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Abstract

Background: Current upper extremity outcome measures for persons with cervical spinal cord injury (cSCI) lack the
ability to directly collect quantitative information in home and community environments. A wearable first-person
(egocentric) camera system is presented that aims to monitor functional hand use outside of clinical settings.

Methods: The system is based on computer vision algorithms that detect the hand, segment the hand outline,
distinguish the user’s left or right hand, and detect functional interactions of the hand with objects during activities
of daily living. The algorithm was evaluated using egocentric video recordings from 9 participants with cSCI,
obtained in a home simulation laboratory. The system produces a binary hand-object interaction decision for each
video frame, based on features reflecting motion cues of the hand, hand shape and colour characteristics of the
scene.

Results: The output from the algorithm was compared with a manual labelling of the video, yielding F1-scores of
0.74 ± 0.15 for the left hand and 0.73 ± 0.15 for the right hand. From the resulting frame-by-frame binary data,
functional hand use measures were extracted: the amount of total interaction as a percentage of testing time, the
average duration of interactions in seconds, and the number of interactions per hour. Moderate and significant
correlations were found when comparing these output measures to the results of the manual labelling, with ρ =
0.40, 0.54 and 0.55 respectively.

Conclusions: These results demonstrate the potential of a wearable egocentric camera for capturing quantitative
measures of hand use at home.

Keywords: Tetraplegia, Upper extremity, Outcome measure, Egocentric vision, Community-based rehabilitation,
Rehabilitation engineering

Introduction
Upper extremity (UE) impairment can severely limit in-
dividuals’ ability to perform activities of daily living
(ADLs). The recovery of hand function is consequently
of great importance to individuals with cervical spinal
cord injuries (SCI) [1].
In order to assess new interventions and improve upon

currently existing rehabilitation approaches, outcome

measures that can accurately quantify hand function in a
natural context are needed. The majority of currently
available assessment tools measure impairment or func-
tional limitation and rely on direct observation by a clin-
ician or investigator [2]. On the other hand, limited tools
are available to describe how individuals with SCI use
their hands in their usual environment or community,
restricting our understanding of how changes in UE func-
tion impact activity and participation. Often measures that
describe function in the community are restricted to po-
tentially biased self-report to try to estimate independence
in ADLs [3–6].
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In an attempt to gauge hand function at home and in
the community, multiple studies have explored the use
of wearable sensors, particularly accelerometers or iner-
tial measurement units (IMUs). While these devices are
small and easily worn, they lack the resolution to cap-
ture the complexity of functional hand use. These wear-
able sensors are limited to capturing arm movements. In
studies with hemiparetic stroke survivors, accelerometry
has most typically been used to examine the ratio of ac-
tivity between the impaired and unimpaired arms [7, 8].
Recently in SCI, accelerometers have been used to meas-
ure wheeling movements and to assess the laterality of
the injuries [9, 10]. Although these studies demonstrated
a relationship between accelerometry measures and in-
dependence, this approach is not able to reveal direct in-
formation about how the hand is used in functional
tasks [10]. A recent study in stroke survivors found that
improvements in motor function according to clinic-
based outcome measures (capacity, as defined in Mari-
no’s modification of the International classification of
functioning, disability and health (ICF) model [11]) do
not necessarily translate into increased limb use in the
community (performance), as measured by accelerome-
try [12]. These findings point to the need for novel out-
come measures that can directly measure performance
and better describe the impact of new interventions on
the daily lives of individuals with SCI.
A system based on a wearable camera has the poten-

tial to overcome the limitations of existing outcome
measures for UE function. First-person (egocentric)
cameras record the user’s point of view. Unlike a wrist-
worn accelerometer that can only capture arm move-
ment information, an egocentric video provides detailed
information on hand posture and movements, as well as
on the object or environment that the hand is interact-
ing with. Multiple studies have explored the use of com-
puter vision techniques to extract information about the
hand in egocentric videos, though typically not in the
context of rehabilitation. Key problems to be solved in-
clude hand detection (locating the hand in the image) as
well as segmentation (separating the outline of the hand
from the background of the image) [13–22]. Beyond
hand detection and segmentation, there have also been
attempts to use egocentric videos for activity recognition
and object detection in ADLs [23–28]. However,
generalizability can be a challenge in such systems, given
the large variety of activities and objects found in the
community.
In our previous work, we proposed to detect interac-

tions of the hand with objects using egocentric videos.
This binary classification (interaction or no interaction)
is intended to form the basis for novel outcome mea-
sures to describe hand function in the community. We
have demonstrated, in the able-bodied population, the

possibility of a hand-object interaction detection system,
where a system can detect and log whether or not the
hand is manipulating an object for a functional purpose.
An interaction between an object and the hand is only
considered to happen when the hand manipulates the
object for a functional purpose; for example, resting a
hand on the object would not constitute an interaction
[28]. The present work expands the development of the
hand-object interaction detection system by describing a
novel complete algorithmic pipeline and evaluating for
the first time its application to individuals with SCI.

Methods
Dataset and participants
A dataset from participants with cervical SCI was cre-
ated, the Adaptive Neurorehabilitation Systems Labora-
tory dataset of participants with SCI (“ANS SCI”). The
ANS SCI dataset consists of egocentric video recordings
reflective of ADLs obtained using a commercially avail-
able egocentric camera (GoPro Hero4, San Mateo, Cali-
fornia, USA) worn by the participant overhead via a
head strap. The video was recorded at 1080p resolution
at 30 frames per second. However, a reduced resolution
of 480p was used for analysis in order to reduce compu-
tation time, given that higher resolutions are not neces-
sary for our application. The data collection was
performed in a home simulation laboratory. Specifically,
this study involved recording from 17 participants with
SCI, performing different common interactive ADL tasks
identified by the American Occupational Therapy Asso-
ciation (AOTA) as important (for example, personal
care, eating, and leisure activities) [29]. Each participant
performed a total of approximately 38 ADL tasks in sev-
eral environment (kitchen, living room, bedroom, bath-
room). Participants were also asked to perform non-
interactive tasks, which involved hand at rest and hand
being waved in the air without any interaction with an
object.

Algorithmic framework
In order to capture the hand-object interactions, the
framework developed consisted of three processing
steps. First, the hand location was determined in the
form of a bounding box. Next, the bounding box was
processed for hand segmentation, where the pixels of
the hand were separated from the non-hand pixels (i.e.
the background). With the hand being located and seg-
mented, image features including hand motion, hand
shape and colour distribution were extracted for the
classification of hand-object interaction. The flowchart
in Fig. 1 summarizes the algorithmic framework. Note
that our previous work in [28] focused on the inter-
action detection step, whereas in the present study the
hand detection and segmentation steps have been
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developed and included, allowing us to evaluate the
complete pipeline from raw video to interaction metrics.

Hand detection
The detection of the hand was accomplished using a
convolutional neural network (CNN). Specifically, the
faster regional CNN (“faster R-CNN”) architecture [30]

was selected. The CNN outputs the coordinates of the
box surrounding the detected hand (Fig. 2a). The CNN
was trained on the even frames of eight participants in
our dataset (participants # 10–17) resulting in 33,256
frames manually labelled with hand bounding boxes.
The output bounding box from the CNN was further

processed to help eliminate false positives and to extract

Fig. 1 Algorithmic framework for the proposed hand used system. A simplified flowchart of the algorithmic framework showing the developed
sequential preprocessing steps as well as input and output format for each step

Fig. 2 Example frames describing the methodology in each of the processing steps. (a) Hand detection step, where the left image is the output
bounding box of the hand from the R-CNN, the centre image is the Haar-like feature rotating around the bounding box centroid, and the right
image is the final detection output. (b) Hand segmentation step, where the left image is the hand contour identification generated by
combining skin colour information (in black and white) with edge detection of hand contours (in purple), and the right image shows the re-
centering and selection of the final hand contour. (c) Regions involved in the interaction detection step, where the left image is the hand region,
the centre image is the boxed neighbourhood of the hand, and the right image is the background region
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arm angle information, using a rotating Haar-like fea-
ture. This feature consists of three adjacent parallel rect-
angles extending from the centre and sides of the
bounding box to the border of the image; this was in-
spired by the Haar-like feature used in real-time face de-
tection [31]. This selected centre rectangular region was
compared to the two parallel regions on either side, by
taking the average of the difference between the coeffi-
cient of variation in the centre rectangle and in each of
the two side rectangles; this difference is expected to be
greatest when the center rectangle is aligned with the
arm. This Haar-like feature was rotated 360 degrees
around the centroid of the hand bounding box. The out-
put from the rotating feature, computed in 1-degree
steps was then summed over bins of 5 degrees to obtain
a feature vector with 72 values. This vector was used as
input to a random forest classifier with binary output, to
confirm whether the bounding box truly included a hand
(Fig. 2 a). The training of this classifier was performed
on the odd frames of eight participants (i.e. participants
# 10–17, the same ones used to train the CNN), which
again consisted of 33,256 frames labelled with bounding
boxes.
Additionally, given the egocentric viewpoint, the arm

angle was used to determine which hand was being used
(i.e. user’s left or right hand, as well as a hand belonging
to another individual). This was established by summing
the values in the Haar-like feature vector in the top two
quadrants (Quadrants I + II, 0–180 degrees), bottom
right quadrant (Quadrant III, 180–270 degrees), or bot-
tom left quadrant (Quadrant IV, 270–360 degrees). The
hand was determined to be the left hand, right hand or
other person’s hand if the quadrant with the highest sum
was IV, III or I + II, respectively.

Hand segmentation
The output of the hand detection stage was processed to
segment the hand (i.e. identify pixels belonging to the
hand). The segmentation process consisted of the fol-
lowing steps:
1. Identify candidate hand contours. This step com-

bined colour and edge information. For colour, the RGB
image was back-projected using a histogram obtained
from a generic mixture-of-Gaussians skin colour model
[32]. The back-projected image was thresholded at 0.75
of the maximum value (this value was selected empiric-
ally and may change depending on the camera system).
To obtain edge information, a Structured Forests edge
detection [33] method was used, which was specifically
trained on hand images to preferentially identify hand
edges. For the purposes of training this model, a publicly
available dataset [34] with pixel-level hand annotations
[35] was used. The output of the edge detection was
thresholded at 0.05 of the maximum value (again

selected empirically), and morphological operations
(dilation followed by erosion) were used to remove small
gaps in the contours detected. Lastly, the edge informa-
tion was used to improve the delineation of the hands in
the colour-based segmentation (Fig. 2 b).
2. Re-centre the bounding box and select the final

hand contour. The bounding box from the hand detec-
tion step was applied to the image from step 1. Within
this box, we sought to identify the contour most likely
to be the hand and re-centre the box around it to
minimize the occurrence of truncated hands. The deter-
mination of this final hand contour was based on shape,
again using the information from the edge detection.
From the list of contours obtained in the previous step
from the combined colour and edge information, we se-
lected the one that had the highest overlap with the edge
image, filled in using dilation. Prior to this determin-
ation, any contour whose area was less than 2% or more
than 75% of the bounding box area was eliminated; simi-
larly, contours with arc lengths between 90 and 110% of
the bounding box perimeter were removed. Once the
hand contour was determined, a new box and associated
centroid was selected from the mean of the hand con-
tour’s centroid and top pixel. This step promotes max-
imum coverage of the hand and not the arm, which is
often located below the hand in an egocentric view.

Interaction detection
The interaction detection is built on our previous work
[28], with additional colour features included. Further-
more, the interaction detection for this study also sup-
ported multiple hands, with the user’s left or right hand
as well as the hands of other individuals being identified
using the arm angle obtained via the hand detection
step. Three categories of features were extracted in the
interaction detection:

1. Object Motion. Motion features assume that an
object being held in the hand will be moving with a
similar direction and speed as the hand. Conversely,
an item in the frame that is not being interacted
with is more likely to have a motion similar to that
of the background. To capture this distinction, a
dense optical flow map [36] was separated into
three regions: the segmented hand, the bounding
box around the hand, and the background (Fig. 2 c).
Note that the bounding box size and location are
equivalent to the segmentation step after re-
centering. The dense optical flow from each region
was summarized into respective histograms of mag-
nitude and direction, each with 15 normalized bins.
The final feature consisted of two vectors: the sub-
traction of the histograms of the bounding box near
the hand from those of the hand, and the
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subtraction of the histograms of the bounding box
near the hand from those of the background.

2. Hand shape. Certain characteristics of hand shape
are indicative of hand activity (i.e. grip type). The
hand shape was represented using histograms of
oriented gradients (HOG), implemented as in our
previous work [28]. The HOG features were
extracted from the same bounding box used in the
motion feature analysis above. The selected image
regions were then resized to 10% of the frame
height and 15% of the frame width to guarantee
identical dimensions before principal component
analysis (PCA) was applied. The HOG feature
vector dimension was reduced from 960 to 60 to
keep the dimensions identical to that of the motion
cues feature.

3. Object Colour. The objects near the hand may have
a different colour than the background and the
hand. The closer the objects to the hand, the
greater the likelihood of interaction. HSV colour
histograms were extracted from the same three
regions as in the motion feature analysis described
earlier. The two comparison scores are extracted
based on the Bhattacharyya distance between the
histograms of the bounding box and the hand, as
well as those of the bounding box and the
background.

Finally, the combined features were input to a random
forest binary classifier (see “System Evaluation” below).
The random forest used 150 trees, following the work in
[28].
The classifier was trained using data manually labelled

by a human observer, where each frame was either clas-
sified as interaction or no interaction. An interaction be-
tween the object and the hand was only considered to
happen when the hand manipulates the object for a
functional purpose. For example, resting a hand on the
object or moving a hand through space would not con-
stitute an interaction. Labelling was performed on a
frame-by-frame basis, with no bounding box or segmen-
tation shown to the annotator. An annotator was
instructed to label the user’s left hand, the user’s right
hand, and other people’s hands separately.

System evaluation
The interaction detection was evaluated using Leave-
One-Subject-Out cross-validation. We applied our sys-
tem to 9 participants from our dataset (participants # 1–
9), for whom interactions had been manually labelled
and whose data had not been used to train the hand de-
tection algorithms. In the cross-validation process, each
participant in turn was left out for testing while the
other 8 participants were used for training. Depending

on the participant being left out, the training set of 8
participants on average consisted of 28,057 ± 2,334
frames (935 ± 77 s) of interaction (48%) and 30,850 ±
3369 frames (1,028 ± 112 s) of no interaction (52%). The
participant in the testing set consisted on average of 3,
507 ± 3, 369 frames (116 ± 112 s) of interaction (48%)
and 3,856 ± 2,334 frames (128 ± 77 s) of no interaction
(52%). The classification was compared with manually
labelled data.

Extraction of functional measures
In order to translate the frame-by-frame results into
more easily interpretable measures, the binary output of
hand-object interaction detection was processed to ex-
tract: the amount of total interaction as a percentage of
testing time, average duration of individual interactions
in seconds, and number of interactions per hour (i.e.,
number of interactions normalized to video segment
duration).
Hand-object interaction outputs from the algorithm

were assigned to one of two timelines, depending on
arm angle: user’s left hand and user’s right hand. Failures
in hand detection or segmentation could result in miss-
ing frames at the interaction detection stage. To address
this issue, interactions were prolonged for 90 frames (3
s) if the hand was suddenly lost. Outside of this range,
the frame was classified as a non-interaction. Further-
more, a moving average filter was applied to the binary
frame-by-frame timelines of interaction. The moving
average promotes temporal smoothness in the output,
reduces the impact of labelling errors in the start and
stop of interaction, and corrects minor faulty hand de-
tection and segmentation. The filter window was chosen
to have a length of 120 frames (corresponding to 4 s),
with equally weighted samples. This duration was opti-
mized empirically on the basis of its ability to meaning-
fully summarize the number and duration of underlying
activities. The moving average was similarly applied to
the manually labelled timelines.
The output of the moving average was then normal-

ized by subtracting the minimum value over the entire
video and dividing by the difference of maximum and
minimum values. The result was thresholded at 0.5 (i.e.
values greater than 0.5 were considered to be interac-
tions). Number and duration of interactions were ex-
tracted from this filtered output.
For each of the three metrics, the correlation between

the algorithm output and the manually labeled data over
the 9 tested participants was computed. The resulting
correlations were tested against a hypothesis of no cor-
relation using a one-tailed (right) test. Significance was
set at p = 0.05. Where data were normally distributed, a
Pearson Correlation was chosen, otherwise a Spearman
correlation was used.
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Results
Training and testing sets
The demographic and injury characteristics of the par-
ticipants are provided in Table 1. The interaction detec-
tion was evaluated on participants # 1–9. This testing
set consisted of 8 males and 1 female with an average
age of 52 ± 13 years and an average upper extremity
motor score (UEMS) of 17 ± 4. As mentioned previously,
participants # 10–17 were used for the training of the
preprocessing steps, namely the CNN-based hand detec-
tion and the classifier based on the Haar-like arm angle
features. This hand detection training set consisted of 7
males and 1 female with an average age of 47 ± 11 years
and an average UEMS of 20 ± 3.
This separation of the dataset was designed such that

the final interaction detection evaluation was conducted
on participants (# 1–9) whose data had not been used in
training any parts of the preprocessing algorithms. The
two subsets have similar characteristics in terms of gen-
der, age and UEMS.

Interaction detection
The filtered frame-by-frame interaction detection results
are quantified using classification accuracy and F1-score
(harmonic mean of precision and recall) for each partici-
pant; these are shown in Table 2. The average accuracy
and F1-score are calculated for all the participants in the
interaction detection evaluation. Over the 9 participants,
the F1-scores were 0.74 ± 0.15 for the left hand and 0.73 ±

0.15 for the right hand. The accuracies were 0.70 ± 0.16
for the left hand and 0.68 ± 0.18 for the right hand.

Functional hand use
The three proposed interaction metrics were compared be-
tween the automated output and the manual observations,

Table 1 Participant Demographics and Injury Characteristics

Participant Age
(Years)

Sex Level of
Injury

AIS
grade

Traumatic (T)/ Non-traumatic
(NT)

Time since injury
(Years)

Upper Extremity Motor Score
(UEMS)

1 63 Male C5-C6 Aa T 8 15

2 58 Male C3-C5 D T 1 24

3 59 Male C2-C6 D T 1 20

4 55 Male C7-T1 C/Da T 4 18

5 56 Male C2-C7 D T 2 19

6 56 Male C5-C6 D T 2 16

7 20 Male C5 B T 4 9

8 58 Male C5 C/Da T 32 13

9 44 Female C6-C7 A T 20 20

10 51 Male C4-C6 D T 1 22

11 34 Male C5-C6 C T 5 21

12 40 Female C2-T1 D NT 2 20

13 70 Male C4-C6 C T 1 24

14 42 Male C4-C6 B T 0.4 16

15 56 Male C1-C6 D NT 0.3 23

16 44 Male C4-C5 Ba T 21 21

17 41 Male C6-C7 Aa T 20 14
aThese AIS grades are based on self-report

Table 2 F1-Score and accuracy for left (L) and right (R) hand for
each participant as well as the average for each of the features

F1-score Accuracy

L R L R

Participant

1 0.54 0.53 0.42 0.42

2 0.6 0.75 0.73 0.79

3 0.86 0.73 0.79 0.63

4 0.85 0.58 0.79 0.59

5 0.72 0.67 0.75 0.7

6 0.55 1 0.48 0.99

7 0.84 0.8 0.82 0.69

8 0.78 0.63 0.67 0.51

9 0.93 0.91 0.88 0.88

Mean ± S.D. 0.74 ± 0.15 0.73 ± 0.15 0.70 ± 0.16 0.68 ± 0.18

Feature

Optical Flow 0.73 ± 0.14 0.70 ± 0.13 0.68 ± 0.16 0.66 ± 0.15

HOG 0.72 ± 0.12 0.72 ± 0.14 0.69 ± 0.12 0.68 ± 0.15

Colour Histogram 0.70 ± 0.12 0.66 ± 0.17 0.68 ± 0.10 0.66 ± 0.16

Likitlersuang et al. Journal of NeuroEngineering and Rehabilitation           (2019) 16:83 Page 6 of 11



and the results are shown in Fig. 3. For all three metrics
(proportion of interaction time, average duration of interac-
tions, and number of interactions per hour), a moderate,
significant correlation was found between the actual and
predicted metrics (ρ = 0.40, p = 0.04; ρ = 0.54, p = 0.01; ρ =
0.55, p = 0.01, respectively).

Features analysis
Moreover, we sought to understand the importance of
each feature for hand-object interaction. This involved
selecting only one type of feature at a time (optical flow,
HOG and colour histogram) in the classifier. The overall
average accuracy and F1-score for all subjects are articu-
lated in Table 2. There was a general trend towards rela-
tively slight decreases in performance when features
were removed, with the resulting F1-scores ranging from
0.66 ± 0.17 to 0.73 ± 0.14, and accuracies ranging from
0.66 ± 0.15 to 0.69 ± 0.12.

Discussion
Outcome measures capable of capturing the hand func-
tion of individuals with SCI in their home environments
are needed to better assess the impact of new interven-
tions. Current methods are limited to self-report or dir-
ect observation. In this study, we demonstrated the
feasibility of measuring the functional hand use of indi-
viduals with UE dysfunction resulting from cervical SCI
using a novel wearable system. The system is based on a
wearable camera and a custom algorithmic framework
capable of automatically analyzing hand use in ADLs at
home. The frequency and duration of hand-object inter-
action could potentially serve as the basis for new out-
come measures that provide clinicians and researchers
with an objective measure of an individual’s independ-
ence in UE tasks.

We demonstrated the criterion validity of an
interaction-detection system by comparing the algorithm
outputs to manually labelled data, taken here to be the
gold standard. The binary hand-object interaction classi-
fication was shown to be robust across multiple ADLs,
environments, and individuals, with an average F1-score
of 0.74 ± 0.15 for the left hand and 0.73 ± 0.15 for the
right hand after the moving average (Table 2). For the
system evaluation, we sampled activities at random
among participants; thus, each participant had a unique
set of activities during the leave-one-subject-out cross-
validation, meaning that the system was tested on ADLs
that it had not necessarily seen before. The evaluation
was performed in a non-scripted manner; however, the
tasks were specified (i.e. participants were only given the
name of the tasks with no instruction on how these
should be performed). The dataset generated was bal-
anced between the proportion of interaction and non-
interaction frames (48 and 52% respectively).
As visible in Table 2, performance varied between par-

ticipants and sometimes between hands. It is important
to note that since subsets of the data were labelled and
used for the interaction detection evaluation, partici-
pants were not all evaluated on the same activities. This
difference in activities may account for variations in F1-
score and accuracy across individuals. For example, in
participant # 1, the data used consisted largely of activ-
ities in the living room and involved finer manipulation
activities such as eating potato chips and picking up a
coin. However, perhaps the main factor that resulted in
faulty hand detections was scenes consisting of wooden
objects and flooring. Based on qualitative observation
the R-CNN tended to produce false positives on wood.
While the Haar-like methods are able to eliminate the
majority of the false positives, their impact is greater in
certain environments and scenes than others. The

Fig. 3 Hand use metrics. Scatter plots comparing the interaction metrics predicted from the algorithm (y-axis) with the actual value from the
human observer (x-axis), for each of the three proposed metrics in both hands (left and right hand). (a) Proportion of interaction over total
recording time, (b) average duration of interactions (seconds), and (c) number of interactions per hour. The result of a Pearson correlation is
shown for (a) and (c) because the data were normally distributed, while (b) was calculated with a Spearman correlation
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inconsistency observed is also related to differences in
classifier performance between the left and right hand in
some cases, for example in participant # 4. Direct obser-
vation of the frames again point to the poor detection of
the right hand, which is closer to the wooden floor, lead-
ing to some missed identifications. It is therefore a point
of limitation given that the hand-object interaction dir-
ectly relies on this pre-processing step due to the serial
architecture of the pipeline. We anticipate that improve-
ments in hand detection will improve the performance
of the overall pipeline. Although minor, variations in
task and injury characteristics may also contribute to
lower accuracy. For example, participant # 6 used a joy-
stick to control their wheel chair. Such activities in-
volved a relatively small movement, which can be
difficult to reliably identify in the egocentric video. As-
pects of participant postures post-injury, such as pro-
nounced curving of the back, were also found to reduce
the Field of View (FOV) of the camera, resulting in the
hand not appearing in the frames.
The functional measures of interest are the number

and duration of hand-object interactions. Given the vari-
ability in activities and labelled video durations between
participants, the measures were summarized using the
amount of total interaction normalized to testing time,
the average duration of individual interactions, and the
number of interactions per hour. A moving average was
applied to reduce noise from short-term fluctuations
caused by a potentially faulty preprocessing step (e.g.
hand detection or segmentation), misclassification, or
fast interaction sub-tasks within an activity. Perhaps
most important is that the moving average highlights
important long-term trends that are obscured by a fra-
mewise analysis of long recordings. Consider the time-
line in Fig. 4, where the moving average of the binary
interaction graph is plotted against time. Here, the tran-
sitions between tasks are clearly observed as changes be-
tween the interaction and non-interaction classes. This
example illustrates the value of capturing these metrics
for the measurement of hand use at home.
The comparison of the predicted and actual values for

the interactions per hour, average duration of interac-
tions, and proportion of interaction time for every par-
ticipant are summarized in Fig. 3. These results indicate
to what extent the conclusions about hand use provided
by the automated system correlate to the results from a
human observer. We found moderate and significant
correlations, which provides evidence for the viability of
this approach, while highlighting the need for continued
improvements in the algorithms used for interaction de-
tection. Deviations between the predicted and actual
metrics are likely a combination of errors in hand detec-
tion, interaction detection, and the filtering process, pro-
viding multiple targets to increase performance. It is also

possible that outliers in the limited number of partici-
pants in this evaluation may have partially skewed the
results, and that a larger dataset would yield a more ro-
bust outcome (e.g., consider the influence of the two
data points with high actual values but low predicted
values in Fig. 3b).
A challenge in extracting hand use metrics based on

frame-by-frame interaction detections is that complex
timelines of interactions (Fig. 4) need to be simplified
into simple outcome units or scores. Further exploration
is warranted in how to best summarize the interactions
taking place over time among a variety of activities, and
in optimizing the normalization used for comparing dif-
ferent recording times. The correlations obtained do
suggest the potential of such metrics for summarizing
the interaction detection, but further evaluation on lar-
ger and more diverse dataset is required.
To the best of our knowledge, the hand-object inter-

action problem has not been studied before in individ-
uals with neurological injuries. Thus, we sought to
understand what types of information were most benefi-
cial to accurate interaction detection. This understand-
ing is crucial in that hand movements or postures may
vary substantially between individuals with SCI having
different patterns of injury or impairment. The analysis
in Table 2 revealed that all the features (optical flow,
HOG and colour histogram) were able to contribute to
the hand-object interaction classification. The combined
features produced the overall highest performance, but
the gain over using a single feature type was minimal.
The average F1-scores when using only optical flow or
when using only HOG were very close, and then
followed by colour histogram. In contrast, in our previ-
ous work with able-bodied participants [28], using only
HOG was found to be more useful than using only op-
tical flow. The fact that this finding no longer held true
with participants with SCI suggests that relying on shape
(i.e., hand posture) may be less beneficial in the presence
of varying levels of impairment and compensatory pos-
tures. Classifiers tailored to different types and severities
of injury could potentially increase the performance
achievable with shape features.
Our validity evaluation focused on a comparison with

manually labelled interaction data, and we did not at-
tempt to correlate the results with existing outcome
measures. The collected dataset consisted of standard-
ized and pre-determined activities. As such, it is not rep-
resentative of the frequency of hand use in a natural
home environment and includes tasks that some partici-
pants may not normally perform on their own. While we
expect that individuals with better hand function may
independently perform UE tasks more frequently in their
daily life, evaluating this relationship will require collect-
ing data in the home in an unscripted manner. In the
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present study, UEMS data was collected for demo-
graphic and study inclusion purposes, but its relation-
ship to the interaction metrics was not investigated, for
the reasons above. With appropriate data collection in
the home, an important extension of our analysis will

include the comparison of the interaction-detection met-
rics with other UE outcomes measures. For example,
greater independent use of the hand would be expected
to correlate with the Graded Redefined Assessment of
Strength, Sensibility and Prehension (GRASSP), which is

Fig. 4 Example binary hand-object interaction graphs of 3 participants. The graphs compare the predicted interactions from the algorithm
output to the actual interactions from the manually labeled data, after applying the moving average filter. Example frames of the activities in
different segments of videos are shown underneath. (a) Participant # 2. (b) Participant # 5. (c) Participant # 9. Note that in some cases the videos
were briefly paused in between the activities shown
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sensitive to fine gradations in hand function after SCI,
or the Spinal Cord Independence Measure III (SCIM),
which aims to quantify independence in the community.
Of note, the actual amount of hand use at home (corre-
sponding to Performance in the revised ICF model [11])
represents a different construct than hand impairment
or the capacity to perform activities, which are more
closely captured by the GRASSP and SCIM. Nonethe-
less, some degree of relationship is still expected. While
these investigations will be the subject of future work in
parallel with continued algorithm improvements, the
present study was required to validate the feasibility of
the interaction detection step before metrics derived
from it (i.e., number and duration of interactions) can be
meaningfully compared to other measures.
Another limitation in this study is that the hands of in-

dividuals other than the user were not analysed. At
home, it would be of great interest to quantify caregiver
assistance by tracking their manipulations of objects in
front of the individual with SCI. The system described
supports the detection of caregiver hands and their asso-
ciated interactions (a valuable metric for reliance on
care). However, limited data of this type was collected in
this study, because participants most often chose to
complete the tasks on their own or skip them com-
pletely, instead of asking for assistance. This behaviour
can likely be explained by the lack of familiarity with the
researchers and the pressure to perform in a research
setting. In the home setting, however, we expect that
more caregiver actions will be captured by the system,
which will provide important information about
independence.
There are remaining technical challenges to be ex-

plored beyond this study, namely the improvement of
the preprocessing steps and computation time. The de-
tection and segmentation of the hand are based on skin
and hand shape characteristics, which can be influenced
by glare and objects with a similar shape or colour to
the hand (e.g. a wooden floor, table, or door). The per-
formance of the overall hand-object interaction system
is dependent on the accuracy of the hand detection and
segmentation steps and can be expected to improve with
them. For example, in a preliminary analysis, only manu-
ally selected frames with good hand segmentation were
used, and the interaction detection performance was
found to be 0.81 for F1-score in 15,471 frames from 3
participants [37]. Secondly, to avoid privacy and usability
concerns for the user [38], the ideal system should be
mobile and process the video in real-time, storing only
the extracted metrics and not the video. Unfortunately,
the proposed algorithm remains computationally expen-
sive for a mobile system. It takes on average 2.70 s per
frame to process hand-object interaction from the input
image frames to the output metrics (Intel- i7-8700

k@4.8GHzOC, DDR4-16GB@3200MHzOC, GTX1080Ti
OC-GDDR5X-11GB, Ubuntu16.04 LTS 64-bit). Lastly,
the performance of the algorithms will need to be evalu-
ated in a wider range of environments, with challenges
that may include imperfect lighting, differences in cam-
era orientation, and more diverse tasks. Thus, a more
varied dataset is needed both for evaluation purposes
and to ensure that model parameters that were selected
empirically here can be refined to yield robust perform-
ance. Improvements using recent computer vision tech-
niques for hand detection and segmentations [39], as
well as better feature selection, have the potential to im-
prove performance and speed.

Conclusions
In this study, we demonstrated the potential of an ego-
centric wearable camera system for capturing an individ-
ual’s functional hand use in the home environment.
Novel outcome measures based on this system have the
potential to fill the research gaps in home-based assess-
ment of the UE in neurorehabilitation, which currently
relies heavily on self-report. We have demonstrated the
feasibility of the interaction-detection process and illus-
trated how this concept can be used to derive meaning-
ful outcome measures, such as the number and duration
of independent, functional object manipulations. More
broadly, our study provides a framework for future re-
search in UE assessment within the broader community.
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