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Abstract

Background: Rhythmic Auditory Stimulation (RAS) can compensate for the loss of automatic and rhythmic
movements in patients with idiopathic Parkinson’s disease (PD). However, the neurophysiological mechanisms
underlying the effects of RAS are still poorly understood. We aimed at identifying which mechanisms sustain gait
improvement in a cohort of patients with PD who practiced RAS gait training.

Methods: We enrolled 50 patients with PD who were randomly assigned to two different modalities of treadmill gait
training using GaitTrainer3 with and without RAS (non_RAS) during an 8-week training program. We measured clinical,
kinematic, and electrophysiological effects of both the gait trainings.

Results: We found a greater improvement in Functional Gait Assessment (p < 0.001), Tinetti Falls Efficacy Scale (p < 0.
001), Unified Parkinson Disease Rating Scale (p = 0.001), and overall gait quality index (p < 0.001) following RAS than
non_RAS training. In addition, the RAS gait training induced a stronger EEG power increase within the sensorimotor
rhythms related to specific periods of the gait cycle, and a greater improvement of fronto-centroparietal/temporal
electrode connectivity than the non_RAS gait training.

Conclusions: The findings of our study suggest that the usefulness of cueing strategies during gait training consists of
a reshape of sensorimotor rhythms and fronto-centroparietal/temporal connectivity. Restoring the internal timing
mechanisms that generate and control motor rhythmicity, thus improving gait performance, likely depends on a
contribution of the cerebellum. Finally, identifying these mechanisms is crucial to create patient-tailored, RAS-based
rehabilitative approaches in PD.

Trial registration: NCT03434496. Registered 15 February 2018, retrospectively registered.
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Introduction
The loss of automaticity and rhythmicity of movements in
patients with idiopathic Parkinson’s disease (PD) has been
correlated with the presence of different gait abnormalities,
including shuffling steps, gait initiation failure, and freezing
of gait [33], which all make the gait rehabilitation challen-
ging in these patients [12]. The loss of automaticity and
rhythmicity may depend on the impairment of the cerebral
mechanisms that generate a regular walking rhythm [28],

possibly because of deficient dopamine levels within the
cortical-striatal locomotor network [23, 24, 60]. Indeed,
humans synchronize their movements with external
rhythmic cues through an innate internal timing process
(i.e., rhythmic entrainment) [81]. This process involves dif-
ferent frontoparietal networks, including auditory, pre-
motor, and motor areas [4, 8, 37], which are connected
across complex basal ganglia(BG)-thalamo-cortical and
cerebello-thalamo-cortical motor networks, as suggested
by some connectivity studies showing abnormalities in
neural activity and connectivity within frontoparietal net-
works in patients with PD. [4, 27, 46, 62, 63, 76, 79]
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Therefore, gait rehabilitation in patients with PD is
aimed at restoring the cerebral mechanisms that generate
a regular walking rhythm. These patients have been pro-
vided with a walking treadmill equipped with rhythmic
auditory stimulation (RAS) to improve gait parameters by
harnessing the innate internal timing process (i.e., rhyth-
mic entrainment) through external cues [49, 51, 52, 59,
69, 81, 82, 85]. Treadmill walking by itself alone has been
found to furnish lasting, positive effects on different gait
parameters, probably by affecting specific neuroplasticity
mechanisms within complex cortical-BG-cerebellar net-
works [64]. However, auditory cues significantly improve
gait parameters [37], probably by providing an external
rhythm that bypasses the internal rhythm deficit [49, 54]
by engaging complex frontoparietal connections based on
complex cortico-BG-cerebellar loops [9]. This could com-
pensate for any failure in the mechanisms controlling
automatic and rhythmic movement generation [54]. By
coupling steps with external auditory cues, it could be
possible to form a rhythmic gait by entraining movement
patterns, i.e., via frequency locking between two oscillating
bodies [49, 51, 52, 84] to support the generation of better
gait patterns; the rhythmic entrainment; the engagement
of automatic timing systems; the planning, performing,
and learning of movements; the acquisition of temporal
skills; and an increase in motivation [81–84].
This type of coupling has been shown to improve sev-

eral gait parameters, including cadence, gait velocity,
stride length [23, 44, 69, 77, 86], gait timing variability
[14, 49, 51, 52, 89], the pedaling rate [21], and step amp-
litude ([1]). Moreover, it has been shown that other
motor parameters, such as the Unified Parkinson Dis-
ease Rating Scale (UPDRS) scores and freezing of gait,
as well as cognitive processes and motor learning pro-
cesses also improve ([1, 11, 13, 35, 38, 39, 44, 49, 71, 59,
80]).
Nonetheless, the neurophysiological mechanisms by

which coupling steps with external auditory cues im-
proves gait remain partially unclear [4, 13, 37]. Obtain-
ing a better understanding of these neurophysiological
mechanisms would allow clinicians to tailor neurologic
music therapy-based rehabilitative approaches to indi-
vidual patient (i.e., adapt their approach to the under-
lying neurophysiological basis) to improve the patients’
ability to generate a regular walking rhythm [78].
Investigating changes (increase or decrease) in gait

cycle-related, frequency-band specific electroencephalog-
raphy (EEG) power (namely, event-related desynchronization
(ERD) and synchronization (ERS)) [65, 66] and of gait
cycle-related, frequency-band specific coherence (namely,
task-related coherence -TRCoh) [19, 48] induced by RAS
gait training could offer useful information. In fact, the
former approach may furnish information on the ongoing
activities related to the motor process characteristics coded

into the sensorimotor areas, including its kinematics (speeds)
and kinetics (motor loads) [17, 55]. The latter approach of-
fers useful information regarding the sensorimotor events re-
lated to the dynamic coupling between different brain areas
(including the frontal and sensorimotor regions) [18, 48] and
is thus an indicator for the network activity related to gait
cycle generation. Moreover, using EEG is advantageous for
capturing gait cycle-related dynamics as this tool is applic-
able in a mobile setup and provides good temporal reso-
lution with regard for the brain activity. Therefore, ERS,
ERD, and TRCoh data could be important for analysing the
recovery mechanisms related to post-stroke brain function
recovery ([10, 91]).
The aim of our study was to evaluate the efficacy of

treadmill gait training combined with RAS in terms of
mobility, balance, and gait parameters by correlating
EEG changes with behavioral (gait) changes to identify
the putative neurophysiological basis underlying gait im-
provement. To this end, we evaluated α (8–12 Hz) and β
(13–28 Hz) frequency range changes in power (as esti-
mated by time-frequency analysis) and coherence (as es-
timated by TRCoh) within the frontal, centroparietal,
and temporal areas induced by treadmill gait training
(GaitTrainer3; Biodex, Shirley, NY, US) with and without
RAS in a group of patients with PD. We focused our
analysis on α and β rhythms because these are thought
to be a marker of the progression of the disease, pa-
tients’ responses to physiotherapy (including gait), and
the effects of levodopa on motor symptoms [6, 7, 18, 47,
70], and they thus offer potentially useful information
concerning gait impairment and responsiveness to treat-
ment in patients with PD.

Methods
Trial design
Patients were enrolled in a parallel-group, randomized
clinical trial. Patients were randomly allocated into ei-
ther the RAS treadmill group or the non_ RAS treadmill
gait training group. Regardless of group allocation, all
patients were provided with a daily training program
consisting of 45 min of conventional overground gait
training, 45 min of activities in daily living training and
reaching activities in occupational therapy, 45 min of
biomechanical training in both the upper and lower
limbs, 30 min of speech therapy, and 30 min of rest dis-
tributed between the sessions (for a total of 195 min).
Then, the individuals were provided with further 30 min
of RAS or non_RAS treadmill time, depending on the
group assignment. The daily training program was prac-
ticed once a day at the same time of day (from 9 am to
1 pm), five times per week for eight consecutive weeks.
RAS and non_RAS treadmill sessions were performed
individually in the same location and supervised by
physiotherapists with a 2 years of training in RAS. Three
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to four patients were supervised by each RAS-trained
physiotherapist throughout the training period. The sub-
jects were in a clinically ON phase when provided with
the training, as per the UPDRS.

Participants
Fifty out of 67 of the in-patients attending the Robotic
Neurorehabilitation Unit of our Institute with a diagno-
sis of idiopathic Parkinson’s Disease (according to the
UK Brain Bank diagnostic criteria) were rated as eligible
to be enrolled in this randomized, assessor-blinded,
parallel-group study. The inclusion criteria were as fol-
lows: (i) Hoehn and Yahr stage between II and III,
Mini-Mental State Examination test > 23, and normal
executive function tests [2, 41, 43, 50]; and (ii) no
changes in antiparkinsonian drug treatment in the previ-
ous 6 months. The exclusion criteria included a history of
neoplasms; severe cardiovascular, respiratory, visual, audi-
tory, and muscular-skeletal disease; other neurological con-
ditions; and neurologic music therapy in the last 3months.
The clinical-demographic characteristics are reported in
Table 1. This study was approved by our local Ethics Com-
mittee and retrospectively registered on 15 February 2018
in ClinicalTrials.gov under no. NCT03434496 (https://clini-
caltrials.gov/ct2/show/NCT03434496 NCT03434496). All
participants gave written informed consent to study partici-
pation and data publication before the enrollment.

Intervention
GaitTrainer3 is a platform that integrates gait training
via a treadmill and RAS. The device is indeed equipped
with an instrumented deck that issues acoustic cues to
determine the exact tempo and rhythm during gait
training and visual real-time biofeedback to prompt pa-
tients to follow their gait pattern. In fact, the device pro-
vides online feedback, including step length, speed, and
symmetry, to encourage patient progress and monitor
patient performance. Patient footfalls were compared in
real-time to the desired footfalls step by step and docu-
mented in a histogram.
Patients were required to walk along with the music

“angel elsewhere”, which reaches a target music tempo
of ~ 120 bpm. The song was presented with the lyrics,

and the beat of the song was emphasized with a super-
imposed salient high-pitch bell sound. The patients were
first trained to synchronize their footsteps to the beat of
the music, which was adapted to their baseline gait per-
formance; that is, the beat frequency of the RAS
(namely, the beat rate of the music) was individually ad-
justed for each patient starting from the patient’s best
cadence (gait frequency and stride length). Then, the
beat frequency was progressively increased up to the tar-
get beat frequency (120 bpm) through the first three to
five sessions. This frequency was then implemented for
the remaining part of the RAS training. We adopted this
intermediate target frequency and RAS setup as it has
been shown that using a beat frequency not based on
the patient’s baseline cadence can worsen step length
and gait cadence, especially when the frequency is set
too low (60-90 bpm) or too high (> 150 bpm) [42]. More-
over, RAS tasks that are not provided to the patient with
the explicit instruction to synchronize their walking pace
with the beat when adopting freely chosen music (i.e.,
not controlled for meter, rhythm or rate) or when com-
bined with other cues (e.g., tactile stimuli) can negatively
affect gait performance, perhaps because their attention
is diverted to additional tasks irrelevant to walking [42].

Outcomes
Outcome measures were assessed before (TPRE) and after
(TPOST) rehabilitation training was complete. The pri-
mary endpoint with respect to the clinical efficacy of gait
training was the achievement of the minimal clinically im-
portant difference (MCID) in the Functional Gait Assess-
ment (FGA) (at least 4 points). As secondary outcomes,
we assessed the brain oscillation changes related to gait
cycle (α and ERS/D magnitude changes) recorded by the
frontal, centroparietal, and temporal pooled electrodes
and the α and β TRCoh recorded by electrode-group
pairs, which have been proposed to be correlated with the
progression of the disease, the response to physiotherapy,
and levodopa administration ([6, 7, 18]); they therefore
offer potentially useful information concerning gait im-
pairment and responsiveness to treatment in patients with
PD. Furthermore, we calculated the results of the UPDRS,
the Berg Balance Scale (BBS), the Tinetti Falls Efficacy

Table 1 Baseline parameters

Group Age
(yy ± s.d.)

Gender
F/M

dd
(yy ± s.d.)

H&Y
(m ± s.d.)

MMSE
(m ± s.d.)

CoM Levodopa (mg ± s.d.)

RAS
(n = 25)

70 ± 8 9/11 10 ± 3 3 ± 1 26 ± 3 None:4, DM:4, h:7, d:4, t:5, a:1 450 ± 55

non_RAS
(n = 25)

73 ± 8 6/14 9.3 ± 3 3 ± 1 25 ± 3 None:5, DM:4, h:6, d:3, t:6, a:1 435 ± 49

p-value 0.7 0.4 0.3 0.1 0.2 0.7 0.7

RAS Rhythmic auditory stimulation; dd disease duration; MMSE Mini-Mental State Examination; H&Y Hoehn and Yahr; CoM comorbidities (DM diabetes mellitus, h
blood hypertension, d dyslipidemia, t tabagism, a alcoholism)
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Scale (FES), the 10-m walking test (10MWT), the timed
up-and-go test (TUG), and the gait quality index (GQI)
derived from a gait analysis sensor. During the 8-week
training period, the patients were asked not to undertake
other gait training regimens. The experimenters and those
who analyzed the data (different from the first experi-
menters) were blind to patient allocation. The patient flow
procedure is summarized in Fig. 1.

EEG recording and analysis
Brain activity (EEG; μV) was continuously recorded for
10min while the patient was walking on the GaitTrainer3
in the non_RAS modality, usually 5–10min after the ses-
sion started. We used a Brain-Quick System (Micromed;
Mogliano Veneto, Italy) equipped with a standard
19-electrode headset. EEG recording occurred during the

third to fifth session (depending on when a target gait of
120 bpm was reached) and the last gait training session.
Patients were prohibited from drinking coffee, smoking,
and changing their bedtime during the 3 days prior to
EEG recording. This was easily checked, as the partici-
pants were in-patients.
EEG were sampled at 512 Hz, band-pass filtered be-

tween 1 and 200 Hz using a zero-phase finite impulse
response (FIR) filter (order = 7500) to minimize drifts
and a zero-phase FIR filter order = 36, referenced to
Cz, and notch-filtered at 50 Hz (FIR notch filter,
order = 3302) to remove the power line noise. Imped-
ances were constantly kept below 5 kΩ for the entire
duration of the experiment and data collection. An
electro-oculogram (EOG) with a bipolar montage was
also collected.

Fig. 1 Summary of patients’ flow

Calabrò et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:68 Page 4 of 14



Data were pre-processed using EEGLab. EEG recordings
were first visually inspected to identify and remove data
affected by prominent artefacts across all the recording
channels. Then, the data were re-filtered between 8 and
40Hz, re-referenced to the common average reference,
and decomposed into neural and artifactual components
using the Infomax algorithm Independent Component
Analysis (ICA) [15].
Continuous data were then segmented into epochs

starting from the right heel strike (HS) and ending at the
next one to capture a complete stride (composed of the
following, in order: right, left, and right HS), to obtain
428 ± 25 epochs. EEG segmentation was based on data
synchronized from the important time points (i.e., start,
heel strikes, and end) furnished by a wireless inertial sen-
sor (GSensor, BTS Bioengineering; Milan, Italy) and used
to extrapolate gait phase data. Thus, the single trial spec-
tograms were time-warped over the trials using a linear
interpolation function, with the gait data used as mile-
stones for realigning the EEG signals’ time axes (i.e., align-
ing the time-points of the epochs for the HS, including
the right, left, and right HS time-warped to 0, 50, and
100% of the gait cycle, respectively) [25, 29, 67, 72, 73, 88].
To assess whether the RAS-induced changes in gait

performance resulted in ERS/ERD strength variations in
the α and β frequency range, we performed a time–fre-
quency analysis related to the phases of the gait cycle
[40]. To calculate ERS/ERD as a function of time, we
employed a sinusoidal wavelet transform in which the
data window length depended inversely on the frequency
to obtain a better compromise between time changes
and frequency changes [75]. ERS/ERD was defined as a
percentage of power decrease in a specific frequency
band relative to the baseline period.
The time-frequency coherence (i.e., the relationship

between two non-stationary processes) was computed in
terms of TRCoh to investigate inter-regional connectiv-
ity during gait (that is, the oscillatory aspects of interre-
gional brain activation). TRCoh refers to the steady-state
changes in functional connectivity associated with con-
tinuous tasks, that is, the ongoing sequential movements
of the lower limbs rather than the phasic changes associ-
ated with single limb movements across the gait cycle,
as is done to compute ERS/ERD. Furthermore, TRCoh
approach eliminates the coherences that are not
task-related (e.g., are due to volume conduction or con-
trolled by the reference, thus equally present during both
activation and rest conditions) [19, 48, 68]. Specifically,
we computed the coherence for all possible pooled-elec-
trode pairs for the α and β bands. Coherence values
were calculated for each frequency bin as a complex cor-
relation coefficient based on the value of the cross-
spectrum for the pooled-electrode pair for a given fre-
quency bin and the values of the autospectra for each

electrode pool of the pair. Based on these values, coher-
ence was obtained by squaring the magnitude of the
complex correlation coefficient (ranging from 0 and 1).
Consequently, coherences for each frequency bin were
summed and divided by the number of frequency bins.
Finally, TRCoh was obtained by subtracting the coher-
ence values obtained during rest from those obtained
during the corresponding activation conditions. There-
fore, positive values indicated TRCoh magnitude incre-
ments, whereas negative values indicated TRCoh
magnitude decrements.

Gait data analysis
A single wireless inertial sensor (GSensor, BTS Bioengineer-
ing; Milan, Italy) was fixed to the subject’s waist with a
semi-elastic belt to cover the L4–L5 inter-vertebral space.
Gait data were continuously recorded for 30 s while the pa-
tient was walking on the GaitTrainer3 in the non_RAS
mode at an individually adapted step cadence simultan-
eously with EEG recording. Recording occurred two succes-
sive times for 30 s each. The sensor provided acceleration
data along the antero-posterior, medio-lateral and superior-
inferior orthogonal axes, which were transmitted to a PC
via Bluetooth and analyzed using dedicated software (BTS
G-STUDIO). This software analysis furnished the gait phase
data, including the speed of gait, step cadence, stride length,
gait cycle duration, stance/swing ratio, and the GQI (an
overall gait performance score reflecting the grand-average
of the gait parameter with an approximate 60:40% distribu-
tion of stance:swing phases). All of the parameters were
measured before and after gait training.

Sample size
For the power analysis, we considered the effect of the
RAS on FGA as the primary outcome measure at the
end of the rehabilitation period. The FGA is a validated
measurement of gait-related activities, balance, and gait
ability and has been shown to have good construct valid-
ity in patients with PD, to have moderate-to-strong cor-
relation with other balance and gait appraisals, and to
predict falls within the subsequent 6 months [90]. We
had to modify the outcomes of the protocol (as origin-
ally registered) before starting patient recruitment as we
found that the pre-planned endpoints were not sufficient
for our purposes according to the evidence coming from
former trials and reviews. According to our experience
and data in the literature [5], the required sample size
was 25 patients per arm to detect a pre- to
post-treatment MCID in the composite primary out-
come. (i.e., a difference of at least 4 points with a stand-
ard deviation between 20 and 25% for each group, a
two-sided confidence interval 95% and a power of 80%
with a possible drop-out rate of10%) [3].
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Randomization and blinding
Patients were randomly allocated into either the RAS
treadmill or the non_RAS treadmill gait training group at
a 1:1 allocation ratio. For randomization, sealed envelopes
were prepared in advance and marked on the inside with
a + (RAS treadmill) or - (non_RAS treadmill) by a deputy
experimenter (who was not involved in patient manage-
ment or data analyses). The experimenters who managed
the data were blinded to the patients’ allocation.

Statistical methods
Whether the data were normally distributed, baseline
differences, and the homogeneity of variance of the data
were assessed using the Shapiro–Wilks and Levene test,
respectively. For descriptive purposes, the outcome mea-
sures were compared within and between the two
groups using the independent sample t-test or Fisher’s
test. As we employed an intent-to-treat analysis, we in-
cluded every subject who was randomized according to
a randomized treatment assignment. For the main ana-
lysis (gait training-induced changes) of each outcome
measure, we employed repeated measures Analysis of
Variance (ANOVA) with the factors group (two levels) as
the dependent variable and time (two levels) as the inde-
pendent variable. The factor electrode-pair (6 levels) was
added with regard to the EEG data analysis. The reliabil-
ity intraclass correlation coefficients, their confidence
limits and the effect size for clinical outcomes are also
provided. Statistical significance was set at p < 0.05.
Post-hoc paired t-tests with Bonferroni correction were
thus used. A Spearman correlation test was employed to
estimate the correlations between significant EEG and
gait changes (behavior changes).

Results
Baseline
There were no significant clinical-demographic differences
between the two groups (25 patients each) at baseline (Ta-
bles 1 and 2). Additionally, there were no significant dif-
ferences in EEG and gait differences between the groups
(all p > 0.1). Indeed, both groups showed a weak GQI par-
alleled by weak fronto-centroparietal α/β-ERS during
double support in the stance phase, centroparietal α/
β-ERD during single support in the stance phase, and
frontal β-ERD during single support in the swing phase of
the gait cycle. Furthermore, we detected low TRCoh
values within the β fronto-centroparietal, β temporal, and
α fronto-temporal paths.

Clinical outcomes
All patients completed training without reporting any
side effects, and none of the patients withdrew from any
treatment session, as assessed by the RAS-trained phys-
iotherapists. As we employed an intent-to-treat analysis,
we included every subject who was randomized accord-
ing to the randomized treatment assignment.
ANOVA analysis showed that RAS was superior to non_-

RAS in improving FES, FGA, TUG, and UPDRS even
though a significant time effect of both of the gait trainings
was found in all of the outcome measures except 10MWT
(Table 2). Specifically, FES improved more in the RAS
group than in the non_RAS group (− 18%, p < 0.001, and −
9%, p = 0.2, respectively; RAS/non_RAS between-group dif-
ference + 100%, p < 0.001), as did FGA (+ 22%, p < 0.001,
and + 17%, p = 0.1, respectively; RAS/non_RAS between-
group difference + 29%, p < 0.001), and UPDRS (− 28%, p <
0.001, and − 20%, p = 0.006, respectively; RAS/non_RAS

Table 2 Pre-post clinical parameters. Data are reported as mean ± s.d.

parameter group pre post time×group time
F(1,24), p

post-pre post-hoc

F(1,48), p ICC(95%cl) within-group effect size between-group

10MWT (sec) RAS 7.5 ± 5 6.9 ± 5 1,0.7 0.92(0.86 to 0.95) 1, 0.1 0.7 0.06 0.7

non-RAS 7.4 ± 5 6.7 ± 4 1.3, 0.1 0.6 0.07

BBS (sec) RAS 44 ± 8 49 ± 7 1, 0.6 0.08(0.06 to 0.09) 19, < 0.001 < 0.001 0.8 0.5

non-RAS 44 ± 8 48 ± 9 73, < 0.001 < 0.001 0.8

FES (scale score) RAS 34 ± 9 28 ± 9 32, < 0.001 0(−0.28 to 0.28) 45, < 0.001 < 0.001 0.8 < 0.001

non-RAS 34 ± 9 31 ± 9 1, 0.2 0.2 0.1

FGA (scale score) RAS 18 ± 2 22 ± 2 41, < 0.001 0(−0.28 to 0.28) 42, < 0.001 < 0.001 0.8 < 0.001

non-RAS 17 ± 2 20 ± 2 1, 0.1 0.1 0.1

TUG (sec) RAS 11 ± 7 9 ± 9 5, 0.006 0.45(0.2 to 0.65) 43, < 0.001 < 0.001 0.8 0.6

non-RAS 11 ± 7 10 ± 7 5, 0.04 0.01 0.4

UPDRS (scale score) RAS 29 ± 3 21 ± 5 10, < 0.001 0.45(0.2 to 0.65) 16, 0.001 < 0.001 0.8 0.001

non-RAS 31 ± 5 25 ± 8 9, 0.006 0.006 0.5

10MWT 10m walking test, UPDRS Unified Parkinson’s Disease Rating Scale, BBS Berg Balance Scale, FES Tinetti Falls Efficacy Scale, FGA Functional Gait
Assessment, TUG timed up-and-go test, RAS Rhythmic Auditory Stimulation, ICC(95%cl) intraclass correlation coefficient and its 95% confidence limits for test-
retest reliability calculation
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between-group difference + 40%,p = 0.001). However, both
groups improved equally in BBS (RAS + 11%, p < 0.001,
non_RAS + 9%, p < 0.001; RAS/non_RAS between-group
difference + 22%, p = 0.5) and TUG (RAS + 22%, p < 0.001,
non_RAS + 10%, p = 0.01; RAS/non_RAS between-group
difference + 20%, p = 0.6). Finally, neither group significantly
improved on the 10MWT (RAS − 8%, p = 0.06, non_RAS
− 10%, p = 0.07; RAS/non_RAS between-group difference
+ 20%, p = 0.6).

Kinematic outcomes
The abovementioned clinical changes were paralleled by
larger modifications in gait parameters. ANOVA analysis
showed that RAS was superior to non_RAS in improv-
ing all kinematic measures except for gait cycle duration
and speed of gait even though a significant time effect of
both of the gait trainings was found in all of the gait pa-
rameters (Table 3). Specifically, GQI increased more in
the RAS than in the non_RAS training group (RAS +
10%, p < 0.001, non_RAS + 4%, p = 0.007; RAS/non_RAS
between-group difference + 172%, p < 0.001) (Table 3).
Specifically, GQI changes resulted from the greater re-
duction observed following RAS than non_RAS in the
stance/swing ratio (RAS − 6%, p < 0.001, non_RAS − 4%,
p = 0.009; RAS/non_RAS between-group difference +
43%, p < 0.001) and step cadence (RAS − 11%, p < 0.001,
non_RAS − 5%, p = 0.006; RAS/non_RAS between-group
difference + 136%, p < 0.001) and the increase in stride
length (RAS + 35%, p = 0.005, non_RAS + 31%, p =
0.003; RAS/non_RAS between-group difference + 14%, p
= 0.01) (Table 3). In contrast, gait cycle duration de-
creased equally in both groups (RAS − 13%, p = 0.002,

non_RAS − 9%, p = 0.007; RAS/non_RAS between-group
difference + 42%, p = 0.1), whereas speed of gait in-
creased equally (RAS + 41%, p = 0.004, non_RAS + 31%,
p = 0.006; RAS/non_RAS between-group difference +
31%, p = 0.1) (Table 3).

ERD/ERS aftereffects
The observed clinical improvement was paralleled by sig-
nificant changes in gait-related α and β ERS and ERD
within the frontal and centroparietal electrodes, which
were more evident following RAS than non_RAS training
(Fig. 2, Table 4). ANOVA analysis showed that RAS was
superior to non_RAS in improving all of the power esti-
mations even though a significant time effect of both of
the gait trainings was found in central and frontal α and β
ERS and ERD (Table 3). In detail, centroparietal α-ERD
during single support in the stance phase increased more
in the RAS than in the non_RAS training group (RAS −
32%, p < 0.001, non_RAS − 15%, p < 0.001; RAS/non_RAS
between-group difference + 113%, p = 0.01). Similar find-
ings were obtained concerning centroparietal α-ERS dur-
ing the double support in the stance phase of the gait
cycle (RAS + 29%, p < 0.001, non_RAS + 10%, p < 0.001;
RAS/non_RAS between-group difference + 190%, p =
0.01), in frontal β-ERD during the single support in the
swing phase (RAS − 31%, p < 0.001, non_RAS − 12%, p <
0.001; RAS/non_RAS between-group difference + 158%, p
= 0.01), in centroparietal β-ERD during single support in
the stance phase (RAS − 29%, p < 0.001, non_RAS − 9%, p
< 0.001; RAS/non_RAS between-group difference + 222%,
p = 0.01), and in centroparietal β-ERS during double sup-
port in the stance phase of the gait cycle (RAS + 31%, p <

Table 3 Statistical data of the effects of gait training on gait kinematic parameters from the baseline (pre) at the end of the
rehabilitation period (post)

Parameter time×group group pre post time
F(1,24),p

post-pre post-hoc p-value

F(1,48),
p

ICC
(95%cl)

within-group effect size between-group

GQI (%) 26, < 0.001 0.02
(−0.26 to 0.29)

RAS 80 ± 9 89 ± 10 93, < 0.001 < 0.001 0.8 < 0.001

non-RAS 81 ± 9 84 ± 9 63, < 0.001 0.007 0.6

SSR (ratio) 8.7, 0.005 0.05
(−0.22 to 0.33)

RAS 2.1 ± 0.2 2.0 ± 0.2 71, < 0.001 < 0.001 0.5 < 0.001

non-RAS 2 ± 0.2 1.9 ± 0.2 48, < 0.001 0.009 0.3

step cadence (Hz) 16, < 0.001 0.03
(−0.25 to 0.3)

RAS 1.56 ± 0.2 1.4 ± 0.2 44, < 0.001 < 0.001 0.8 < 0.001

non-RAS 1.58 ± 0.2 1.5 ± 0.2 22, < 0.001 0.006 0.4

stride length (cm) 15, < 0.001 0.03
(−0.25 to 0.31)

RAS 37 ± 4 50 ± 6 22, 0.009 0.005 0.9 0.01

non-RAS 36 ± 4 47 ± 5 8.2, 0.02 0.003 0.6

gait cycle duration (sec) 0.2,
0.5

0.07
(0.05 to 0.08)

RAS 2.02 ± 0.2 1.77 ± 0.2 29, < 0.001 0.002 0.8 0.1

non-RAS 1.96 ± 0.2 1.79 ± 0.2 11, < 0.001 0.007 0.7

speed of gait (m/s) 0.2,
0.5

0.9
(0.05 to 0.1)

RAS 0.7 ± 0.1 0.9 ± 0.1 20, < 0.001 0.004 0.8 0.1

non-RAS 0.6 ± 0.1 0.8 ± 0.1 15, < 0.001 0.006 0.8

UPDRS Unified Parkinson’s Disease Rating Scale, BBS Berg Balance Scale, FES Tinetti Falls Efficacy Scale, FGA functional gait assessment, TUG timed up-and-go test,
GQI gait quality index, SSR stance-swing ratio, RAS rhythmic auditory stimulation, ICC(95%cl) intraclass correlation coefficient and its 95% confidence limits for test-
retest reliability calculation
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0.001, non_RAS + 11%, p < 0.001; RAS/non_RAS
between-group difference + 181%, p = 0.01).

TRCoh aftereffects
ANOVA analysis showed that RAS was superior to
non_RAS in improving all of the TRCoh estimations,
even though a significant time effect of both of the gait
trainings was found in β fronto-centroparietal and
fronto-temporal TRCoh (but in α fronto-temporal only
following non_RAS) (Table 4). Specifically, fronto-cen-
troparietal β-TRCoh increased more in the RAS than in
the non_RAS training group (RAS + 63%, p < 0.001,
non_RAS + 21%, p = 0.001; RAS/non_RAS between-
group difference + 200%, p = 0.01). Similar findings were
obtained concerning fronto-temporal β-TRCoh (RAS +
43%, p < 0.001, non_RAS + 21%, p = 0.001; RAS/non_-
RAS between-group difference + 104%, p = 0.01). How-
ever, fronto-temporal α-TRCoh increased only following
RAS training (RAS + 36%, p < 0.001, non_RAS + 18%, p
= 0.1; RAS/non_RAS between-group difference + 100%,
p < 0.001) (Table 4).

Clinical-electrophysiological correlations
A Spearman test showed that there were significant cor-
relations between FGA improvement (primary outcome)
and the increases in fronto-centroparietal (r = 0.757, p <
0.001) and fronto-temporal beta range connectivity in-
crease (r = 0.717, p < 0.001) (Fig. 3).

Discussion
Our data indicate that RAS training offers additional ad-
vantages in terms of overall gait quality, balance, number
and length of strides compared to non_RAS, as reported
in the literature. This finding is important from a re-
habilitative perspective, given that poor gait in patients
with PD is characterized by an increase in the number
of steps [14, 20, 69, 77]. On the other hand, RAS train-
ing was not superior to non_RAS concerning the im-
provement in gait speed, turning, and stride duration, as
formerly reported (Miller et al. 1996; [14, 20, 43, 69,
77];), thus suggesting that these improvements were in-
fluenced by the rehabilitative program itself rather than
cueing. However, improving the speed of gait and turn-
ing is an important target in PD rehabilitation [14, 20,

Fig. 2 Average post vs. pre changes in ERSs/ERDs and their scalp projections relatively to the full gait cycle in the two groups (RAS and non_RAS
gait training). We found a significant strengthening of the central α/β-ERD during single support in the stance phase, of the low frontal β-ERD
during the single support in the swing phase, and of the fronto-central α/β-ERS during the double support in the stance phase of the gait cycle.
All such changes were more evident following RAS compared to non_RAS training. Average post vs. pre changes in alpha and beta ERD/ERS
color maps are coded in blue and red tones, respectively. Electrodes were grouped into frontal F -Fp1/2,F3/4/7/8, centroparietal -C3/4,P3/4-,
temporal T -T3/4/5/6, and occipital O -O1/2-
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69, 77]. Therefore, this finding also represents an im-
portant rehabilitative endpoint [14, 20, 69, 77].
The novelty of our study is that we reveal a putative

neurophysiological mechanisms explaining the greater
strength of RAS training (by using GaitTrainer3) when
obtaining clinical improvement compared to an equiva-
lent dose of non_RAS training using EEG.
Some previous EEG studies have characterized cortical

oscillations related to gait in patients with PD, and a few
have provided robust data on EEG power; however, even
fewer have explored functional connectivity [78]. Over-
all, there is some evidence showing that cortical activity
abnormally increases during gait in patients with PD,

and this likely represents a cortical compensation
phenomenon reflecting subcortical (basal ganglia and
the cerebellum) dysfunction [78]. Unfortunately, there is
a paucity of correlation analyses of cortical and behav-
ioral outcomes, and these have mainly performed func-
tional imaging. In particular, it has been shown that gait
impairment is correlated with the deterioration of a
fronto-centroparietal network, beyond BG, the level of
cortical activity, the increased activity of the prefrontal
cortex, and the cortical timing metrics [22, 30–32].
However, more data are available from functional neu-

roimaging studies than those using EEG approaches [4,
37, 78], whereas there is no significant EEG data related to

Table 4 Statistical data of the effects of gait training on EEG findings from the baseline (pre) at the end of the rehabilitation period
(post)

parameter time×group group post
vs. pre
%
change

time
F(1,24),p

post-pre post-hoc p-values

F(1,48),
p

ICC
(95%cl)

within-group effect size between-group

power CP α-ERD 56, < 0.001 0.01
(−0.27 to 0.28)

RAS −32 71, < 0.001 < 0.001 0.9 0.01

non-RAS −15 33, < 0.001 < 0.001 0.7

CP α-ERS 20, < 0.001 0.02
(−0.25 to 0.30)

RAS + 29 53, < 0.001 < 0.001 0.9 0.01

non-RAS + 10 36, < 0.001 < 0.001 0.7

F β-ERD 89, < 0.001 0.01
(−0.27 to 0.28)

RAS −31 76, < 0.001 < 0.001 0.9 0.01

non-RAS −12 59, < 0.001 < 0.001 0.7

CP β-ERD 92, < 0.001 0.01
(−0.27 to 0.28)

RAS −29 30 < 0.001
22, < 0.001

< 0.001 0.8 0.01

non-RAS −9 < 0.001 0.5

CP β-ERS 73, < 0.001 0.01
(−0.27 to 0.28)

RAS + 31 39, < 0.001 < 0.001 0.9 0.01

non-RAS + 11 29, < 0.001 < 0.001 0.7

TRCoh β F-CP 10, < 0.001 0.05
(−0.23 to 0.32)

RAS + 63 18, 0.001 < 0.001 0.8 0.01

non-RAS + 21 9, 0.001 0.001 0.6

β F-T 4.7,
0.04

0.10
(−0.18 to 0.36)

RAS + 43 25, < 0.001 < 0.001 0.8 0.01

non-RAS + 21 17, < 0.001 0.001 0.7

α F-T 6.3,
0.01

0.07
(−0.21 to 0.34)

RAS + 36 15, 0.002 0.001 0.8 < 0.001

non-RAS + 18 2.3, 0.1 0.1 0.2

ERD event-related desynchronization, ERS event-related synchronization, TRCoh task-related coherence, RAS rhythmic auditory stimulation, ICC(95%cl) intraclass
correlation coefficient and its 95% confidence limits for test-retest reliability calculation, F frontal, CP centroparietal, T temporal

Fig. 3 Scatter plot graphs for the relationship between the clinical and neurophysiological data
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RAS gait training aftereffects. We found that the RAS
training-induced gait improvement depended on stronger
entrainment of fronto-centroparietal and fronto-temporal
electrode connectivity than was required by non_RAS
training, as suggested by the significant correlation be-
tween the changes in connectivity measures and the be-
havior (gait) indices and the greater modulation of frontal
and centroparietal α and β power related to specific parts
of the gait cycle.
The changes in beta range connectivity that occurred as

part of RAS training were the most important contribu-
tors to the observed clinical improvement (as per
clinical-behavior correlation analysis) and are likely to de-
pend on associative plasticity between the acoustic cues
coupled to walking ([4, 26, 56, 81, 82, 92];). Hence, the ex-
ternal pacing cues used in treadmill walking may interact
with the mechanical pacing of footfalls on the running
belt. Indeed, patients had to walk while synchronizing
their footsteps to the salient beats of the music, thus lead-
ing to audiomotor integration phenomena mediated
through fronto-temporal and fronto-centroparietal path-
ways ( [26, 81, 82]; Yeterian and Pandya, 1998 [4, 56];).
This likely allowed the generation of a more physiological
and rhythmic gait by integrating implicit and explicit tim-
ing mechanisms to compensate for the internal pacing de-
terioration [61]. Moreover, the external cueing modality
we adopted harnessed implicit timing, which is mostly in-
tact in PD, thus still allowing automatic timing [23]. Fi-
nally, the greater fronto-temporal connectivity observed
following RAS than non_RAS is likely to depend on the
modulation of β-oscillations among a wide network of
auditory, motor, and associative cortices by part of audi-
tory cueing, thus promoting motor activation patterns [4,
23]. Sensorimotor rhythms are finely tuned during gait
training and represent timely selective top-down control
from the cortex to subcortical structure (and then to the
muscles), and they thus serve as a strong promoter of the
motoric status quo and controller of gait stability and ad-
aptations, sensory processing of the lower limbs, visuo-
motor integration, and speed, depending on the current
motor scenario [34, 45]. It has been reported that the spa-
tiotemporal extent of alpha and beta synchronization
within fronto-centroparietal and fronto-temporal elec-
trodes is inappropriately increased and its reactivity di-
minished in PD, mainly owing to BG impairment, reduced
dopamine release, and intrinsic cortical excitability abnor-
malities [23, 24, 34, 36, 45, 60]. This rhythm deterioration
is strongly correlated with the clinical picture at baseline
and reflects the inability of patients with PD to modulate
their gait cycle according to walking necessities and given
the clinical improvement observed following levodopa
treatment and deep brain stimulation (DBS) reported in
the data of the literature [34, 45]. Therefore, the strong
spatiotemporal changes in sensorimotor rhythms observed

across the gait cycle (and thus the clinical improvement)
obtained by coupling music and gait training may depend
on the precise modulation of dopamine release by internal
and external timing mechanisms that are triggered by
music as these allow the fine-tuning of gait cycle parame-
ters according to the motor scenario and motor task de-
mand in a way resembling levodopa and DBS [34, 36, 45].
However, we can only speculate on the neurophysiological
similarities of the effects of music, levodopa, and DBS as
the first is less discriminating when focusing on the particu-
larly extensive beta synchrony, leaving undisturbed the
other periods compared to levodopa and DBS [34, 45].
Nonetheless, it has been reported in healthy participants
that the presentation of RAS significantly improved finger
tapping task performance, leading to significantly reduced
DA responses in the left ventral striatum [36]. Thus, the
potential role of RAS in modulating DA responses should
be confirmed in PD patients, considering the dopaminergic
role in the enhancement of motor control in PD with the
consequent implications in neurorehabilitation.
It has been proposed that cerebello-thalamo-cortical

motor networks could compensate for the detrimental
BG-thalamo-cortical motor network functions related to in-
ternal timing processing [16, 63, 74, 87]. Indeed, there is
evidence that temporal rhythmic auditory information may
assist compensatory mechanisms through network-level ef-
fects, reflected in increased interaction between auditory
and executive networks that in turn modulate activity in
cortico-cerebellar networks [4]. We hypothesized that the
cerebellum contributes to mediate more of the fronto-cen-
troparietal and fronto-temporal temporal electrode con-
nectivity (and the clinical-kinematic improvement)
following RAS training then non_RAS training. It has been
shown that rhythmic cerebellar stimulation by means of os-
cillatory transcranial currents delivered at frequencies re-
sembling an intrinsic musical tempo largely shapes fronto-
parietal connectivity and the sensorimotor rhythms related
to the fine regulation of gait parameters [57, 58]. Therefore,
it is likely that the cerebellum contributes to internal timing
mechanisms when properly stimulated by rhythmic exter-
nal cues, or at least acoustic cues. Nonetheless, the involve-
ment of the cerebellum by part of the RAS needs to be
further studied to better characterize the neurophysiological
basis, including which cue typology is required and the
rhythm specificity. In fact, over-activation of the cerebellum
may worsen gait as suggested by studies of non-invasive
cerebellar stimulation in PD. [53]
Another main finding of our study is that α frequency

range fronto-temporal connectivity was only involved in
the RAS group. This functional connectivity is strongly
linked to cognitive performance in PD as it deteriorates
in parallel with cognitive decline [34]. Moreover, the po-
tentiation of frontotemporal connectivity is also import-
ant in motor and cognitive rehabilitation [22]. Given
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that α deterioration is a marker of the degeneration of
the ascending diffuse projection systems that control at-
tention [34], a key advantage of using music as an exter-
nal cue is that it increases the attention level, as
reflected by the low variability of the outcome measures
following RAS and the consequential improvement in
patient participation and performance.

Limitations
The main limitation of our study is the lack of a
follow-up period. However, it has been shown that pa-
tients with PD who are provided with cued gait training
do not retain the obtained clinical improvement after 3
months [13]. This probably depends on the progression
of neurodegeneration and the detrimental implicit learn-
ing in patients with PD. It is likely that retention could
be promoted by long-term, less intensive, home rehabili-
tation. Therefore, future investigations are needed to
verify this issue. Further, future directions should include
an examination of the EEG changes that occur during
over-ground walking and not just walking on a treadmill.
Moreover, our time-frequency analysis focused only on
the alpha and beta frequency bands. The roles of the
other frequency bands deserve further investigation.
Another limitation is that the patients received extended

daily rehabilitation training for 8 weeks. Therefore, the
changes may not reflect only the differences between RAS
and non-RAS training. Even this issue deserves further in-
vestigation with different control groups.
We found declines in fronto-parietal connectivity at

baseline, whereas it was previously reported that patients
with PD show an increase in cortico-cortical functional
connectivity (this may reflect a compensatory mechan-
ism to overcome motor-cognitive limitations). However,
this over-connectivity was found to be limited to the
early stages of the disease, whereas our patients had a
disease duration of approximately 10 years.
Finally, it would be interesting to test whether the ef-

fect of RAS on patients’ gait parameters depends on
whether the music was or was not appreciated by the
patient, in comparison to the effect of a musical piece
that was chosen at the same for all patients.

Conclusion
Our data suggest that RAS may be a useful, add-on, gait
rehabilitation strategy in PD as auditory cueing can spe-
cifically target motor cortical beta frequency range syn-
chrony during steady-state treadmill walking in patients
with PD. This modulation sustained greater clinical im-
provement following RAS gait training than non_RAS
gait training. This extensive oscillatory recruitment may
represent a bypass of the damaged circuitry of internal
pacing by part of a broader network encompassing the
cerebellum and different cortical areas. Therefore, the

brain could recalibrate its internal pacing mechanisms
by harnessing the rich sensorimotor feedback signals
provided by the music-gait coupling.
Obtaining a better understanding of the neurophysio-

logical mechanisms underlying the cortical control of cued
gait in patients with PD may provide us with information
that would allow us to design interventions targeting such
cortical mechanisms using, e.g., transcranial magnetic stimu-
lation, transcranial alternating current stimulation or, as in
our study, cueing strategies. Targeting the functional con-
nectivities along fronto-centroparietal/temporal electrodes
and the α and β rhythms related to specific parts of the gait
cycle may be an important issue in the motor rehabilitation
of patients with PD when aiming to mitigate walking distur-
bances in these patients. In other words, identifying the
neurophysiological mechanisms underlying RAS-induced
gait improvement may help clinicians to develop patient-tai-
lored rehabilitative approaches based on the selective impact
of cues on gait parameters, thus making gait training highly
individualized and optimizing its efficacy.
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