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Abstract

Background: Research efforts in neurorehabilitation technologies have been directed towards creating robotic
exoskeletons to restore motor function in impaired individuals. However, despite advances in mechatronics and
bioelectrical signal processing, current robotic exoskeletons have had only modest clinical impact. A major
limitation is the inability to enable exoskeleton voluntary control in neurologically impaired individuals. This
hinders the possibility of optimally inducing the activity-driven neuroplastic changes that are required for recovery.

Methods: We have developed a patient-specific computational model of the human musculoskeletal system
controlled via neural surrogates, i.e., electromyography-derived neural activations to muscles. The
electromyography-driven musculoskeletal model was synthesized into a human-machine interface (HMI) that
enabled poststroke and incomplete spinal cord injury patients to voluntarily control multiple joints in a
multifunctional robotic exoskeleton in real time.

Results: We demonstrated patients’ control accuracy across a wide range of lower-extremity motor tasks.
Remarkably, an increased level of exoskeleton assistance always resulted in a reduction in both amplitude and
variability in muscle activations as well as in the mechanical moments required to perform a motor task. Since small
discrepancies in onset time between human limb movement and that of the parallel exoskeleton would potentially
increase human neuromuscular effort, these results demonstrate that the developed HMI precisely synchronizes the
device actuation with residual voluntary muscle contraction capacity in neurologically impaired patients.

Conclusions: Continuous voluntary control of robotic exoskeletons (i.e. event-free and task-independent) has never
been demonstrated before in populations with paretic and spastic-like muscle activity, such as those investigated in
this study. Our proposed methodology may open new avenues for harnessing residual neuromuscular function in
neurologically impaired individuals via symbiotic wearable robots.
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Background

The ability to walk directly relates to quality of life.
Neurological lesions such as those underlying stroke and
spinal cord injury (SCI) often result in severe motor im-
pairments (i.e., paresis, spasticity, abnormal joint cou-
plings) that compromise an individual’s motor capacity
and health throughout the life span. For several decades,
scientific effort in rehabilitation robotics has been di-
rected towards exoskeletons that can help enhance
motor capacity in neurologically impaired individuals.
However, despite advances in mechatronics and bioelec-
trical signal processing, current robotic exoskeletons
have had limited performance when tested in healthy in-
dividuals [1] and have achieved only modest clinical im-
pact in neurologically impaired patients [2], e.g., stroke
[3, 4], SCI patients [5].

Two major challenges are hampering progress. The first
is the inability of current systems to enable an individual
patient to voluntarily control the robotic device while in-
ducing positive modulation of neuromuscular activity.
This prevents wearable robots from facilitating the
activity-driven neuroplastic changes that are required for
recovery [6, 7]. The second is an incomplete understand-
ing of how lesions in the central nervous system (CNS)
impact musculoskeletal system function, which impedes
understanding how patients’ motor intentions should be
best supported by a robotic device.

Following a brain lesion, secondary adaptation pro-
cesses occur in the entire musculoskeletal system, i.e., al-
terations of muscles, ligaments and tendons properties
[8]. In stroke survivors, this results in stiffness and dis-
ruption of muscle tone [9] followed by abnormal muscle
contractile dynamics and consequent changes in loco-
motion control paradigms [2]. The scarcity of knowledge
regarding the adaptation mechanisms taking place in the
composite neuromusculoskeletal system has limited our
ability to understand what drives impairment and there-
fore how to restore lost motor capacity via wearable ro-
bots. The development of human-machine interfaces
(HMIs) that can take into account individual patients’
neuromuscular alterations is fundamental for enhancing
the motor function of neurologically impaired patients [7].

HMIs in commercially available robotic exoskeletons
for neurorehabilitation (e.g., Rewalk [10], Lokomat [11]
and LOPES [12]) largely rely on position and impedance
control [13, 14]. In these approaches, the robotic exo-
skeleton creates joint trajectories or force fields along
predefined kinematic profiles previously extracted from
healthy populations [15, 16]. However, this does not fully
engage the patient, hampering the emergence of positive
neuroplasticity [17], with limited rehabilitation outcomes
with respect to conventional therapy [4, 5]. Noncom-
mercial robotic exoskeletons use more complex schemes
including HMIs inspired by mechanical principles, e.g.,

(2019) 16:91

Page 2 of 18

predefined moment patterns triggered at specific phases of
the gait cycle [18-20]. These approaches were recently
applied to poststroke and cerebral palsy individuals
[19, 21, 22]. However, such approaches are limited to
supporting a cyclic gait under specific patterns and
speeds, thus limiting the patient’s self-pacing and vol-
untary control of the exoskeleton. A generalization of
these methods was proposed via human-in-the-loop para-
digms where moment patterns for the exoskeleton are opti-
mized online to reduce the metabolic cost of locomotion [1].
Human-in-the-loop optimization, however, operates on large
time scales. That is, for the wearable robot to react and adapt
to movement variations, the controller needs to process sev-
eral minutes of metabolic data (ie, >20min), limiting
current applications to healthy individuals only. Alternative
approaches use sensitivity amplification control algorithms,
where exoskeleton sensory information (ie., interaction
forces) is used to generate control commands [23, 24]. How-
ever, this paradigm does not provide support until the patient
has produced detectable mechanical force or movement,
thus critical in severely impaired individuals [25]. As a result,
this has not been employed in patients to provide neuromus-
cular effort reduction [26].

Other HMI schemes rely on bioelectrical signals re-
corded from muscles or brain areas [27]. These methods
could potentially enable exoskeletons to promptly re-
spond and adapt to the patient’s motor intention, a cen-
tral aspect of neurorehabilitation robotics [2, 7, 25].
Current schemes include neuro-fuzzy approaches [28] or
proportional myocontrol methods [29-31] that use elec-
tromyograms (EMGs), sometimes in conjunction with
foot-ground reaction forces, to generate direct control
commands. However, these methods do not account for
the nonlinearity between EMG amplitude and muscle
mechanical force, the effect of which is especially im-
portant in neurorehabilitation [32—-34]. As a result, these
methods would not always enable optimal computation
of exoskeleton assistive moments proportionally to the
patient’s force-generating capacity [35, 36]. This ultim-
ately hinders patient-machine synchronization and limits
the patient’s ability to control the exoskeleton voluntar-
ily. Moreover, methods based on proportional myocon-
trol and foot-ground reaction forces [29, 30] are
designed for cyclic locomotion where the subject re-
ceives support during a specific part of the gait cycle.
These methods rely on detection of pre-defined gait
events (e.g. foot-ground contact) and are tuned for a
specific motor task (e.g. ground-level locomotion) and
joint. Overall, this does not enable continuous (event-
free and task-independent) control of robotic exoskel-
etons. Alternative bioelectrical signals such as electro-
encephalograms [37-40] are currently limited in the
context of robotic exoskeletons due to signal high
sensitivity to movement artifacts [41].



Durandau et al. Journal of NeuroEngineering and Rehabilitation

We have developed an HMI based on EMG-driven mus-
culoskeletal modeling. This approach accounts for the form
and function of the human neuromusculoskeletal system in
neurologically impaired patients with paresis. We tested it in
a wheelchair-bound patient with incomplete SCI and in two
chronic hemiparetic poststroke survivors with residual walk-
ing capabilities. Although EMG-driven musculoskeletal
modeling was previously employed in conjunction with ro-
botic devices [42—44] it was never applied to neurologically
impaired individuals to demonstrate neuromuscular activity
reduction. To the best of our knowledge, our results demon-
strate the first model-based HMI that enables neurologically
impaired patients to voluntarily control multiple degrees of
freedoms (DOFs) in complex robotic exoskeletons. Import-
antly, the results demonstrate that increased levels of exo-
skeleton assistance induced a positive modulation of
neuromuscular activity across a large repertoire of motor
tasks. This was reflected in a reduction in both the ampli-
tude and the variability of muscle activations as well as in
the resulting human joint moments required to perform a
motor task. Since small discrepancies in onset time between
human limb movement and that of the parallel exoskeleton
can significantly increase human muscle effort [1], our re-
sults demonstrate that the proposed approach can precisely
synchronize device actuation with human muscle contrac-
tion, which is especially challenging in pathological popula-
tions with paretic and spastic-like muscle activity.

With neurorehabilitation in mind, it is important
stressing that the goal of our HMI is not that of redu-
cing the operator’s EMGs per se. The goal is rather that
of amplifying the subject’s force-generating capacity to
enable the mechanical moments necessary to execute
motor tasks that could not otherwise be performed with-
out the support of the exoskeleton. The overarching goal
of the experiments presented in this paper was to enable
neurologically impaired patients to voluntarily control a
multi-DOF robotic exoskeleton while receiving positive
physical assistance [15]. In particular, the major objec-
tives of this study were to test whether I) both healthy
subjects and neurologically impaired patients could vol-
untarily control the angular position of the exoskeleton
multiple joints accurately and II) whether our proposed
framework could modulate the neuromuscular activity
of healthy subjects and neurologically impaired patients
(i.e., their muscle activations and resulting moments) as
a function of different exoskeleton assistance levels with
no loss of joint control accuracy.

Methods

We developed a computational patient-specific model of
the human lower-extremity musculoskeletal system (Fig. 1).
This enabled estimating the mechanical force produced in
12 lower-extremity musculotendon units (MTUs, Table 1)
as well as the resulting moments about knee flexion-
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extension and ankle plantar-dorsiflexion DOFs. Subject-
specific models were built individually for four healthy indi-
viduals, one incomplete SCI patient and two hemiparetic
stroke patients (Table 2).

We demonstrated the feasibility of using real-time
model-based joint moment estimates for the voluntary
control of a robotic exoskeleton throughout a large rep-
ertoire of ankle-knee motor tasks. Our proposed frame-
work schematic is depicted in Fig. 1. First, we describe
the computational modeling framework structure. Then,
we describe the movement data recording and testing
protocol.

Computational modeling framework

EMG-driven musculoskeletal modeling framework

We developed an online framework that computes joint
moments from EMG signals based on our previous works
[45-47]. The framework comprises five main components
(Fig. 1). The EMG plugin component (Fig. la) provides
direct TCP/IP connection with the external EMG system.
It records EMGs produced by active electrodes and sends
them to the EMG-driven model component.

The exoskeleton plugin component (Fig. 1b) records exo-
skeleton sensory information including human-exoskeleton
interaction moments via strain gauges placed on every DOF,
as well as the motor moments recorded via motor currents.
This plugin assures the transmission of joint moments esti-
mated via the EMG-driven model to the robotic exoskeleton.

The musculotendon kinematics component (Fig. 1c) syn-
thesizes MTU paths defined in the subject-specific geom-
etry model (see Experimental procedures section below)
into a set of MTU-specific multidimensional cubic B-
splines. Each B-spline computes MTU length and moment
arms as a function of input joint angles [48]. It enables fast
and accurate computation of smooth MTU kinematics,
which is central for subsequent moment calculation [48].

The EMG-driven model component (Fig. 1c) converts
eight input EMG signals into neural activation for 12
MTUs, as presented in Table 1. This is done using a
2nd-order twitch model (Eq. 1) and a nonlinear transfer
function (Eq. 2) [35, 47]:

uj(t) = aej(t-d)-Pyu;(t-1)-Pu;(t-2) (1)
uj(t) _
) = Tt @)

where 1(t) is the postprocessed EMG, ¢e((?) is the filtered
EMG, «a is the filtering gain coefficient, §; and S, are the
recursive coefficients, d is the electromechanical delay,
aj(t) is the muscle activation, A is the nonlinear shape
factor and j is the muscle index. MTU-specific neural ac-
tivation is used in combination with muscle and tendon
kinematics to solve for the dynamic equilibrium between
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Fig. 1 Schematic representation of the real-time modeling framework and its communication with the robotic exoskeleton. The whole
framework is operated by a Raspberry Pi 3 single-board computer. The framework consists of five main components: a The EMG plugin collects
muscle bioelectric signals from wearable active electrodes and transfers them to the EMG-driven model. b The B-spline component computes
musculotendon length (Lmt) and moment arm (MA) values from joint angles collected via robotic exoskeleton sensors. ¢ The EMG-driven model
uses input EMG, Lmt and MA data to compute the resulting mechanical forces in 12 lower-extremity musculotendon units (Table 1) and joint
moment about the degrees of freedom of knee flexion-extension and ankle plantar-dorsiflexion. d The offline calibration procedure identifies
internal parameters of the model that vary non-linearly across individuals. These include optimal fiber length and tendon slack length, muscle
maximal isometric force, and excitation-to-activation shape factors. @ The exoskeleton plugin converts EMG-driven model-based joint moment
estimates into exoskeleton control commands. Please refer to the Methods section for an in-depth description

Table 1 EMG-to-MTU mapping

Recorded muscle EMG  Musculotendon unit (MTU)

Gastrocnemius
medialis

gastrocnemius lateralis and gastrocnemius
medialis

Tibialis anterior tibialis anterior

Soleus soleus

Vastus lateralis vastus intermedius, vastus lateralis

Vastus medialis vastus intermedius, vastus medialis

Semimembranosus semimembranosus, semitendinosus

Biceps femoris biceps femoris short head, biceps

femoris long head

Rectus femoris rectus femoris

Muscle groups from which experimental electromyography (EMG) signals were
recorded and the associated musculotendon units (MTUs) in the
computational modeling framework (Fig. 1c) that were driven by these EMG
signals. In this study, the gastrocnemius medialis EMG also drove the
gastrocnemius lateralis MTUs. The vastus intermedius EMG activity was
calculated as the mean between the vastus lateralis and vastus medialis EMG
signals. The long head and short head of the biceps femoris were driven by
the same EMG signal. The same applied to the semimembranosus

and semitendinosus

fibers and series elastic tendons in the computation of
muscle force using a Hill-type muscle model (Eq. 3) [49]:

F™ = F' = F" cos(p(I"™)) o)
= |a@f ") f(v") +fp(lm):| E™ cos(¢(I™))

where F™ is the muscle-tendon force, F* is the tendon
force, F” is the fiber force ,¢(I"") is the pennation angle, [’
is the fiber length, v is the fiber velocity, fil") is the force
due to the fiber force-length relationship, f{v"”) is the force
due to the fiber force-velocity relationship, f,(I") is the
force due to the passive force-length relationship and a(t)
is the muscle activation from Eq. 2. Computed muscle-
tendon forces are subsequently transferred onto skeletal
joints via moment arms (from the musculotendon kine-
matics component) to compute resulting moments about
two sagittal DOFs. These included knee flexion-extension
and ankle plantar-dorsiflexion. Estimated joint moments
are used to compute exoskeleton control command as fol-
lows (Eq. 4):

7e(t) = M;j(um,(£), P(£))xG (4)

where 7. is the exoskeleton control command, M; is the es-
timated moment for joint j, u_{m_j} is the postprocessed



Durandau et al. Journal of NeuroEngineering and Rehabilitation (2019) 16:91 Page 5 of 18
Table 2 Characteristics of the subjects investigated

Subject Age (years) Weight (kg) Height (cm) Physical condition Duration of impairment
Healthy 1 27 75 177 N/A N/A

Healthy 2 34 67 182 N/A N/A

Healthy 3 30 73 171 N/A N/A

Healthy 4 31 82 182 N/A N/A

Stroke 1 72 50 162 Ischemic Stroke 43 months

Stroke 2 37 85 165 Hemorrhagic Stroke 15 months

Nl 34 75 168 Incomplete SCI 38 months

Descriptions of healthy individuals and recruited stroke and spinal cord injury (SCI) patients

EMG of muscle 7 spanning joint j, P; is the angular position
of joint j, and G is the gain that determines the exoskel-
eton assistance level. The gain G, once chosen, remains
constant throughout the experiment. Therefore, for a
chosen G, there is a fixed mapping between EMG and exo-
skeleton control commands.

The model-calibration component (Fig. 1d) identifies
subject-specific model parameters that vary nonlinearly
across subjects’ anthropometric features and force-
generating capacities. These include the muscle twitch ac-
tivation/deactivation time constants, EMG-to-activation
nonlinearity factor, muscle optimal fiber length, tendon
slack length, and muscle maximal isometric force. The ini-
tial nominal parameters are repeatedly refined as part of a
least-squares optimization procedure so that the mis-
match between the EMG-driven model’s predicted joint
moments and those measured by the strain gauges of the
robotic exoskeleton is minimized [50].

The low-level exoskeleton controller (Fig. 1le) transfers
joint moment estimates to the main exoskeleton PID
controller [15], which distributes moment commands to
the motor drive and microcontroller (STMicroelectro-
nics, Switzerland) of each joint.

Communication framework

The whole real-time modeling framework (Fig. 1) operates
on a portable low-power embedded system (Raspberry Pi
3, Raspberry Pi Foundation, UK) with a quad-core pro-
cessing unit (1.20 GHz) and 1 GB of RAM memory. A
custom board was built to digitalize EMG data recorded
from active sensors with built-in hardware filtering
(13E200, OttoBock, Duderstadt, Germany). The custom
board was further connected to a wearable computer
board through a Serial Peripheral Interface (SPI) bus to
enable bidirectional communication. The robotic exoskel-
eton was connected to the embedded system running the
modeling framework via a controller area network (CAN)
protocol and a CAN board (Pican2, SP Pang, UK).

Experimental procedures
Experimental procedures were divided into two parts,
conducted on two consecutive days. The first part

established the personalized musculoskeletal model and
exoskeleton configuration, i.e., identified subject-specific
model parameters and alignment of the human-to-
exoskeleton DOF center of rotation. The second part
encompassed the exoskeleton voluntary control experi-
ments reported in the Results section.

First part — musculoskeletal model and exoskeleton
personalization

Motion capture data were recorded (150 Hz) using a
seven-camera system (BTS S.p.A., Italy) and a set of 29
retroreflective markers placed on anatomic landmarks
on the individual’s lower extremities (bilaterally), pelvis,
and trunk [46]. Data were recorded during one static
anatomical pose and used in conjunction with the open-
source software OpenSim [51] to scale a generic model
of the human trunk-pelvis-lower extremity musculoskel-
etal geometry to match the subject’s anthropometric fea-
tures. The OpenSim musculoskeletal geometry model
had five lower-extremity DOFs (per extremity side), in-
cluding hip flexion-extension, internal-external rotation,
adduction-abduction, knee flexion-extension, and ankle
plantar-dorsiflexion. The model included 12 musculo-
tendon units (per lower extremity, i.e., Table 1) and was
taken from the literature [52]. During the scaling
process, virtual markers were placed on the generic
musculoskeletal geometry model based on the position
of the experimental markers from the static pose. The
musculoskeletal geometry model scaling procedure ad-
justed the anthropomorphic properties of anatomical
segments (i.e., size, mass and inertial properties) as well
as MTU insertions and origins and MTU-to-bone wrap-
ping points. These properties were linearly scaled on the
basis of the relative distances between the actual sub-
jects’ experimental and corresponding virtual markers
[51]. Subsequently, musculotendon parameters were
identified, including optimal fiber length and tendon
slack length. Because these do not scale proportionally
across anthropometric profiles, we employed nonlinear
optimization [53]. This was used to iteratively adjust
both optimal fiber length and tendon slack length to
maintain the consistency of the normalized fiber length-
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joint angle relationship between an individual and a
generic musculoskeletal model across the joint range of mo-
tion. This provided initial values for the model-calibration
procedure (Fig. 1d) described in the Computational modeling
framework section.

Subsequently, subjects wore the robotic exoskeleton
for joint alignment. EMG signals were measured (1000
Hz) from eight thigh and shank muscles (Table 1) using
dry non-disposable bipolar electrodes (13E200 MyoBock,
OttoBock Health Care, GmbH, Germany). Each individual
was asked to perform maximal voluntary contractions
(MVCs) in isometric conditions with the exoskeleton con-
straining knee and ankle rotations to predefined arrange-
ments: 45 deg. knee flexion and 0 deg. ankle dorsiflexion.
EMG electrodes provided on-board hardware preamplifi-
cation and filtering to generate output linear envelopes.
The resulting envelope peak-processed values were used
for EMG normalization. EMG peak values were automat-
ically obtained and saved to a file. The associated joint
moment produced during these MVC contractions was
not recorded and not used in the subsequent experiments.

After MVCs, subjects performed an additional five cy-
cles of isometric knee flexion-extension followed by five
cycles of ankle plantar-dorsiflexion with each joint fixed
in an angular position corresponding to the middle of its
range of motion (ROM). During these tasks, the exoskel-
eton built-in strain gauges measured the sagittal knee
and ankle joint moments exchanged between the user
and the exoskeleton structure. The measured moments
were used for the model-calibration step (Computational
modeling framework section, Fig. 1d). The paretic pa-
tients were instructed to reach their maximal moment
contraction, whereas healthy subjects were instructed to
exert only a fraction of maximal moment (between +25
and £ 40 Nm) due to strain gauge sensing limits (max-
imum range of +50 Nm). After calibration, the gains for
different exoskeleton support levels were determined, in-
cluding low-gain (LG) and high-gain (HG) support (see
Additional file 3: Table S2 for the gain selected for the
patients). The LG value was tuned to provide a comfort-
able, perceptible level of assistance. The HG value was
manually tuned to achieve an increase of approximately
50% in exoskeleton moment for the same EMG level
with respect to the LG condition. These gains were also
empirically and individually adjusted, accounting for
each subject’s feedback during the outside the exoskel-
eton (OUT-type) conditions (see section below).

Second part - exoskeleton voluntary control tests

The calibrated subject-specific EMG-driven model was
employed in real time to test individuals’ voluntary con-
trol of the robotic exoskeleton. First, subjects seated in a
medical chair outside the robotic exoskeleton. The exo-
skeleton was firmly secured next to the subject via a
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custom-made support, i.e., OUT-type tests. This enabled
quantifying the influence of our proposed EMG-driven
musculoskeletal model alone on both exoskeleton con-
trol accuracy and neuromuscular activity, i.e., without
the physical support provided to the user’s leg by the ro-
botic exoskeleton. This was central for assessing whether
robotic assistance could be determined purely from pa-
tients’ voluntary neuromuscular function. Second, the
subjects wore the exoskeleton, i.e., inside the exoskel-
eton (IN-type) condition tests. This enabled observing
the behavior of the composite human-exoskeleton sys-
tem, i.e., our proposed model-based HMI in conjunction
with the physical support provided to the human by the
robotic exoskeleton. This was used to verify whether
human-exoskeleton synchronization could be achieved
to enable neuromuscular effort reduction. Both OUT-
and IN-type tests included single-DOF (i.e., the ankle or
knee joint individually) and multi-DOF control tasks
(i.e., the ankle and knee simultaneously).

During the single-DOF tasks, subjects were instructed
to perform a series of joint rotations that enabled the
exoskeleton joints to be moved to track a monitor-
displayed reference trace. Rotations were performed first
with the ankle joint and then with the knee joint. For
each joint, rotations were performed first with low sup-
port gain and then with high support gain. This involved
moving the exoskeleton knee or ankle joint to track a
joint angle trajectory that spanned a predefined ROM
for each joint. ROMs were specifically adjusted for the
stroke and SCI patients to avoid joint overextension that
would overstretch the muscles, since the patients’ mus-
cles were found to be stiffer than those of healthy indi-
viduals (Table 3). Figures 2 and 3 depict the single-DOF
trajectories. Each tracking trial was designed to last for
30 s. Each trial was repeated five times.

During the multi-DOF tasks, the reference motions to
be tracked involved simultaneous knee flexion-extension
and ankle plantar-dorsiflexion. Table 3 reports subject-
specific ROMs selected for the participants. Subjects were
presented with a graphical user interface displaying real-
time information about the kinematic arrangement of the
robotic exoskeleton via a stick figure depicted in blue
(Fig. 4). A second stick figure, depicted in green, repre-
sented the target stick figure to be reached over time (Fig.
4 and Additional file 1: Movie S1). The multi-DOF tests
were performed first with low support gain and then with
high support gain. Each trial was repeated 5 times for the
healthy subjects and up to 5 times for the patients.

Robotic exoskeleton

All tests were performed using a multi-jointed robotic
exoskeleton (H2, Technaid, Spain) equipped with six sa-
gittal non-back-drivable motors (Maxon, Switzerland)
with harmonic drive (Harmonic Drive, US), i.e., three
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Table 3 Range of motion (in degrees) employed during experiments

Subject Knee angle (OUT-type) Ankle angle (OUT-type) Knee angle (IN-type) Ankle angle (IN-type)
Healthy —-80 to —40 -10to 10 —-80 to —40 -10to 10

Stroke 1 —80 to —40 0to15 N/A N/A

Stroke 2 —80 to —40 -10to 10 —80 to —40 -10to 10

Sl —80 to — 40 -10to 10 —70 to =50 -10to 10

Ranges of motion were personalized for each recruited patient to avoid muscle overstretching and testing outside of safe boundaries. Knee flexion and ankle

plantar-dorsiflexion are indicated by negative angles

motor-drives per leg side. The actuated DOFs were hip
flexion-extension (20 deg. flexion, 100 deg. extension),
knee flexion-extension (100 deg. flexion, 0deg. exten-
sion), and ankle plantar-dorsiflexion (20 deg. for both
plantar flexion and dorsiflexion). The robotic exoskel-
eton had six strain gauges (i.e., one per joint) for meas-
uring human-exoskeleton joint interacting moments and
four foot switches for measuring foot-ground inter-
action. In this study, we employed a low-level PID con-
troller for each motor that operated in the moment
domain. The PID was fine-tuned for moment tracking
across a range of mechanical loads [15]. The robotic
exoskeleton was powered by a lithium-ion battery with
five-hour autonomy.

Human participants

We recruited four healthy subjects along with three
neurologically impaired patients, including one patient
with SCI and two chronic hemiparetic stroke patients
(Table 2). These patients were selected because repre-
sentative of the majority of the paretic patient popula-
tion [54], for whom the effectiveness of rehabilitation
robotics with respect to classic rehabilitation has not
been demonstrated quantitatively yet [4, 5]. Experiments
were conducted on each patient’s most affected side, in-
volving voluntary rotation of two sagittal DOFs in the
knee and ankle joints. The dominant leg was used for
the experimental tests in healthy individuals. The SCI
patient did not participate in the multi-DOF OUT-type
test due to time constraints, and stroke patient 1 did not
participate in the IN-type test.

Numerical analysis

We quantified the model real-time performance via
mean computation time and standard deviation across
all simulation frames from all subjects and tasks. The
95% confidence interval was estimated using Cheby-
shev’s theorem, ie. expected value=mean +4.47std.
This could be applied with no assumptions about the
normality of computation time distributions. Similarity
metrics between reference and exoskeleton joint kine-
matic trajectories were assessed via the Pearson product-
moment correlation coefficient and the root mean

square error for the two considered conditions (IN-type
and OUT-type).

Across all tests, data analysis was performed using Py-
thon and the NumPy library [55]. In Experiments 1 and
2 (see Results section, Fig. 7, Additional file 3: Figures
S3 andS4), we verified whether our framework could in-
duce EMG amplitude reduction while assuring no loss
of reference kinematic tracking performance. The histo-
grams (Fig. 7, Additional file 3: Figures S3 and S4) repre-
sent the cumulative sum of the mean normalized EMG
for each muscle Standard deviation (Eq. 5) was used (Eq.
5) to quantify EMG variability:

where N is the number of EMG samples, x; is the EMG
sample for time-frame i, and X is the mean across all
EMG samples. In Experiment 3 (i.e., see Results section,
Fig. 6, Additional file 3: Figure S8), overall reduction in
EMG variability was visualized via cumulative standard
deviation as well as via normalized cumulative standard
deviation. The cumulative EMG variability depicted in
Fig. 6 (upper graphs) was computed as follows:

muscles

Z Xstd,, (6)
m=1

where x_{std_m} is the standard deviation for muscle m
computed over all EMG samples and repetitions. The
normalized standard deviation for each muscle (Fig. 6,
lower graphs) was computed using the following
equation:

_ Xstd,,
Xstd,, = ¥ = (7)
‘mean,,

where x_{std_m} is the same term appearing in Eq. 6
and x_{mean_my} is the mean EMG computed across all
samples and repetitions for a given muscle.
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The results are reported both for the individual control of the exoskeleton ankle plantar-dorsiflexion DOF and for that of the exoskeleton knee flexion-
extension DOF. EMGs are relative to muscles, including the biceps femoris (BF), rectus femoris (RF), semimembranosus (S), vastus lateralis (VL) and
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Results

Tracking accuracy of single-DOF trajectories under
different assistance levels

The first test assessed subjects’ ability to control exoskel-
eton ankle and knee DOFs individually to track monitor-
displayed reference trajectories, i.e., Figs. 2 and 5, Add-
itional file 1: Movie S1. This assessed how tracking accur-
acy varied as a function of increasing robotic exoskeleton
assistance levels, ie., from LG to HG. During single-DOF
tasks, the subjects were in full control of the robotic exo-
skeleton’s knee and ankle DOFs.

Figures 2 and 5, respectively, show results for the OUT-
and IN-type tests for both ankle plantar-dorsiflexion and
knee flexion-extension. Results are presented for two stroke
patients, one SCI patient and two representative healthy
subjects. The results from the remaining subjects are re-
ported in Additional file 3: Figures S1 and S2. Figure 3
shows that across all healthy subjects, test types (OUT and
IN), DOFs, and gains (LG and HG), the maximal tracking
errors were always < 8 degrees with a correlation coefficient
always > 0.85. Tracking errors for the patients were on aver-
age 5.5 + 3.1 degrees with correlation coefficients always >
0.6 during IN-type tests. However, during OUT-type tests
with LG, tracking errors reached higher values for the SCI
patient (i.e., 13+7 degrees) these substantially decreased
when employing HG assistance levels (i.e, 64+ 6.1 de-
grees). Overall, HG assistance offered comparable or re-
duced tracking capacity with respect to LG assistance but
was still within acceptable boundaries (Fig. 3).

Specifically, for the ankle joint during OUT-type tests
(Figs. 3 and 5), the mean tracking error and standard devi-
ation (std) across healthy subjects and patients, respectively,
measured 1.58 + 1.64 degrees (LG) and 1.77 + 1.6 degrees
(HG), while the correlation coefficients were 0.88 +0.10
(LG) and 0.86 £ 0.14 (HG). During IN-type tests (Figs. 2
and 3), the tracking error measured 1.45+1.35 degrees
(LG) and 1.41 + 1.28 degrees (HG), with correlation coeffi-
cients of 0.94 + 0.04 (LG) and 0.93 + 0.06 (HG). During the
OUT-type tests (Figs. 3 and 5), for the knee joint control,
the tracking error measured 5.8 + 3.98 degrees (LG) and
5.01 +3.62 degrees (HG), with correlation coefficients of
0.81 +0.27 (LG) and 0.90 £ 0.09 (HG). During IN-type tests
(Figs. 2 and 3), the tracking errors measured 4.06 + 2.55 de-
grees (LG) and 4.58 + 2.61 degrees (HG), with correlation
coefficients of 0.90 + 0.16 (LG) and 0.92 + 0.07 (HG).

Modulation of neuromuscular activity

The second test quantified the effect of our proposed model-
based HMI on the modulation of neuromuscular activity.
This was evaluated by examining modulations in normalized
EMG and resulting mechanical joint moment amplitudes.
Across all experiments, both EMG and resulting moments
displayed the largest reduction during the IN-type tests for
both healthy participants and patients; see Figs. 4 and 7.

Single-DOF experiments
For the ankle joint during OUT-type tests (Fig. 5), the
cumulative EMG amplitude (i.e., sum of the mean EMG)
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vastus medialis (VM), soleus (So), gastrocnemius medialis (Ga) and tibialis anterior (TA), as presented in Table 1

LG HG —— Target

decreased for all healthy subjects and patients from LG
to HG. The cumulative EMG decreased from 0.04 + 0.03
to 0.02 £ 0.001 for healthy subject 1, from 0.08 + 0.04 to
0.04+0.01 for healthy subject 2, from 0.12+0.06 to
0.08 + 0.04 for healthy subject 3 and from 0.07 + 0.008 to
0.04 + 0.004 for healthy subject 4. The cumulative EMG

decreased from 0.03 + 0.02 to 0.01 + 0.008 for stroke pa-
tient 1, from 0.16 + 0.03 to 0.13 + 0.08 for stroke patient
2 and from 0.43 + 0.07 to 0.35 + 0.04 for the SCI patient.

For the ankle joint during IN-type tests (Fig. 2,
Additional file 3: Figure S3), cumulative EMG amplitude
decreased from LG to HG, for all healthy subjects and
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Fig. 5 Tracking task performance during single-DOF OUT-type tests. Exoskeleton joint angular position, electromyogram (EMG) data and model-
based estimates of joint moments are reported during tasks with one degree of freedom (DOF). Data are reported as averages across all tracking
trials with standard deviations (shaded area). They are reported for the low-gain (LG) and high-gain (HG) exoskeleton assistance levels and as a
function of percent cycle, i.e, where 0 and 100%, respectively, represent the beginning and the end of the tracking trajectory (Target). Target
trajectories are personalized to each patient (Table 3) as detailed in the Methods section. The results are relative to tests outside of the
exoskeleton, i.e,, OUT-type. Data are reported for two representative healthy subjects (Healthy 1-2), two stroke patients (Stroke 1-2) and one
incomplete spinal cord injury (SCI) patient. The results are reported both for the individual control of the exoskeleton ankle plantar-dorsiflexion
DOF and for that of the exoskeleton knee flexion-extension DOF. EMGs are relative to muscles including the biceps femoris (BF), rectus femoris
(RF), semimembranosus (S), vastus lateralis (VL) and vastus medialis (VM), soleus (So), gastrocnemius medialis (Ga) and tibialis anterior (TA), as
shown in Table 1. The EMG for the SCI patient has a large offset due to the high amplification needed

patients, i.e., healthy subject 1 (from 0.16 +£0.01 to
0.02 £ 0.001), healthy subject 2 (from 0.09 +0.04 to
0.06 + 0.005), healthy subject 3 (from 0.14+0.02 to
0.07 £ 0.06) and healthy subject 4 (i.e., from 0.04 + 0.03
to 0.01 +£0.009). For stroke patient 2, we observed a
small increase from 0.12 +0.06 to 0.13 + 0.07, whereas
the SCI patient showed a small reduction from 0.40 +
0.03 to 0.39 £ 0.007.

For the knee during OUT-type tests (Fig. 5), we ob-
served decreases or steady values for all healthy subjects
and patients. This corresponded to a change in EMG
amplitude from 0.04+0.006 to 0.03+0.01 for healthy
subject 1, from 0.30 + 0.03 to 0.12 + 0.06 for healthy sub-
ject 3 and from 0.02+0.02 to 0.04+0.02 for healthy
subject 4. For healthy subject 2, we observed an un-
altered signal level (ie., a reduction of 0.001). For users
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with paresis, we observed reductions from 0.11 + 0.06 to
0.07 £0.02 for stroke patient 1, from 0.11+0.01 to
0.08 + 0.04 for stroke patient 2 and from 0.65 + 0.05 to
0.52 £ 0.06 for the SCI patient.

For the knee in the IN-type tests (Fig. 2, Additional file 3:
Figure S4), we observed reductions in EMG amplitude for
all healthy subjects and patients. Specifically, the amplitude
changed from 0.21 + 0.02 to 0.04 + 0.003 for healthy subject
1, from 0.07 + 0.01 to 0.03 + 0.01 for healthy subject 2, from
0.23+0.04 to 0.12 +£0.003 for healthy subject 3 and from
0.05 £ 0.01 to 0.02 £ 0.01 for healthy subject 4. Among the
patients with paresis, we observed a reduction from 0.09 +
0.3 to 0.07 £0.01 for stroke patient 2 and 0.215 + 0.01 to
0.209 + 0.001 for the SCI patient.

Model-based estimates of joint moments were always
modulated in response to EMG activity, as shown in
Figs. 2 and 5, Additional file 3: Figures S1 and S2. Both
knee and ankle joint moments displayed decreases in
their mean values from the LG to the HG assistance
level. This was observed for both healthy subjects and
patients, with the largest reductions observed during the
IN-type tests. Additional file 3: Table S1 provides de-
tailed quantitative values.

Multi-DOF experiments

This testing condition assessed whether EMG and joint
moment amplitude reduction could be observed in tasks
relying on larger muscle sets and control of multiple
joints. Reference motions to be tracked involved simultan-
eous knee flexion-extension and ankle plantar-
dorsiflexion, as shown in Additional file 2: Movie S2.

All subjects and patients were able to control the multi-
DOF robotic exoskeleton and match the target positions
during both OUT-type (Additional file 3: Figures S5-S7)
and IN-type tests (Fig. 4). Figure 7 shows that the robotic
exoskeleton assistance resulted in a consistent decrease in
cumulative EMG amplitude across all subjects. During
OUT-type tests (Additional file 3: Figures S5-S7), cumula-
tive EMG amplitude decreased for all healthy subjects and
patients between LG and HG. The EMG amplitude de-
creased for healthy subject 1 (from 0.21+0.02 to 0.12 +
0.02), subject 2 (from 0.64 + 0.16 to 0.46 + 0.27), subject 3
(0.91 £ 0.1 to 0.70 + 0.23) and subject 4 (from 0.24 + 0.05
to 0.16+£0.02). Among patients, the cumulative EMG
amplitude decreased for stroke patient 1 (from 0.20 + 0.03
to 0.19+0.03) and stroke patient 2 (from 0.35+0.10 to
0.27 + 0.05). Quantitative data are not available for the SCI
patient, who did not perform this test.

During IN-type tests (Figs. 4 and 7, Additional file 3:
Figures S5 and S6), increased exoskeleton assistance re-
sulted in EMG reduction for most healthy subjects and
all patients, ie., 0.61 +0.003/0.27 +0.06 (LG/HG) for
healthy subject 1, 0.64 + 0.19/0.84 + 0.2 for healthy sub-
ject 2, 0.62+0.03/0.25+0.03 for healthy subject 3,
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0.21 + 0.04/0.14 + 0.03 for healthy subject 4, 0.69 + 0.14/
0.36 £ 0.14 for stroke patient 2 and 0.90 + 0.18/0.89 +
0.005 for the SCI patient. Quantitative data are not avail-
able for stroke patient 1 who did not perform this test.

Model-based estimates of joint moments were always
modulated in response to EMG activity, with knee and
ankle joint moments displaying decreases in their mean
values from the LG to the HG assistance levels. This
was reflected in both healthy subjects and patients,
with the largest reductions observed during IN-type
tests (Additional file 3: Table S1).

Variability of neuromuscular activity

The third test assessed the extent of variability in EMG
amplitude across exoskeleton assistance levels and tasks,
as described by Eq. 6. An index of normalized variability
was also computed (Eq. 7) to enable comparison be-
tween the LG and HG assistance levels while controlling
for mean EMG amplitude. The results showed that in-
creased assistance levels resulted in reduced EMG vari-
ability across all patients (Fig. 6, Additional file 3: Figure
S8), which may have practical consequences for neuro-
logically impaired patients who are affected by spastic
(and thus highly variable) EMG activity.

During OUT-type tests (Additional file 3: Figure S8),
EMG variability across all trials (i.e., both single- and multi-
DOF) decreased for stroke patient 1 (from 0.48 to 0.38) and
stroke patient 2 (from 0.82 to 0.57). After normalization,
the variability decreased for stroke patient 2 (from 22.8 to
22.2) and increased for stroke patient 1 (15.2 to 17.2).

During the IN-type tests (Fig. 6), the EMG variability
across all trials (i.e., both single- and multi-DOF) de-
creased for stroke patient 2 (1.24 to 0.67) and for the
SCI patient (from 0.83 to 0.58), as shown in the top row
histograms in Fig. 6. Similarly, after normalization, the
variability decreased for stroke patient 2 (from 26 to 21)
and for the SCI patient (from 6 to 4.2), as shown in the
bottom row of histograms in Fig. 6.

Computational time

Across all subjects and tests, the proposed framework
generated exoskeleton control commands with an aver-
age computational time of 7 £ 3.7 ms — specifically, 5.6 +
3.3ms for the EMG-driven modeling and 1.3 + 0.4 ms
for the moment arm and tendon-muscle length. In this
study, 95% of the control commands produced in a sin-
gle time frame were generated within 14 ms. This is well
below the length of the muscle electromechanical delay,
i.e., ~30-80ms [56], as well as the human perceivable
delay in motor execution, i.e., ~ 250 ms [57, 58].

Discussion
We developed and tested a model-based HMI for the
voluntary control of a wearable robotic exoskeleton. We
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validated it in one wheelchair-bound SCI patient, two
hemiparetic chronic stroke patients with residual walk-
ing capabilities and four additional healthy individuals.
To the best of our knowledge, this study provides the
first HMI that enables neurologically impaired patients
to voluntarily control multiple DOFs in robotic exoskel-
etons while inducing a positive modulation of neuro-
muscular activity, i.e., reduction of both neuromuscular
amplitude and variability.

Assessing the benefit of robotic devices for enhancing
neurologically impaired patients’ movement is challenging.
In this study, we focused on quantifying our model-based
HMI ability of modulating EMG amplitude and variability
as a function of assistive support levels. The focus was to
amplify human mechanical function in a clinically viable
way. This was realized by enabling generation of mechan-
ical joint moments using reduced EMG activity via active
exoskeleton support.

We established a numerical model of the human mus-
culoskeletal system that could be scaled and calibrated

to match an individual’s anatomy. In this context, experi-
mentally recorded EMG signals represented a surrogate of
the neural drive to muscles. That is, EMQG linear envelope
amplitude and shape features reflected the patient’s dis-
rupted motor control. Moreover, the proposed patient-
specific muscle model allowed capturing the patient’s im-
paired muscular force-generating capacity. Unlike state-
of-the-art HMIs, our proposed approach allowed a robotic
exoskeleton to be controlled proportionally to an individ-
ual patient’s residual muscle force-generating capacity, as
shown in Figs. 2, 3, 6 and 7. Furthermore, our method
provided an enhanced level of patient specificity with re-
spect to state-of-the-art exoskeleton HMIs.

Results showed that all subjects were able to voluntarily
control the exoskeleton accurately over a range of motor
tasks involving rotations about single DOFs as well as
multiple DOFs concurrently, i.e., Figs. 2, 3, 4 and 7. Sub-
jects could control the exoskeleton to accurately track ref-
erence trajectories even when they were not directly
wearing the exoskeleton, i.e., during OUT-type tests. This
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was hypothesized to be a challenging condition due to re-
duced perception of exoskeleton movement. Overall, re-
sults highlighted that patients were always in control of
the exoskeleton, thus not being passively driven.

Results showed that an increasing level of assistance
induced a decrease in the net cumulative EMG ampli-
tude and resulting mechanical moments required to per-
form a motor task (Figs. 2, 3, 4, 5 and 7). Reduction was
observed across all measured muscles for all subjects
both during single-DOF and multi-DOF tasks. However,
in a few cases, HG assistance induced higher EMG activ-
ity than LG assistance, as shown in Fig. 7, subject 2. Sys-
tematic analyses are planned as part of future work to
identify direct causes. Importantly, the increased level of
assistance did not degrade the user’s accuracy in the ref-
erence position tracking tasks (Fig. 3).

The exoskeleton generated a support moment that was
equal to a fraction of the user’s net joint moment (calcu-
lated by the EMG-driven model). For higher gains the
exoskeleton support moment reflected a larger fraction of
the user’s net joint moment. Importantly, across support
gains, the reference mechanical task to be performed by
the patient and exoskeleton system was always the same.
That is, the underlying total net moment to be generated
by the patient and exoskeleton system was similar across
support gains. Therefore, for increasing support gains, the

proportion of human-generated moment decreased while
the proportion of exoskeleton-generated moment in-
creased. This was directly reflected in our results (Figs. 2,
4 -and 5).

Across all subjects, the net EMG amplitude reduction
was consistently associated with a concurrent reduction
in EMG variability. Motor tasks performed with high as-
sistance levels corresponded to more repeatable EMG
patterns than tasks performed with low assistance levels
(Fig. 6). This could be achieved only if the exoskeleton
joint actuation was precisely synchronized with the pa-
tient's muscle contraction. Lower levels of human-
exoskeleton synchronization would lead to the exoskel-
eton counteracting the patient’s movements or providing
suboptimal assistive moment, thereby inducing an in-
crease in EMG magnitude and variability. Personalized
models played an important role in achieving these re-
sults. Additional file 3: Figure S9 shows how noncali-
brated models display large discrepancies with respect to
reference moments, which would hamper the control-
lability of exoskeletons. Patients with neurological
lesions naturally present greater movement variability
than healthy individuals [59], especially because of invol-
untary (spastic-like) muscle activity. In this context,
spasticity or hyperactive stretch reflexes would be dir-
ectly captured via EMGs. Because our proposed
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musculoskeletal model was driven by EMGs, this en-
abled capturing muscle force controlled by abnormal
spinal neuron activity. Our results showed that our pro-
posed model-based amplification of patient’s neuromus-
cular function enabled tracking smooth join position
trajectories despite the underlying patients’ EMGs may
underlie spastic activity. This may be due to the fact that
the presence of high-energy spikes in the EMG (i.e. due
to spastic-like EMGs) may be attenuated by the inherent
visco-elasticity of the Hill-type muscle model as well as
muscle-tendon small moment arms. This has the benefit
of generating smooth muscle force-dependent joint mo-
ment profiles even in the presence of spikes in the input
EMGs. Future work will systematically assess the ability
of musculoskeletal models in attenuating EMG abnor-
mal spiking activity and also assess its robustness with
respect to abnormal activation, such as spasticity, in a
rehabilitation scenario. Furthermore, future studies will
assess the possibility of using high-density EMG record-
ing to decompose the signal at the level of constituent
motor unit discharges. This would enable separating
physiological motor units from those displaying abnor-
mal behavior (i.e. spastic-like). For each muscle, filtered
physiological motor units only could be used to compute
exoskeleton assistive moments [35].

The ability to enforce EMG pattern repeatability (i.e.,
reduction of EMQG variability) via wearable robotic tech-
nologies is central for retraining coordinated neuromus-
cular control and inducing positive neuroplasticity, i.e.,
by preventing involuntary uncoordinated muscle activa-
tions [7]. The ability of the proposed HMI to modulate
neuromuscular activity in a controlled way may be bene-
ficial in the future for high-intensity sensorimotor train-
ing, ie., enabling patients to perform intensive motor
tasks progressively across longer periods of time (EMG
reduction). Intensive training has been shown to im-
prove both muscle strength and overall motor control in
stroke patients [60].

Our HMI always computed exoskeleton control com-
mands within the muscle electrophysiological delay, i.e.,
<15 ms. This computational speed was achieved using a
low-power, small-sized, and fully wearable processing
unit, i.e., Raspberry Pi 3 (Raspberry Pi Foundation, UK).
This enabled the subject’s movement to be predicted
shortly before the actual movement took place, which is
important for synchronizing the exoskeleton response to
the user’s neuromuscular function. Moreover, this was
crucial especially for supporting neurologically impaired
patients who had severely reduced motor abilities but
still had detectable EMG activity. This is an important
advantage with respect to HMIs that actuate the wear-
able robot solely on the basis of the detection of exter-
nally measurable forces (ie., external joint moments or
limb-orthosis interaction force); such systems cannot
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provide support unless the patient is able to produce de-
tectable muscle force or movement [23]. In the context
of our experiment, this would have severely challenged
both voluntary exoskeleton control and EMG reduction
in the SCI and stroke patients, whose muscle strength
and EMG amplitude were substantially compromised.

This study involved voluntary control of robotic knee
and ankle rotations from a seated position. These exer-
cises were selected for two reasons. First, they provided
a controlled environment for testing our proposed
methods for the first time in neurologically impaired in-
dividuals. Second, they mimicked physiotherapy tasks
employed during early-stage rehabilitation. Functional
impairment post-stroke underlies loss of selective joint
control and muscle weakness. From a clinical perspec-
tive, both issues must be addressed via safe, comfortable
and feasible positions for the patient [61, 62], something
that could be provided by our proposed framework. Fu-
ture work will pair wearable exoskeletons with our
model-based human-machine interface to track and sup-
port the patient across all recovery stages: from sitting
to walking in the hospital to finally walking outside the
hospital [63]. An advantage of our framework over con-
ventional inverse dynamics is that, once calibrated, it
does not need ground reaction forces, i.e., it operates as
a function of EMG and joint position, which are measur-
able via wearable sensors. This is central for wearable ro-
botics applications.

To the best of our knowledge, there is currently no ro-
botic exoskeleton on the market, either in the rehabilita-
tion domain (i.e.,, Lokomat) or in the assistive domains
(i.e., Rewalk, HAL), that operates as a function of a pa-
tient’s residual muscle force-generating capacity. This
may underpin a central element hampering the ability of
current robotic exoskeletons to impact neurorehabilita-
tion. Additional file 2: Movie S2 shows the possibility for
the SCI patient to control multiple DOFs despite min-
imal residual motor capacity, which is key for promoting
recovery even in severely affected individuals. This study
was not intended to quantify direct rehabilitation out-
come, as this requires systematic analysis on a larger pa-
tient population, which is subject of future work.

Future work will extend our proposed methodology
towards more functional tasks, such as ground- and
inclined-level walking, as well as stair ascending and de-
scending. We will investigate the effect of the exoskel-
eton on the patient with and without the device, as well
as the effect of ground reaction force on the exoskeleton
combined with our framework. A limitation of this study
is that we did not test how noncalibrated models would
affect exoskeleton control. Longitudinal tests with differ-
ent types of models (i.e., calibrated and noncalibrated)
will be performed as part of our future work. The overall
quality of the model optimized parameters (maximal
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isometric muscle force, optimal fiber length and tendon
slack length) should also be validated against in-vivo ex-
perimental values in future work. However, it was first
necessary to assess whether neurologically impaired pa-
tients could achieve voluntary control of robotic knee
and ankle rotation with the current framework.

Conclusion

This study established a new patient-specific model-
based HMI that could aid clinicians and physiothera-
pists in the assessment of patients’ motor capacity and
progress over time. It could enable exoskeletons to op-
erate symbiotically to the human body by dynamically
adapting to the patient’s motor capacity across different
stages of recovery. This will open new avenues for es-
tablishing personalized neurorehabilitation technologies
where wearable robots physically interact with the pa-
tient to maximize the recovery of compromised neuro-
muscular targets.

Additional files

Additional file 1: Movie S1. Voluntary control of a multijointed robotic
exoskeleton by a stroke patient with hemiparesis. A stroke patient with
hemiparesis (Stroke 2, Table 2) controls both the ankle and knee joints in a
robotic exoskeleton by means of his residual neuromuscular activity. The
first part of the movie presents our proposed modeling framework (Fig. 1)
working in real time, enabling the patient to exert voluntary control of the
exoskeleton knee joint while outside the robotic exoskeleton, ie, an OUT-
type test. The second part of the movie shows the graphical user interface
(GUI) we developed to display target trajectories to be tracked by the
patient. The third part of the movie presents the patient’s voluntary control
of the exoskeleton knee and ankle joints while wearing the exoskeleton, ie,
IN-type tests. (MP4 6312 kb)

Additional file 2: Movie S2. Voluntary control of a multijointed robotic
exoskeleton by a spinal cord injury patient. A spinal cord injury patient
(SCl, Table 2) controls both the ankle and knee joints of a robotic
exoskeleton by means of his residual neuromuscular activity. The first part
of the movie presents our proposed modeling framework (Fig. 1)
working in real time, enabling the patient to exert voluntary control of
the exoskeleton knee joint while outside the robotic exoskeleton, i.e, an
OUT-type test. The second part of the movie presents the patient's
voluntary control of the exoskeleton knee and ankle joints while wearing
the exoskeleton, i.e. IN-type tests. (MP4 6472 kb)

Additional file 3: Figure S1. Tracking task performance during single-
DOF tests for healthy subject 3. Figure S2. Tracking task performance
during single-DOF tests for healthy subject 4. Figure S3. EMG amplitude
modulation between exoskeleton low- and high-assistance levels during
single ankle plantar-dorsi flexion, IN-type experiments. Figure S4. EMG
amplitude modulation between exoskeleton low- and high-assistance
levels during single knee flexion-extension, IN-type experiments. Figure S5
Tracking task performance during multi-DOF, OUT- and IN-type tests for
healthy subject 3. Figure S6 Tracking task performance during multi-DOF,
OUT- and IN-type tests for healthy subject 4. Figure S7 Tracking task per-
formance during multi-DOF, OUT-type tests. Figure S8 Standard deviation
of the mean EMG amplitude during single-DOF and multi-DOF, OUT-type
tests. Figure S9 Predicted moment for the Ankle plantar-dorsiflexion and
the Knee flexion-extension using an uncalibrated model. Table S1 Joint mo-
ment modulation across assistance levels. Table S2 Gain used for the assist-
ance for the patients. (PDF 1320 kb)
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