20]. Additionally, some
studies rely upon automated computer-based algorithms
that use a pre-determined threshold, set using arbitrary
criteria [21], which may not be robust enough to identify
“on/off” events for many individuals. EMG activity has
large variability across individuals, especially within the
stroke population [6, 9, 22], therefore identifying a robust
criterion to determine a single threshold value that can be
reliable for identifying EMG onset or termination across
subjects can be difficult. Recognizing the need for a
method sufficiently sensitive to identify when a muscle is
“on” or “off” is critical when developing an assessment
tool for muscle timing abnormalities, especially in the
stroke population.
Some sub-phases of the gait cycle reveal high

inter-individual variability of EMG patterns relative to
sub-phases with relatively consistent activity across
healthy individuals, thus these phase-specific differences
in variability should be accounted for when quantifying
the deviation from normal EMG patterns. Previously it
has been proposed to use the average ensemble of the
EMG profile of healthy control subjects as the reference
“normal profile” [2]. The rationale for this approach is
predicated on the assumption that normal muscle
activity patterns across individuals do not differ signifi-
cantly. However, EMG patterns during walking vary
significantly for lower extremity muscles, even within
the healthy population [23–25]. Furthermore, previous
studies have suggested that some lower extremity muscles
have more than one physiologically relevant normal
pattern of activity, for example, subjects that have faster
walking speeds often have a second period of activity

during stance to swing transition for hamstrings; similarly,
some subjects have two bursts of gastrocnemius activity
during stance which maybe to quickly decelerate tibial ro-
tation at faster walking speeds, while some individuals
have single bursts but an earlier activity of gastrocnemius
during stance at faster walking speeds. [23, 24]. Healthy
individuals tend to have sub-phases of the gait cycle with
relatively consistent patterns across subjects, such as con-
sistent “on” or “off” muscle activity. Conversely, certain
sub-phases can be extremely variable between subjects.
Therefore, rather than pooling the EMG data and iden-
tifying an averaged profile composed of significantly
different patterns as reference “normal profile”, a tool
used for assessment of muscle coordination should
account for both the “normal” variability between sub-
jects and between gait sub-phases.
The purpose of the present study was to address the

aforementioned limitations of existing quantitative methods
by developing a new tool to quantify altered muscle-activa-
tion patterns (AMAP). Specifically, our goal is to evaluate
deviations between EMG patterns of healthy individuals
and those exhibited post-stroke. AMAP accounts for differ-
ences in muscle activation patterns associated with altered
gait mechanics due to spatiotemporal asymmetries by com-
paring muscle activity during equivalent gait sub-phases
(i.e., first double support, first and second halves of
single-leg stance, second double support, and first and sec-
ond halves of swing). This approach assures that, for
example, swing phase activity is not compared to stance
phase activity and thus attempts to match the biomech-
anical demands as closely as possible when comparing
muscle activity between healthy and stroke populations.
Additionally, we sought to enhance the robustness of
detecting “on/off” periods for AMAP by using a
k-means cluster algorithm. K-means can accommodate
muscle activity patterns characterized by the lack of a
single clear burst of activity and/or increased baseline
activity as often occurs post-stroke. Furthermore, since
healthy individuals’ muscle patterns tend to be consist-
ent for certain gait sub-phases but extremely variable
for some others, AMAP also accounts for normal vari-
ability within each sub-phase. Consequently, AMAP is
a novel tool that can effectively quantify deficits of
motor coordination specifically for hemiparetic gait.
The advantages of AMAP would also be relevant to
quantifying EMG alterations in other populations.

Methods
EMG data were collected from eight leg muscles of 34
stroke survivors during treadmill walking at self-selected
speeds and 20 healthy individuals at self-selected, 0.3 m/s,
0.6 m/s, and 0.9 m/s walking speeds (see Table 1 for demo-
graphic information). All participants provided informed
consent approved by the institutional review board. Stroke
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survivors meeting the following characteristics were
included: hemiparesis secondary to a single unilateral
stroke; free of significant lower extremity joint pain,
range of motion limitations, and profound sensory
deficits (including proprioception); ability to ambulate
independently –even if requiring an assistive device—
over ten meters on a level surface between at least 0.3
m/s but < 1.0 m/s; walk on a daily basis at home; ab-
sence of severe perceptual or cognitive deficits; absence of
significant lower limb contractures, severe osteoarthritis
or prior pathological fracture; and absence of significant
cardiovascular impairments contraindicative to walking.
Healthy individuals were similarly-aged and were screened
for obvious symptoms of neurological disease or lower
limb orthopedic impairments.

Data acquisition
All participants walked on a treadmill for 40 s at their
self-selected speeds wearing a safety harness attached to
an overhead support to prevent a fall. Healthy controls
also walked at 0.3 m/s, 0.6 m/s, and 0.9 m/s, walking
speeds. Prior to data collection, subjects walked on the
treadmill during an acclimatization session to determine
their self-selected speeds. Longer bouts of walking can
induce fatigue in stroke survivors, that can influence the
gait characteristics [26]. Therefore, to obtain functionally
relevant gait data, walking trials of 40 s duration were
selected as a trade-off between appropriate number of
gait cycles and minimal fatigue. A 16-channel EMG sys-
tem (MA-416-003 Motion Lab System Baton Rouge,
LA) was used to record muscle activity from 8 leg
muscles: Tibialis Anterior (TA), Soleus (SO), Medial
Gastrocnemius (MG), Vastus Medialis (VM), Rectus
Femoris (RF), Lateral Hamstring (LH), Medial Hamstring
(MH), Gluteus Medius (GM). Data from both legs of
healthy subjects and the paretic leg of stroke subjects are
included in the current study. Bilateral ground reaction
forces (GRF) were captured via two force plates embedded
in the instrumented split-belt treadmill (Bertec Corp.,

Columbus, OH, USA) and used to identify gait events
during treadmill walking. EMG and ground reaction force
data were sampled at 2000Hz except for one subject in
whom data were sampled at 1000Hz. A summary of the
stroke survivors’ impairment level and biomechanical
characteristics is listed in Table 2.

Data analysis
EMG data were high pass filtered (20 Hz) with a zero lag
fourth-order Butterworth filter, demeaned, rectified, and
smoothed with a zero lag fourth-order low-pass (25 Hz)
Butterworth filter. The EMG amplitude was normalized
to the averaged peak activation across all the steps for
each subject to allow comparison between subjects.
Since stroke survivors often have difficulty performing
isolated voluntary movement, normalizing to maximum
voluntary contraction is not a reliable technique for this
population. Thus, using peak EMG activation during walk-
ing is a widely used normalization technique [27]. Par-
etic propulsion (Pp) i.e. percentage of the total
propulsion generated by the paretic leg was computed
by dividing anterior impulse (integral of the positive
anterior GRF during walking) of the paretic leg by the
sum of the anterior impulse of paretic and non-paretic
legs [13].

Detecting the “on” and “off” periods of muscle activity
To identify muscle activity “on/off” periods during the
sub-phases of gait cycle, each point of the linear enve-
lope of each muscle was dichotomized as “on” or “off”
using k-means cluster analysis with the number of clus-
ters set to five [3]. K-means is a data mining method
used here to partition the EMG data of each muscle into
“k” clusters. Data assigned to the cluster with the lowest
mean EMG amplitude are assumed to correspond with
“off” and data assigned to other clusters classified as
muscle activity “on”. The k-means cluster analysis has
been established for detecting the “on/off” periods
within healthy and stroke populations during walking [3,
27, 28]. Furthermore, stroke survivors may have in-
creased baseline muscle activity, and in these cases the
k-means cluster analysis has shown the ability to differ-
entiate between the increased baseline activity (“off”)
and bursts of muscle activity associated with walking
(“on”), even when the bursts are short or have a
spike-like character. Additionally, in the stroke popula-
tion, where there is often a lack of single well-defined
burst of activity, previous literature investigating the
post-stroke population has demonstrated that setting the
number of clusters to five is a robust criterion to identify
the EMG activity [3, 27]. We also visually inspected the
“on/off” timing identified using the k-means cluster
analysis for the current data set to be confident in the
reliability of the method. Figure 1 demonstrates the

Table 1 Participants’ demographics

Mean SD

Stroke Survivors
(n = 34)

Age 61.6 11.8

Time since stroke (mo) 63.3 54.5

Sex (male/female) 25/9

Side affected (left/right) 18/16

Healthy Controls
(n = 20)

Age 56.1 9.2

Self-selected walking speed (m/s) 0.95 0.20

Sex (male/female) 11/9
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sensitivity of k-means cluster analysis to identify “on/off”
periods in EMG data from representative stroke survivor.

Characterizing EMG timing and amplitude in the healthy
population and identifying the altered patterns of
hemiparetic gait
We divided the gait cycle into six regions: first double sup-
port (DS1), first (SS1) and second halves of single-leg
stance (SS2), second double support (DS2), and first (SW1)

and second halves of swing (SW2). In each of the six re-
gions, we calculated timing and amplitude components for
each muscle. The timing component was equal to the “on”
time within each region expressed as a percentage of the
total duration of that region:

Timing ComponentHEALTHY ¼ On time for region
Total time for region

� �
� 100 ð1Þ

The amplitude component was equal to the integrated
EMG of the “on” time for each region expressed as a
percentage of the total integrated EMG of all “on”
periods of the gait cycle:

Amplitude ComponentHEALTHY

¼ Integrated EMG amplitude during On time of a region
Total Integrated EMG amplitude of the gait cycle

� �
� 100

ð2Þ
Equations 1&2 were applied to all healthy subjects and

means were computed for the timing and amplitude
components in each of the six regions for the eight mus-
cles. As expected, these values have considerable inter-
individual variability; therefore, we computed z-scores to
address this variability within the healthy population. A
z-score is a measure of the number of standard devia-
tions (SD) an element falls above or below the popula-
tion mean. Defining our sample of healthy individuals as
the norm, we used means and SDs of each region/
muscle combination for healthy subjects to compute the
z-scores within each respective region/muscle.
At their self-selected, as well as 0.3 m/s, 0.6 m/s, and

0.9 m/s, walking speeds healthy individuals exhibited
z-scores ranging mostly between ±2.57 for both the
amplitude and timing components. This window of
±2.57 corresponds to the 99% confidence interval with
less than 9% of healthy controls as outliers (outside of
the ±2.57 window) for any muscle/region at all walking
speeds. Specifically, at self-selected walking speeds, only
7.6% of healthy controls were outside the ±2.57 window
across all regions and muscles. The percentage of the
outliers at 0.3 m/s was 6.2%, at 0.6 m/s; 8.2%, and at 0.9
m/s; 7.4%. Additionally, at the self-selected speed, the
percent of outliers for each muscle were; SO = 14.1%,
MG = 5%, MH = 8.1%, LH = 5.7%, TA = 5.2%, RF = 6.2%,
VM = 7.6%, and GM= 8.5% (see Additional file 1 for
detailed data and figures). Therefore, we defined the
range of ±2.57 as the window for normal patterns, and
AMAP scores of stroke survivors falling within the same
range indicate agreement with the normative values.
To compare amplitude and timing of each muscle for

corresponding regions of stroke survivors’ paretic limb
with “normal”, AMAP scores were obtained by comparing
the amplitude and timing for each hemiparetic participant
with the group mean and SD of healthy individuals (see

Table 2 Stroke survivors’ characteristics

Subject No. Self-Selected
Walking
Speeds (m/s)

Percentage
Paretic
Propulsion

Lower extremity
Fugl-Meyer scores
(maximum score = 34)

1 0.30 24.00 11

2 0.50 30.19 16

3 0.50 73.12 17

4 0.65 49.11 21

5 0.40 50.83 18

6 0.60 28.79 19

7 0.35 43.81 18

8 0.40 14.97 8

9 0.35 10.30 8

10 0.75 44.65 15

11 0.30 35.13 15

12 0.45 32.14 14

13 0.50 23.32 16

14 0.40 50.96 15

15 0.50 66.03 20

16 0.40 28.96 15

17 0.60 37.62 22

18 0.45 22.76 12

19 0.45 33.20 11

20 0.35 15.27 12

21 0.45 82.28 20

22 0.50 77.37 20

23 0.35 18.72 13

24 0.30 89.50 22

25 0.55 58.09 21

26 0.40 61.80 21

27 0.50 42.98 17

28 0.90 40.75 21

29 0.30 5.08 12

30 0.40 79.02 21

31 0.35 1.43 17

32 0.40 30.12 15

33 0.25 34.14 12

34 0.30 58.21 13
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below). Stroke subjects were stratified into three groups
using self- selected walking speeds to classify functional
walking ability as described by Perry [29]. Household
ambulators (< 0.4m/s); limited community ambulators
(0.4–0.8 m/s); and community ambulators (> 0.8 m/s)
were compared to mean and SD for healthy individuals
as determined at walking speeds of 0.3 m/s, 0.6 m/s and
0.9 m/s, respectively (see Additional file 1 for details).
The AMAP scores of each subject for the timing com-
ponent of EMG profile were computed for each region
as:

Timing Component AMAP ScoreSUBJECT

¼ Timing ComponentSUBJECT−Timing Component MeanHEALTHY
Timing Component SDHEALTHY

ð3Þ
We computed the AMAP scores of the amplitude

component of muscles within each region as:

Amplitue Component AMAP ScoreSUBJECT

¼ Amplitude ComponentSUBJECT−Amplitude Component MeanHEALTHY
Amplitude Component SDHEALTHY

ð4Þ
A negative AMAP score indicates that the muscle has

a reduced amplitude or timing component compared to
the normal pattern, while a positive value indicates
amplitude or timing increases. AMAP can also be used
to quantify the overall timing or amplitude patterns of
each muscle. We propose to use the absolute values of
the AMAP scores for this purpose and then average the

scores of all six regions of the gait cycle, thereby
obtaining two values for each muscle to assess the
deviations in the muscle timing profile or amplitude
expressed as:

Total AMAP Score ¼ 1
n

Xn
i¼1

Timing or Amplitude Componenti
� �

ð5Þ

Here “n” represents the number of regions. An AMAP
value closer to zero would suggest a stronger agreement
with the normal EMG pattern and vice versa. The total
AMAP scores for the timing and amplitude components
of each muscle for stroke survivors are reported in
Additional file 1: Table S3.

Statistical analysis
To determine whether AMAP can provide insight into
the relationship between altered muscle activity and
walking performance in stroke survivors, we tested the cor-
relation of total AMAP scores for the plantarflexors, SO
and MG (absolute values of the AMAP scores averaged
across six regions), with self-selected walking speed and
paretic propulsion (Pp), defined as the percentage of the
total propulsion generated by the paretic leg [13]. We
performed Pearson’s correlation analyses between Pp and
the SO and MG total AMAP scores for the amplitude and
timing components. We also performed Pearson’s cor-
relation analyses between self-selected walking speeds
and SO and MG total AMAP scores for amplitude and
timing components.

A) B) C)

Fig. 1 Representative data from stroke survivors’ muscle activity patterns demonstrating the sensitivity of k-means cluster analysis to identify
“on/off” periods. Each row presents EMG signals for a) soleus, b) tibialis anterior, and c) medial gastrocnemius from stroke survivor’ single gait
cycle. Left panels present original EMG data and the right panels present the same representative data after it were high pass filtered (20 Hz)
with a zero lag fourth-order Butterworth filter, demeaned, rectified, and smoothed with a zero lag fourth-order low-pass (25 Hz) Butterworth
filter. The red solid lines represent k-means clusters
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Results
Altered EMG patterns of stroke survivors identified by
AMAP
The current method identified altered EMG patterns
during walking in stroke survivors, where post-stroke
subjects tend to have positive AMAP scores for timing
and amplitude during sub-phases in which the muscle is
typically “off”, and negative scores during the gait cycle
sub-phases that normally demonstrate consistent “on”
activity (Figs. 2 and 3 right panels, red dots for each bar
represent the stroke survivors outside the “normal”
widow within each region of every muscle). Figure 4
demonstrates deviations in the activation patterns of all
muscles in representative stroke survivor and Table 3
presents the corresponding AMAP scores of each
muscle for the representative stroke survivor. Specific-
ally, 79% of subjects for the amplitude component and
73% for the timing for SO had altered patterns (i.e., total
number of subjects outside the “typical” range for
healthy controls). MG patterns showed 62 and 79% of
subjects with altered patterns within the amplitude and

timing components, respectively. Most of these alter-
ations for SO and MG demonstrated increased “on” time
and amplitude during DS1 and SW2 and decreased “on”
time and amplitude during SS2. TA demonstrated 62
and 59% subjects with altered amplitude and timing
components, respectively, with most of the alterations
presented as increased amplitude and “on” time during
DS2. 48% subjects for amplitude and 51% for the timing
component for GM had altered patterns with most of
the alterations having an increased amplitude and “on”
time during DS2 and SW2, and a decreased amplitude
and “on” time during SS1.
The percentage of subjects with altered patterns within

the amplitude and timing components was relatively
smaller for each of the remaining four muscles. Specific-
ally, the total number of subjects outside the “typical”
range in healthy controls for the following muscles: MH
11%; 11%, LH 13%; 16%, RF 24%; 14%, and VM 12%;
15% had altered patterns for the amplitude and timing
component respectively (although note that these occur-
rences greatly exceed those seen in the control subjects).

Fig. 2 Left panel demonstrates the stroke survivors’ EMG activity amplitude during self-selected walking; the box plots indicate the range in the
data, horizontal black line in center is the median, the upper and lower boundaries of the box indicating the upper and lower quartile
respectively, and red markers represent extreme values. Right panel demonstrates AMAP scores of stroke survivors for the amplitude
component of each muscle. The shaded gray area is the normal range of scores (±2.57). Each dot within a region of gait cycle represents
score of a stroke survivor with solid red dots representing the subjects with scores outside the “normal” window of ±2.57. Positive scores,
i.e. solid red dots above the “normal” window, represent EMG activation greater than “normal” and vice versa. For the clarity of data, we
have adjusted the Y-axes scales on the right panel between ±5 and ± 11. The EMG data from each muscle were normalized to the
averaged peak activation across all the steps taken by the subject
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Therefore, to determine whether there might be sub-
stantial deviations not captured by AMAP for MH, LH,
RF, and VM, we performed a post-hoc analysis for the
aforementioned muscle patterns’ AMAP scores. We nar-
rowed the window from ±2.57 to ±2.05 (corresponding
to changing from 99 to 96% confidence interval). The nar-
row window resulted in the number of subjects outside
the “normal” window for MH 21%; 28%, LH 20%; 36%, RF
31%; 14%, and VM 32%; 44% for the amplitude and timing
components, respectively. Most of the additional subjects
with the narrower window for quadriceps were seen
during SS2 and for hamstrings during SS1 and SS2 with
increased activity. For comparisons with normal variability
at a narrower window, we performed a similar post-hoc
analysis (narrower window from ±2.57 to ±2.05) for MH,
LH, RF, and VM in healthy individuals at their
self-selected walking speed. The percentage of the outliers
for healthy individuals with a window of ±2.57 was MH
8%; 8%, LH 11%; 6%, RF 12%; 0%, and VM 9%; 6% for
amplitude and timing components respectively. This
changed to MH 16%; 16%, LH 29%; 17%, RF 19%; 13%,
and VM 21%; 27% with a window of ±2.05. By using a less

conservative window for stroke survivors and healthy
controls we can compare the additional outliers between
the two populations and evaluate whether the additional
outliers in stroke population are a result of altered
patterns or normal variability.

Altered muscle patterns and their relationship with gait
biomechanics and speed
The total AMAP score for the timing component for stroke
survivors’ SO muscle was negatively correlated (p = 0.02)
with Pp (Fig. 5), and a tendency towards a negative relation-
ship was observed between SO amplitude component and
Pp (p = 0.05). We did not find a significant correlation be-
tween Pp and MG timing (p = 0.72) or amplitude (p = 0.22)
components. The total AMAP scores for the amplitude
component of SO (p = 0.01) and MG (p = 0.01) were
negatively correlated with their self-selected walking speeds
(Fig. 6). A significant negative correlation was also
observed between the total AMAP score for the SO
timing component (p = 0.03), however there was no
correlation between the timing component of the total
AMAP for MG (p = 0.13) with walking speeds.

Fig. 3 Left panel demonstrates the stroke survivors’ EMG activity timing during self-selected walking; the box plots indicate the range in the data,
horizontal black line in center is the median, the upper and lower boundaries of the box indicating the upper and lower quartile respectively,
and red marker represent extreme values. Right panel demonstrates AMAP scores of stroke survivors for the timing component of each muscle.
The shaded gray area is the normal range of scores (±2.57). Each dot within a region of gait cycle represents score of a stroke survivor with solid
red dots representing the subjects with scores outside the “normal” window of ±2.57. Positive scores represent duration of EMG activation longer
than “normal” and vice versa. For the clarity of data, we have adjusted the Y-axes scales on the right panel between ±5 and ± 11. The EMG data
from each muscle were normalized to the averaged peak activation across all the steps taken by the subject
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Fig. 4 Examples of altered EMG patterns in comparison to normal pattern are illustrated for EMG activity at self-selected walking speeds for all
muscles. Black solid lines are the mean EMG activity of healthy controls and shaded grey area is the SD. Red solid lines are EMG activity of a
representative stroke survivor with Table 3 representing the corresponding AMAP scores for the amplitude and timing components (values
highlighted in red in the table represent scores outside the “normal” window of ±2.57). To clearly present the EMG activity, time is presented as
percent of gait cycle
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Discussion
The current study developed a new tool, the AMAP, to
quantify altered muscle activation patterns during walking
thus enabling evaluation of deviations between EMG
patterns of healthy individuals and stroke survivors.
AMAP demonstrates the ability to quantify alterations in
timing and amplitude of EMG patterns during walking
while accounting for the normal variability among healthy

individuals and adjusting for gait asymmetries thus
attempting to compare biomechanically similar events. In
the current study, we defined the normal range of AMAP
for healthy subjects as z-scores within ±2.57 (i.e., the 99%
confidence interval). For the stroke population AMAP
scores within this window were considered normal while
scores outside the window were identified as altered. The
alterations in the stroke population quantified using
AMAP, agree with previously reported, mostly qualita-
tively identified, EMG alterations observed in gait patterns
following stroke [9, 11, 30, 31]. Thus, our results suggest,
AMAP can be successfully used as a tool to compare
muscle activity for similar regions of the gait cycle and
determine the relationship between altered muscle activity
and the corresponding biomechanical deviations within
the stroke population.

AMAP and existing tools for quantitative assessment of
muscle activity
While some previous studies have proposed methods for
quantifying EMG patterns during walking, the AMAP
addresses their limitations for quantifying altered EMG
patterns in hemiparetic gait. Previously, Ricamato et al.
[1] proposed a method to quantify deviations of EMG
patterns from normal, using a single value between zero
and one, such that the values closer to one are inter-
preted as ‘better’ in comparison to smaller values. Erni
and Colombo [3], proposed to identify the similarities or
differences between normal and pathological gait by
examining correlation and relative variability of EMG
patterns. However, these methods do not account for
temporal asymmetries in walking, typically lack a robust
method of identifying EMG “on/off” activity, and do not
account for inter-individual variability within the healthy

Fig. 5 Correlations between Pp and the total AMAP scores for SO averaged across all regions of the timing component. The total AMAP scores
were negatively associated (p < 0.05) with Pp. The red dots represent stroke subjects that had AMAP scores outside of the “normal” window
of ±2.57

Table 3 Total amap scores for representative stroke survivor in
Fig. 4 (values highlighted in red represent scores outside the
“normal” window of ±2.57)

Region1 Region2 Region3 Region4 Region5 Region6

Average and SD Total AMAP Scores for Amplitude Component

SO 2.89 0.88 1.24 1.68 1.00 4.07

MG 2.80 0.58 1.97 0.34 0.40 3.38

MH 1.47 0.78 0.24 4.12 1.82 0.88

LH 0.17 2.29 3.55 0.81 1.27 1.15

TA 2.04 1.66 1.41 4.63 0.28 0.89

RF 1.59 2.17 1.16 4.14 1.08 0.26

VM 0.83 2.57 3.14 0.70 0.69 2.10

GM 1.11 2.49 1.71 2.91 1.62 3.07

Average and SD Total AMAP Scores for Timing Component

SO 2.06 0.35 0.22 1.48 0.95 3.51

MG 3.62 0.39 0.66 2.06 0.53 3.57

MH 1.11 0.31 0.46 3.13 2.29 0.14

LH 1.49 2.41 3.39 0.60 1.66 1.72

TA 1.90 1.73 1.46 4.71 0.09 0.69

RF 0.48 1.28 0.96 2.31 1.12 0.05

VM 0.07 1.97 3.50 0.80 0.72 2.02

GM 0.46 2.74 1.64 2.31 0.95 2.08
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population. Although, Hof et al. [2] have acknowledged
inter-individual variability by identifying high and low
limits based on healthy data as the range of normal profile,
but their approach does not account for potential spatio-
temporal asymmetries in pathological gait. Additionally,
Den Otter et al. 2007 [3] identified EMG “on/off” activity
using k-means cluster analysis within each sub-phase of
gait cycle; however, they did not account for “normal”
variability within the healthy population. Therefore, each
of these methods had at least one of the aforementioned
limitations, which would limit their accuracy to identify
EMG alterations in the stroke population. We believe that
our approach, to collectively use a more robust method
for identifying the “on/off” muscle activity periods, along
with accounting for asymmetric gait post-stroke and
inter-individual variability within the reference healthy
population to compute AMAP scores, offers improvement
over previously proposed methods for identifying devia-
tions of the EMG pattern during walking. However, future
studies are needed to make statistical comparisons of
performance between previously proposed methods and
AMAP for identifying deviations of the EMG patterns
during walking.

AMAP as a tool to identify the alterations of muscle
activity following stroke
The alterations in the EMG patterns within the stroke
population identified by AMAP are consistent with the
exiting literature reporting the typical qualitatively identi-
fied altered EMG patterns. In the current study, stroke sur-
vivors demonstrated the largest alterations in SO, MG, TA,
and GM muscles with these altered patterns consistent
with previous literature on stroke gait [9, 11, 30, 31]. The
plantarflexors demonstrated a tendency for increased
timing and amplitude AMAP scores during DS1 and SW2.
The increased activity of plantarflexors during early stance
is often seen in the stroke population [9, 11]. Furthermore,
it has been suggested that due to co-activation some stroke

survivors may also have increased plantarflexor activity
during the end of swing phase [9]. Subjects also demon-
strated decreased timing and amplitude AMAP scores
during SS2, which may suggest weak plantarflexors post-
stroke [9]. Some of the stroke survivors showed increased
TA AMAP scores for timing and amplitude during DS2,
which may be due to increased ankle muscle co-activation
observed in hemiparetic gait [30]. Increased GM timing
and amplitude AMAP scores during DS2 and SW2 may be
present to maintain gait stability because stroke survivors
with poor gait stability often demonstrate an increase in
paretic GM activity during swing associated with increased
mediolateral center of mass velocity towards the non-par-
etic limb [31]. Furthermore, decreased GM timing and
amplitude AMAP scores during SS1 could be due to
insufficient muscle activity and weakness [9]. However,
one limitation of the current tool is that since the ampli-
tude scores were defined as a percentage of cycle, the
scores are influenced by the total “on” time of EMG
activity. Therefore, we urge caution when interpreting the
amplitude scores.
Altered patterns for other muscles were relatively sub-

tle. One reason for fewer alterations is larger inter-indi-
vidual variability for MH, LH, RF, and VM within the
healthy population, which may be more pronounced
when walking at slower speeds (e.g., at 0.3 or 0.6 m/sec).
However, in healthy individuals, biomechanical demands
vary with change in walking speeds, i.e. changes in joint
angles, joint moments and spatiotemporal parameters
such as stance duration and stride length are associated
with change is walking speeds [32]. Therefore, we expect
that we have improved the results of our analysis by
matching the speed of the control profile to that of the
hemiparetic profile. We believe speed dependent changes
should be controlled for, as they do not represent an effect
of the hemiparesis. However, post-hoc analysis with a nar-
rower “normal” window increased the number of stroke
survivors outside the “normal” window for MH, LH, RF,

Fig. 6 Correlations between self-selected walking speeds and total AMAP scores for the amplitude components (scores averaged across all
regions of the amplitude component) of SO (left panel) and MG (right panel). The red dots represent stroke subjects that had AMAP scores
outside of the “normal” window of ±2.57. The total AMAP scores of SO and MG for amplitude were negatively associated with the walking ability
of stroke survivors (p < 0.05)
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and VM patterns. The additional stroke survivors outside
the “normal” window for quadriceps were seen with
increased activity during SS2, also observed sometimes in
“normal” patterns [9]. The additional stroke survivors for
hamstrings had increased activity during SS1 and SS2,
seen sometimes in healthy individuals [24]. Furthermore,
the post-hoc analysis in healthy data revealed that the
number of healthy individuals outside the narrower win-
dow in comparison to a window of ±2.57, showed similar
trends of change as stroke data (for example, for MH both
the healthy and stroke populations demonstrated that the
subjects outside the narrower window were twice the
number of their subjects at wider window). Therefore, we
believe that a window of ±2.57 is a conservative estimate
of an altered pattern as narrowing the window does not
seem to preferentially result in the identification of more
altered patterns in the post-stroke population. This sug-
gests that the activation patterns for MH, LH, RF, and VM
in the current cohort of stroke survivors are more similar
to healthy patterns compared to other muscles. Further-
more, Knutsson et al. demonstrated that some of the
stroke survivors had hamstrings and quadriceps pat-
terns similar to normal [9], and, contributions primarily
from the SO, MG, and GM of the paretic leg have been
associated with the functional walking status of stroke
survivors [14]. Therefore, we believe that the AMAP
was successful in quantitatively identifying deviations of
the muscle patterns during walking within the stroke
population. Although, we did not include the EMG data
of the non-paretic leg in the current study, given the
temporal asymmetries of both paretic and non-paretic
leg during walking, AMAP would be an ideal tool to
identify altered muscle activation patterns for the
non-paretic leg in stroke population.

Can AMAP be used to understand the relationship
between altered EMG and biomechanical patterns
following stroke?
We propose that AMAP is useful for identifying and
interpreting relationships between altered muscle activ-
ity and biomechanical measures, and may aid clinicians
in designing a protocol that may improve biomechanical
characteristics within the stroke population. AMAP can
be used in multiple ways to evaluate alterations of EMG
patterns. For example, we envision the primary use to be
independently examining AMAP scores of each muscle
for each sub-phase of the gait cycle. However, one could
also compute total AMAP scores (i.e. the absolute
scores averaged across all the sub-phases for an
individual muscle or even of all of the muscles).
Phase-specific evaluation may provide detailed under-
standing of muscle activities and the corresponding
biomechanical responses within every sub-phase. Total
AMAP scores represent the average of each sub-phase

score that accounts for spatiotemporal asymmetries,
therefore total AMAP scores represent EMG alterations
during the gait cycle. A phase-by-phase comparison of
EMG alterations with the analogous alterations of
biomechanical responses for each muscle is beyond the
scope of this study (however see Table 2 and Additional
file 1 for details on AMAP scores, Pp, and self-selected
walking speeds of stroke survivors). Nevertheless, as an
example of the utility of the method, we used it to identify
the relationship between Pp and self-selected walking
speeds of stroke survivors and their total AMAP scores
for plantarflexor muscles. Current results are a proof of
concept for future experiments to use AMAP as a tool to
identify specific muscle activation patterns that should be
targeted by clinicians to improve specific biomechanical
responses during gait rehabilitation. In the current study,
Pp was negatively correlated with the SO total AMAP
scores for the timing component and a trend towards a
negative correlation was also observed between Pp and
the amplitude component. This suggests that an activation
pattern of SO closer to normal, is associated with
greater Pp; however, timing of SO activation maybe
more important than the amplitude. Total AMAP
scores of the amplitude component for SO and MG
were negatively correlated with gait speed. This obser-
vation suggests that improving the amplitude pattern of
plantarflexors towards normal may be important for
improvement in gait speed, however future studies are
needed to further understand the relationship between
altered plantarflexor coordination and Pp or walking
speed in stroke population.
AMAP can also be applied to assess the effects of gait

rehabilitation targeted to improve altered patterns of the
desired muscles (e.g., interventions attempting to restore
more normal timing and amplitude of activity). As
discussed earlier, the primary impairment of locomotion
post-stroke is reduced ability to sufficiently recruit and
appropriately time muscle activity. AMAP will allow com-
parison of different conditions of gait training to deter-
mine which condition results in the “best” achievable
activation pattern. In future studies AMAP can be applied
to understand the effects of gait training parameters in the
stroke population. For example, the AMAP can be used to
identify an efficient and effective combination of speed,
weight support and therapists’ assistance to improve
muscle amplitude and timing patterns during walking
following body weight supported treadmill training.

Limitations of the proposed tool
Although AMAP appears to be a useful tool for evaluat-
ing deviations of EMG patterns in gait following stroke,
there are certain considerations when applying this
method. First, the window defined as “normal” is based
on the inter-individual variability within a cohort of
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healthy population for a specific walking activity. How-
ever, when walking tasks change too much, these values
are not likely appropriate to represent the normal range
of EMG patterns. Therefore, to identify the reference
“normal” pattern for different walking conditions, data
from healthy individuals during those walking conditions
should be acquired for comparison (e.g., when walking
at significantly different speeds or levels of body weight
support). Note that we compared data from post-stroke
subjects to control data collected at a similar walking
speed (e.g., at 0.3, 0.6, or 0.9 m/sec), rather than at
self-selected speed, which differs greatly between post-
stroke and healthy populations. Second, due to the diffi-
culty of obtaining meaningful measures of maximal
voluntary contraction or comparing absolute magnitude
of EMG activation in millivolts across subjects, the mag-
nitude measure is scaled relative to observations made
during walking and not related to an absolute known
quantity. Thus, we cannot differentiate between muscles
activated to an “appropriate” level and those deemed
under- or over-active during hemiparetic gait.

Conclusion
We propose a method to effectively quantify the devi-
ations of muscle activity during walking specifically
within the stroke population. This quantitative ana-
lysis can be used to identify the gait phases that may
require more attention than others when developing
an optimal training paradigm. It is by no means
intended to replace existing methods for evaluating
coordination patterns during walking, but to provide
a quantitative measure that can be used in conjunc-
tion with other kinetic and kinematic measures to en-
hance the current understanding of muscle
coordination during walking. Normal muscle activa-
tion quality measures were established in similarly
aged subjects walking at speeds matched to the stroke
survivors’ self-selected walking speeds. Future studies
can extend the AMAP technique to identify the alter-
ations of pathological muscle patterns under condi-
tions other than stroke gait at self-selected speeds if
the appropriate normal population is sampled
performing the desired walking task (e.g., walking at
different speeds, different body weight support condi-
tions, etc.).

Additional file

Additional file 1: Figure S1. AMAP scores for all healthy individuals at
all four walking speeds are provided. Figure S2. Average and SD of
healthy individuals’ EMG patterns at all walking speeds. Table S1. EMG
patterns for healthy individuals at all four walking speeds. Table S2. EMG
patterns for stroke survivors at self-selected walking speeds. Table S3.
Total AMAP scores for stroke survivors at their self-selected walking
speeds (ZIP 1538 kb)
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