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Abstract

The development of more effective rehabilitative interventions requires a better understanding of how humans
learn and transfer motor skills in real-world contexts. Presently, clinicians design interventions to promote skill
learning by relying on evidence from experimental paradigms involving simple tasks, such as reaching for a target.
While these tasks facilitate stringent hypothesis testing in laboratory settings, the results may not shed light on
performance of more complex real-world skills. In this perspective, we argue that virtual environments (VEs) are
flexible, novel platforms to evaluate learning and transfer of complex skills without sacrificing experimental control.
Specifically, VEs use models of real-life tasks that afford controlled experimental manipulations to measure and
guide behavior with a precision that exceeds the capabilities of physical environments. This paper reviews recent
insights from VE paradigms on motor learning into two pressing challenges in rehabilitation research: 1) Which
training strategies in VEs promote complex skill learning? and 2) How can transfer of learning from virtual to real
environments be enhanced? Defining complex skills by having nested redundancies, we outline findings on the
role of movement variability in complex skill acquisition and discuss how VEs can provide novel forms of guidance
to enhance learning. We review the evidence for skill transfer from virtual to real environments in typically
developing and neurologically-impaired populations with a view to understanding how differences in sensory-
motor information may influence learning strategies. We provide actionable suggestions for practicing clinicians
and outline broad areas where more research is required. Finally, we conclude that VEs present distinctive
experimental platforms to understand complex skill learning that should enable transfer from therapeutic practice
to the real world.

Keywords: Sensorimotor control, Motor learning, Transfer, Complex skills, Virtual reality, Virtual environments,
Rehabilitation, Variability, Redundancy

Introduction
The goal of rehabilitation interventions for clients with
neurological impairments is to (re)learn motor skills
during therapeutic practice and transfer those improve-
ments to functional activities in daily life. Researchers
and clinicians seek to understand the content and struc-
ture of practice that facilitates such learning and transfer
for different tasks, environmental contexts and clinical
populations [1]. Although (re)learning activities of daily
living is the focus of neurological rehabilitation, much of
the evidence base for therapeutic interventions stems
from basic or clinical research on simple experimentally-

controlled tasks, such as reaching to a target in the hori-
zontal plane or learning a finger tapping sequence.
While these simplified tasks are very different from the
tasks of daily life, they facilitate precise quantification of
performance variables and stringent hypothesis testing,
providing insights into basic principles of motor control
and learning. However, their deliberately reduced test-
beds lack a feature that is pervasive in real-world tasks:
the affordance of multiple options to achieve a move-
ment goal [2]. Hence, principles of learning derived from
these simple movement paradigms may not translate
into useful transfer-oriented principles for rehabilitation
[3].
With some exceptions, e.g., Constraint-Induced Move-

ment Therapy [4], few rehabilitation interventions can
consistently demonstrate evidence for transfer from
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practiced tasks to non-treatment contexts. This is also
true for the rehabilitation-based use of virtual environ-
ments (VEs): computer hardware and software systems
that generate simulations of real or imagined environ-
ments with which participants interact using their own
movements [5]. VEs differ according to viewing medium,
level of immersion, and type of interaction [6]. While
practice in a variety of VEs offers promising evidence for
skill acquisition as compared to conventional interven-
tions in many rehabilitation populations, [e.g. 7–10] the
focus has been predominantly on training simplified
movements. This may be one reason why successful
transfer of skill learning to non-practiced tasks and real-
life contexts often remains a challenge [11–16]. As such,
the design of both virtual and conventional interventions
requires greater understanding of how humans acquire,
retain and transfer real-world skills. We propose that
VEs themselves can serve as useful experimental plat-
forms to gain this knowledge as they allow the study of
these complex skills with sufficient experimental control
to draw scientifically tractable conclusions [2].

Complex real-world tasks have nested redundancy
In the motor learning literature, the adjective “complex”
is often treated synonymously with “difficult” [17, 18].
For example, a task can be labelled as difficult or com-
plex when reaction time or movement time are relatively
long, when skill improvement requires long hours of
practice, or when the task poses high demands on the
learner’s attention and memory [3]. To sharpen the dis-
cussion, we reserve the term ‘complex’ for tasks with
nested redundancy. Redundancy is present when there is
a greater number of execution variables than variables
that define the result of the task. The well-known ex-
ample for motor redundancy is pointing to a target
with one's fingertip, which can be achieved with many
different joint configurations, because the arm (without
the hand) has 7 degrees of freedom, while the target is
defined in 3 degrees of freedom.
However, real-world tasks have another level of redun-

dancy that lies in the task itself. Imagine you are asked
to point to a line, where each location on the line is
equally correct. Here, the task itself allows an infinite
number of “solutions”. And of course, each of those so-
lutions can be achieved with an infinite number of joint
configurations. Further, each of the points on the target
line can be reached with an infinite number of trajector-
ies from the starting point towards the target line. It is
these nested redundancies that characterize the chal-
lenge and the richness of real-world tasks. Figure 1 illus-
trates these nested redundancies with the example of
hammering a target on an anvil. The traces are the ori-
ginal recordings of Bernstein from the 1930s, showing
the tip of a hammer in the sagittal plane [19]. The added

simplified arm with three joints can take on infinite con-
figurations for any position of the hammer endpoint in
the 2D plane (intrinsic redundancy). Next, the trajector-
ies of the repeated endpoint actions take on many differ-
ent shapes, in fact infinitely many shapes, while all of
them hit the anvil (extrinsic redundancy). Finally, the
anvil or target itself is not a point but a line, where any
contact is regarded as a successful hit (task redundancy)
[20]. Examples for these nested redundancies are ubiqui-
tous in real life, from combing one’s hair to cutting a
steak with a knife and fork. Performers must choose (im-
plicitly or explicitly) from an infinite range of possible
solutions, each leading to successful task accomplish-
ment [2]. We define such actions as ‘complex’ skills. To
gain insight into these ever-present control challenges
and opportunities, scientific inquiry must move beyond
simple tasks where redundancy has been purposefully
removed and begin to examine more complex tasks.

Using virtual environments to overcome the challenges of
studying complex skills
Studying how humans both manage and exploit redun-
dancy necessitates research on platforms that can sup-
port complexity without sacrificing experimental
control. However, the study of complex real-world skill
learning is stymied by the inherent difficulty in control-
ling and accurately measuring all the relevant human-
and task-related features. For example, in grasping a cup
and leading it to one’s mouth to drink, it is important to
consider features such as the curvature of the handle
and the shape and mass of the cup, as these factors can
influence grasp and transport movements. VEs enable
such studies because they permit experimenters to con-
trol the physics of an object so that it can be rendered
and confined to exactly the variables and parameters
under analysis [21, 22]. This leaves no uncontrolled as-
pects as would occur in real-life tasks [2]. Precise

Fig. 1 Nested redundancies in a hammering task
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knowledge of the object eliminates inaccuracies that can
arise from simplifying assumptions about. These attri-
butes facilitate evaluation of how performers deal with
redundancy and learn optimal task solutions. Table 1
provides examples of how virtual tasks can present a
versatile platform for theoretically-grounded, quantita-
tive assessment and guidance of complex skill learning.
The purpose of this perspective review is to describe

recent progress in motor learning research with VE plat-
forms related to two pressing questions in rehabilitation
science: 1) Which training strategies in VEs promote
complex skill learning? and 2) How can transfer of learn-
ing from virtual to real environments be enhanced?
These findings are synthesized to provide actionable
suggestions for clinicians and highlight areas where fu-
ture research is needed.

Methods
Literature selection for the review was conducted in the
indexed databases PubMed, IEEE and CINAHL. The
search strategy used the keywords ‘redundancy’ OR
‘complex*’ AND ‘task’ OR ‘skill’ AND ‘motor learning’
OR ‘transfer’ AND ‘virtual reality’ OR ‘virtual environ-
ment’ (for Question 1). For Question 2, we used ‘virtual
reality’ OR ‘virtual environment’ AND ‘motor learning’
OR ‘transfer’ OR ‘generalization’ AND ‘rehabilitation’
OR ‘physical therapy’ OR ‘physiotherapy’ OR ‘occupa-
tional therapy’. Our review includes experimental studies
published since the year 2000, including our own work
related to the two research questions. Methodological
quality of the included studies was not evaluated. Studies
that described clinical trials and interventions evaluating
the effectiveness of VEs were not included as our inter-
est was in experimental studies exploring mechanisms of
learning and transfer, rather than in the efficacy of VE
intervention programs. Our search yielded 46 studies,
listed in Table 2.

Question 1: which training strategies in virtual
environments promote complex skill learning?
To answer this question, we reviewed studies exploring
how modeling and modifying task attributes in VEs en-
ables new perspectives on complex skill learning and
supports novel forms of feedback and guidance. Figure 2
overviews the process and possibilities for data acquisi-
tion, measurements and experimental manipulations in
virtual rendering of real-life tasks.

Understanding variability in complex skill learning
Reviews of research on skill acquisition (e.g. [20, 23])
highlight how skill improvement is achieved by reducing,
processing and exploiting variability. To clarify termin-
ology, variability is defined as an umbrella term “for all
sets or series of observations that are non-constant and
… non-stationary.” [20] Variability in motor output can
be caused by stochastic processes or intrinsic noise man-
ifested as a lack of temporal or spatial structure. In
addition, variability can also be a positive feature, serving
as active exploration for information gathering. In that
case, variability can have structure in time series and dis-
tributions that is informative both for the performer and
the scientist. Reducing the stochastic element of variabil-
ity is certainly important for simple tasks without redun-
dancy, where success is limited by how much actors can
control and reduce the inherent variability in their neu-
romotor system. However, some amount of variability or
noise always remains, even when healthy individuals re-
peat the same movement pattern under fixed and well-
learned conditions [23, 24]. In complex tasks with nested
redundancy, variability can be present without detrimen-
tal effects on the task outcome; variability in the motor
output is therefore a window into understanding pro-
cesses of learning and exploration. As such, it is import-
ant to examine how variability evolves in skill learning

Table 1 Attributes of virtual environments that facilitate the study of complex skill learning and transfer

Attributes of virtual environments Examples

Detailed measurements of execution (or process) beyond course-
grained descriptive outcome measures of motor performance.

Precise tracking of human kinematics and interaction with virtual objects.
Ability to combine measurement of task execution variables and result
variables.

Ability to mathematically model motor tasks and vary relevant
task parameters

Mathematical modeling of task physics makes explicit the variables that define
task execution and result. Parameters that can be manipulated include those
that reduce or augment task error. Such task constraints can be systematically
varied to identify their effect on performance.

Precise simulation of the physics of virtual objects limits
uncontrolled aspects that may confound results.

Modeling in a VE confines the task to the measured variables, excluding, for
example, environmental noise such as drag or lateral forces influencing the
trajectory of a thrown ball.

Ability to examine a range of perceptual conditions with robust
experimental control.

VEs enable precise manipulation of experimental parameters, including amount
of haptic, haptic, visual or auditory feedback and task difficulty (e.g. changing
the size or position of a target), to test hypotheses about performance
strategies.
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Table 2 Studies included in the review, listed in the sequence they are referenced

Focus Title Authors Year Population

Understanding variability in
complex skill learning

Acquisition of novel and complex motor skills: stable
solutions where intrinsic noise matters less.

Sternad D, Huber ME, Kuznetsov N 2014 Unimpaired

From theoretical analysis to clinical assessment and
intervention: Three interactive motor skills in a virtual
environment.

Sternad D 2015 Unimpaired,
impaired

Exploiting the geometry of the solution space to reduce
sensitivity to neuromotor noise.

Zhang Z, Guo D, Huber ME, Park
SW, Sternad D

2018 Unimpaired

State space analysis of timing: exploiting task redundancy
to reduce sensitivity to timing.

Cohen RG, Sternad D 2012

Bouncing a ball: tuning into dynamic stability. Sternad D, Duarte M, Katsumata H,
Schaal S

2001

One-handed juggling: A dynamical approach to a rhythmic
task

Schaal S, Atkeson CG, Sternad D 1996

Passive stability and active control in a rhythmic task. Wei K, Dijkstra TM, Sternad D 2007

Human control of interactions with objects: Variability,
stability and predictability.

Sternad D 2017

The influence of movement initiation deficits on the
quantification of retention in Parkinson’s disease.

Pendt LK, Maurer H, Müller H. 2012 Impaired

Healthy and dystonic children compensate for changes in
motor variability.

Chu VW, Sternad D, Sanger TD 2013 Unimpaired,
impaired

Inducing variability to
enhance learning

Motor learning through induced variability at the task goal
and execution redundancy levels.

Ranganathan R, Newell KM 2010 Unimpaired

Emergent flexibility in motor learning. Ranganathan R, Newell KM 2010

Changing up the routine: intervention-induced variability
in motor learning.

Ranganathan R, Newell KM 2013

High variability impairs motor learning regardless of
whether it affects task performance.

Cardis M, Casadio M, Ranganathan
R.

2018

Directionality in distribution and temporal structure of
variability in skill acquisition.

Abe MO, Sternad D 2013

Learning a throwing task is associated with differential
changes in the use of motor abundance.

Yang JF, Scholz JP 2013

Amplification of visual errors
to stimulate learning

Using noise to shape motor learning. Thorp EB, Kording KP, Mussa-Ivaldi
FA

2017

Neuromotor noise is malleable by amplifying perceived
errors.

Hasson CJ, Zhang Z, Abe MO,
Sternad D

2016

Persistence of reduced neuromotor noise in long-term
motor skill learning.

Huber ME, Kuznetsov N, Sternad D 2016

Visual error augmentation enhances learning in three
dimensions.

Sharp I, Huang F, Patton J 2011

Visuomotor discordance during visually-guided hand
movement in virtual reality modulates sensorimotor cor-
tical activity in healthy and hemiparetic subjects.

Tunik E, Saleh S, Adamovich SV 2013 Unimpaired,
impaired

Visuomotor gain distortion alters online motor
performance and enhances primary motor cortex
excitability in patients with stroke.

Bagce HF, Saleh S, Adamovich SV,
Tunik E

2012

Visuomotor discordance in virtual reality: effects on online
motor control.

Bagce HF, Saleh S, Adamovich SV,
Tunik E

2011

Effect of error augmentation on brain activation and motor
learning of a complex locomotor task.

Marchal-Crespo L, Michels L, Jaeger
L, Lopez-Oloriz J, Riener R

2017 Unimpaired

Haptic error modulation outperforms visual error
amplification when learning a modified gait pattern.

Marchal-Crespo L, Tsangaridis P,
Obwegeser D, Maggioni S, Riener R

2019

Manipulation of task physics
for implicit guidance

Implicit guidance to stable performance in a rhythmic
perceptual-motor skill.

Huber ME, Sternad D 2015

Inconclusive evidence of skill Functional performance comparison between real and Bezerra IMP, Crocetta TB, Massetti T, 2018
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to understand how and when to assist performers in the
search for effective solutions.
A first example of how variability is more than simple

nuisance comes from our own work. In a series of stud-
ies Sternad and colleagues developed a virtual throwing
task that has the essential redundancy with a manifold
of solutions [2, 21, 25]. The learner throws a ball teth-
ered to a post by a pendulum-like string, with the goal
to hit the target on the opposite side of the pole. Two
variables in execution, position and velocity at ball re-
lease, map into one result variable, error from hitting
the target. This mapping from two variables to one vari-
able allows for different combinations of the two

execution variables that all lead to the same result vari-
able, error. The set of position and velocity combina-
tions that achieve zero error defines the solution
manifold which contains a mathematically infinite num-
ber of executions. Knowledge of this solution manifold
affords the analysis of variability in a tractable way [2].
When examining distributions of ball releases over

practice time, the analysis distinguished between three
different components of variability that contributed to
performance improvement. “Tolerance” denotes the
component that evaluates how close the data are to the
most noise-tolerant region in the solution space; toler-
ance to noise is defined as the area in solution space

Table 2 Studies included in the review, listed in the sequence they are referenced (Continued)

Focus Title Authors Year Population

transfer from virtual to real
environments

virtual tasks in older adults: A cross-sectional study. Silva TDD, Guarnieri R, Meira CM,
et al.

Transfer of motor learning from virtual to natural
environments in individuals with cerebral palsy.

de Mello Monteiro CB, Massetti T,
da Silva TD, van der Kamp J, de
Abreu LC, Leone C, et al.

2014 Impaired

Motor learning from virtual reality to natural environments
in individuals with Duchenne muscular dystrophy.

Quadrado VH, Silva TDD, Favero FM,
Tonks J, Massetti T, Monteiro CBM.

2017

Achievement of virtual and real objects using a short-term
motor learning protocol in people with Duchenne muscu-
lar dystrophy: A crossover randomized controlled trial.

Massetti T, Favero FM, Menezes
LDC, Alvarez MPB, Crocetta TB,
Guarnieri R, et al.

2018

Transfer of a skilled motor learning task between virtual
and conventional environments.

Anglin J, Saldana D, Schmiesing A,
Liew S.

2017 Unimpaired

Is children’s motor learning of a postural reaching task
enhanced by practice in a virtual environment?

Levac DE, Jovanovic B. 2017

Differences in movement
kinematics between virtual
and real environments

Upper limb kinematics in stroke and healthy controls using
target-to-target task in virtual reality.

Hussain N, Alt Murphy M,
Sunnerhagen KS

2018 Unimpaired,
impaired

Kinematics of reaching movements in a 2-D virtual environ-
ment in adults with and without stroke.

Liebermann DG, Berman S, Weiss
PLT, Levin MF

2012

Effects of real-world versus virtual environments on joint
excursions in full-body reaching tasks.

Thomas JS, France CR, Leitkam ST,
Applegate ME, Pidcoe PE, Walkowski
S.

2016 Unimpaired

Viewing medium affects arm motor performance in 3D
virtual environments.

Subramanian SK, Levin MF. 2011

Validation of reaching in a virtual environment in typically
developing children and children with mild unilateral
cerebral palsy.

Robert MT, Levin MF 2018 Unimpaired,
impaired

Comparison of grasping movements made by healthy
subjects in a 3-dimensional immersive virtual versus phys-
ical environment.

Magdalon EC, Michaelsen SM,
Quevedo AA, Levin MF

2011 Unimpaired

Planning and adjustments for the control of reach extent
in a virtual environment.

Stewart JC, Gordon J, Winstein CJ. 2013

Quality of grasping and the role of haptics in a 3-D immer-
sive virtual reality environment in individuals with stroke.

Levin MF, Magdalon EC, Michaelsen
SM, Quevedo AAF

2015 Unimpaired,
impaired

Differences in learning
mechanisms in virtual and
real environments

Visuomotor adaptation in head-mounted virtual reality ver-
sus conventional training.

Anglin JM, Sugiyama T, Liew SL 2017 Unimpaired

Enhancing task transfer
through VE fidelity and
dimensionality

Goal-related feedback guides motor exploration and
redundancy resolution in human motor skill acquisition.

Rohde M, Narioka K, Steil JJ, Klein
LK, Ernst MO

2019

Learning redundant motor tasks with and without
overlapping dimensions: facilitation and interference
effects.

Ranganathan R, Wieser J, Mosier KM,
Mussa-Ivaldi FA, Scheidt RA

2014
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where noise and perturbations have less effect on overall
performance. “Covariation” is a component that evalu-
ates how the data differ from a normal distribution and
align with the solution manifold. “Noise” is the random
component in the data set [24, 26]. “Tolerance” can be
interpreted as a quantification of exploratory processes,
while “Covariation” can be likened to an active process
of improving the probability of success. A series of ex-
periments showed that although participants decreased
their overall variability with practice, reducing random
noise was not the dominant avenue for improving per-
formance. Rather, people first developed strategies that
optimized “Tolerance”; subsequently, they reduced
“Noise” and then targeted “Covariation” by exploiting
the structure of the solution manifold [2, 24]. In a com-
plementary set of studies, the arm trajectories were ana-
lyzed to reveal that with practice they aligned with the
solution manifold [25, 27]. These strategies enable suc-
cess in the face of intrinsic neuromuscular noise.
A second task by Sternad and colleagues used a real

racket to rhythmically bounce a virtual ball to a virtual
target. Again, this task was modeled as an extremely
simple physical system: a horizontal racket contacting a
ball, where both racket and ball are confined to the ver-
tical direction [28, 29]. The task has redundancy as dif-
ferent ball-racket contacts can propel the ball to the
same target height: racket and ball velocity at contact
and the contact position with respect to the target height
determine the result, i.e., three variables map into one
[30, 31]. In addition, the task is a dynamic system: im-
pacts between the ball and the racket occur in a rhyth-
mic sequence and the characteristics of one bounce
influence the next bounce. Specifically, the ball velocity
at contact is determined by the previous bounce; this
differs from the discrete ball throwing task where suc-
cessive throws are separated by rest and are in principle
independent. Mathematical analyses established that the

task affords a dynamically stable solution obtained when
the racket hits the ball in its upwardly decelerating phase
[28, 29]. This demonstrates that enhancing task success
can be achieved not only by reducing variability in task
execution, but also by achieving dynamically stable solu-
tions. A series of experiments demonstrated that, indeed,
performers discovered the solution that exploited task
stability and, concomitantly, decreased variability [32,
33]. When facing perturbations, performers explored the
solution space and found new solutions. Notably, in
these new solutions, neither mean performance nor
the remaining variability were affected by the perturb-
ation [31]. This suggests that performers were aware of
their variability.
These studies demonstrate that using a VE where the

space of all solutions is known facilitates understanding
of how performers explore and find solutions within the
available redundancy. Overall, the throwing and ball
bouncing studies exemplify how a complex real-world
task can be simplified and modeled in a VE without sac-
rificing the essential redundancy. They also illustrate
how the virtual rendering affords measurement and
quantitative understanding of the structure of variability
and thereby enables new ways to describe stages of
learning [2, 21].

Inducing variability to enhance learning
A subsequent avenue of research examined how ma-
nipulation of variability may enhance motor learning.
Ranganathan et al. [34, 35] evaluated the benefits of in-
ducing variability using a targeting task on a digitizing
tablet. The exact trajectory to reach the target was not
prescribed and therefore the task presented redundancy.
When performers were induced to explore multiple tra-
jectories (to increase their movement variability), their
performance was less successful than when they focused
on the most task-relevant parameters (in this case, on

Fig. 2 Data acquisition, measurements and experimental manipulations in virtual rendering of real-life tasks. Overview of how a real-world task is
implemented in a virtual environment to afford manipulation of task variables and fine-grained analysis of human behavior. To begin, a real-
world task requires to a mathematical model in order to be implemented in a virtual environment. This model necessarily reduces the full
complexity of the real behavior into task variables that are of interest. After the task is virtually rendered, the human interactive input can be
measured, including its variability. However, the virtual rendering also allows to induce additional variability. Further, it can modify the task
physics and provide augmented feedback about the result
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the location of a moving target) [34–36]. This unex-
pected result may be due to the undemanding nature of
this targeting task or due to the low fidelity of the set-up
[34].
In a follow-up study, Ranganathan and colleagues [37]

evaluated the impact of external perturbations to add
variability in movement execution, and used a more
challenging and more immersive virtual shuffleboard
task. Participants moved two manipulanda to slide a vir-
tual puck towards a target; the velocity of the puck at re-
lease (the sum of the two manipulanda’s velocities) fully
determined the puck’s distance; as such, reaching the
target was possible via an infinite number of combina-
tions of the two hands’ velocities. Different viscous fields
were induced via the manipulanda with the expectation
that the resultant variability would enhance exploration
of the solution space and thereby improve subjects’ per-
formance. Specifically, variability was induced in null
space (i.e., along the solution manifold) and in task
space, with the prediction that only variability in task
space would affect performance. However, while all par-
ticipants reduced their errors with practice, the type of
perturbation did not have the expected influence [38,
39]. Additionally, larger perturbations had detrimental
effects not only on performance but also on retention
and transfer [37]. These results demonstrated that while
externally-induced perturbations may increase variabil-
ity, the nature of this variability is very different from
the internally-produced variability that may benefit
motor learning.
In contrast, a study by Thorp et al. [40] found that in-

ducing variability via adding external noise on select di-
mensions of the task can indeed have beneficial effects
on transfer. Noise was added during a bimanual task
with a cursor and targets displayed in a VE. Participants
grasped inertial measurement units and learned to con-
trol a cursor in the VE, mapping 4 dimensions (pitch
and roll of each sensor) to the 2-dimensional cursor
movement. Participants moved the cursor to intercept
different targets in the VE; in the noise condition, artifi-
cial signal noise was added to select dimensions of the
mapping to evaluate whether participants would learn to
minimize noise or find alternative strategies to cope with
the noise [40]. With practice, participants not only learnt
a noise-tolerant strategy, but also better transferred their
learning to new target locations. These findings demon-
strate that the imposed noise could indeed guide partici-
pants to explore the null space. This exploration may
also have prepared them for transfer to subsequent un-
practiced versions of the task [40].
Overall, the reviewed experimental manipulations

demonstrate a range of promising and less-promising
options; more work is required to evaluate the effects of
practice conditions that elicit trial-to-trial variability

before conclusions can be made about the effectiveness
of this training strategy in VEs.

Amplification of visual errors to stimulate learning
While VEs can implement conventional ways of provid-
ing explicit feedback about performance and results,
they also afford a variety of possibilities that are not
available in real-world settings. One such example is
error amplification [41–43]. While physical or haptic
error amplification (and reduction) requires the use of
robotic interfaces [44–46], visual error amplification or
distortion can be presented in a VE without the use of a
robot. For example, Hasson et al. [43] used the virtual
throwing task earlier described to explore the effect of
visual error amplification after participants had reached
a performance plateau following 3 days of practice.
While performance in the control group stagnated, error
amplification in the experimental group led to further
improvement in performance. These results held for
both stochastic and deterministic error amplification.
Further decomposition of the variability in the sequence
of trials showed that it was the random noise that sub-
jects reduced, indicating the potential of this interven-
tion for rehabilitation. A complementary study by Huber
et al. manipulated the perceived error by changing the
threshold for signaling success [47]. After initial practice
with a given threshold, the experimental group experi-
enced an elevated threshold and had to perform better
to receive a success signal. As anticipated, they improved
their performance. In addition, when the success feed-
back returned to the initial level, the improved perform-
ance persisted for five more days. These encouraging
results are consistent with those of Sharp et al. [42], who
used error augmentation in a targeted reaching task in a
VE. Subjects who trained under this error augmentation
significantly improved their performance, and this differ-
ence persisted upon removal of the augmentation [42].
These results are clearly encouraging for therapeutic
purposes.
From a rehabilitation perspective, related studies of

error augmentation in the form of induced visuomotor
discordances have explored how such practice condi-
tions can trigger functional neuroplasticity after injury
[48–50]. For example, participants with stroke demon-
strated increased activation of the ipsilesional motor cor-
tex during discordant feedback conditions, indicating
that this strategy may be useful within VE-based training
designed to facilitate motor recovery in the affected
hand [48].
Visual error augmentation has also been explored in

VE-based lower-extremity tasks, although with less suc-
cess. Marchal-Crespo et al. [51] explored the effect of
error augmentation when healthy participants learned a
dual-leg coordination pattern to track an ellipse
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presented in the VE. While amplifying errors enhanced
skill acquisition in participants who initially demon-
strated greater skill, it negatively impacted transfer due
to a slightly different coordination strategy [51]. The
same group of researchers evaluated the effect of haptic
error versus visual error amplification in a VE [52]. Par-
ticipants who trained a novel asymmetric gait pattern
with visual error amplification demonstrated poorer
transfer to a free walking condition as compared to the
haptic perturbation group. Given these negative findings
with regards to transfer, more evidence is required that
the positive effects can persist and transfer into real-
world settings to solidify the rehabilitation potential of
visual error amplification.

Manipulation of task physics for implicit behavioral
guidance
A lesser-explored option for feedback provision in VEs
is manipulating the physics of the task to target implicit
learning mechanisms. Rather than providing explicit in-
structions for performance or knowledge of results, VEs
can guide learners implicitly, without providing declara-
tive knowledge about how to perform the task. Such im-
plicit guidance has potential advantages for learning in
rehabilitation populations, because it allows for develop-
ment of procedural skill that does not rely on working
memory mechanisms [53, 54]. For example, returning to
the virtual ball bouncing task earlier described, Huber
et al. [55] aimed to implicitly steer learners towards the
desired solution of rhythmically bouncing the ball with
dynamic stability. As mentioned, dynamic stability is de-
sirable as it obviates the need for corrections, since they
die out by themselves. Previous mathematical analyses
showed that dynamic stability depended on the racket
acceleration at ball contact, specifically, a decelerating
racket trajectory at ball contact. Experimental results
showed that practice was needed to find these strategies.
Hence, this study modified the ball-racket contact by
adding a time delay to the racket velocity at contact to
induce participants to contact the ball later in their
racket trajectory. The experimental group indeed
adopted dynamically stable solutions earlier than the
control group. Importantly, and in contrast to typical
adaptation experiments where the adapted behavior
returned to baseline within a few trials, these solutions
persisted even after the guidance was removed [55]. Al-
though this manipulation modifies the task physics and
induces changes in the trajectories which is not as
straightforward as error augmentation, it holds promise
as an alternative route to guide learners towards a de-
sired solution. Most importantly, modifications during
practice need to persist after removal of the manipula-
tion, which has not been achieved in typical adaptation
paradigms.

Insights for rehabilitation
The reviewed studies explored ways to observe and ma-
nipulate variability in VEs with the goal of identifying
implications for therapeutic practice. Findings align with
the reflections of Harbourne and Stergiou [56, 57] who
encourage therapists to think differently about human
movement variability in rehabilitation. They suggest
moving away from a focus on limiting variations to
achieve consistent and successful performance towards
emphasizing variations in task performance that ultim-
ately achieve more adaptability. Similarly, Orth and col-
leagues [58] argue that movement variability stemming
from individual and task constraints allows learners to
find creative solutions in response to movement prob-
lems. Building on the results reviewed above, therapists
can help patients search for solutions that are more
stable with respect to their own inherent variability; spe-
cifically, they can assist them to ‘improve’ rather than re-
duce their variability. We have discussed how knowledge
of the task can aid in decomposing the components of
variability with respect to the solution manifold and
parsing out the unstructured intrinsic noise that can be
detrimental. In the effort to reduce this detrimental
noise, therapists can guide clients to ‘channel’ their vari-
ability to have minimal impact on task performance.
Pragmatically, this means guiding learners towards more
‘noise-tolerant’ solutions that support flexibility and ad-
aptations to perturbations. To achieve this objective,
therapists may reflect on the metrics they use to meas-
ure the effectiveness of their interventions, moving be-
yond simple measures of task success to more
execution-oriented metrics.
A therapeutic example is when the therapist encour-

ages variability by asking clients to practice standing up
from chairs of different heights and shapes, and from
seats with or without armrests. While such training is
certainly important, it may also be relevant to encourage
clients to discover the best solutions among the numer-
ous options in how to accomplish a single outcome; in
this case, exploring different methods to stand up from a
chair of a specific height or shape [56]. This is particu-
larly relevant for individuals with constraints due to
neurological impairment, [35] who may have fewer
movement options, and for whom the resulting repeti-
tive and compensatory movements may ultimately lead
to musculoskeletal deterioration. Emphasizing variability
in movement execution differs from approaches based
on neurodevelopmental or neuromaturational theories
of motor learning which encourage the client to perform
the task in a consistent manner that is presumed to be
biomechanically correct. Indeed, such training in
consistency may limit the ability to discover solutions
among the multiple options suited for a specific person
and context. However, the benefits of explicitly training
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a variety of movement executions to explore or exploit
available redundancy, as well as strategies for inducing
variability, require further evaluation, as does their im-
pact on retention and transfer [36].

Next steps for research
As most of the work to date has focused on healthy pop-
ulations, its application to understanding differences in
skill learning in neurologically-impaired populations
must be investigated. For example, Pendt et al. [59] have
used the throwing task in adults with Parkinson Disease
(PD). Older adults with PD were able to improve and re-
tain the skill with practice, yet experienced more warm-
up decrements than did healthy controls, which ultim-
ately led to less improvement. In a study on children
with dystonia, Sternad and colleagues attenuated the
subjects; intrinsic variability that was visually presented.
This enabled children to improve their strategies as they
were no longer confounded with their high intrinsic noise
[60]. This study showed that children with dystonia could
achieve control over their movements and adapt their
behavior when they could see their behavior without the
excessive noise. These results underscore the importance
of exploring the role of movement variability in popula-
tions with altered kinematic systems and decreased intrin-
sic redundancy, such as patients with stroke [61].
Harnessing the potential of VEs for clinical assessment

via fine-grained quantitative measurement of complex
skills is another important avenue for further develop-
ment. Unlike traditional rating scales, VE platforms can
assess how specific motor impairments limit movement
strategies in different task configurations. Finally, thera-
pists can take advantage of the fact that a VE can imple-
ment any task physics, even dynamics that defy the laws
of Newtonian physics, to devise novel task characteristics
and subsequently develop new interventions to guide
learning and transfer. The possibilities are limitless.

Question 2: how can transfer of learning from virtual to
real environments be enhanced?
The acclaim of VEs for rehabilitation stems from their
potential to obtain and exploit evidence-based insights
for motor learning. Advantages are many, including that
VEs can provide abundant practice repetitions, deliver
multi-sensory feedback, individualize challenge, and en-
gage and motivate users with salient, enriched environ-
ments [62–64]. In addition, VEs afford detailed
measurement options and cost-saving potential for
home-based tele-rehabilitation [65, 66]. There is indeed
already a promising body of evidence for effective VE-
based interventions in populations such as stroke, [8]
multiple sclerosis, [9] Parkinson, [10] and cerebral palsy
(CP) [7]. However, this promise is handicapped by in-
conclusive demonstration that the acquired skills from

VE practice can be transferred to the real-world [12, 13,
15, 16].

Inconclusive evidence of skill transfer from virtual to real
environments
A relatively small number of studies have explored
motor skill acquisition and transfer from virtual to real
environments in healthy and neurologically impaired
populations. Several studies used a simple coincidence
timing task in which participants intercepted a falling
virtual object by either pressing a key on computer
(physical task) or making a hand movement tracked by
webcam (virtual task) [67–69]. In adolescents with CP,
older adults and healthy controls, practice in the VE did
not transfer to improved performance of the real-world
task [68, 69]. The authors suggest that the internal
model for the task could not generalize because of dif-
ferent sensory-motor information and spatiotemporal
organization between the virtual and real interfaces. Spe-
cifically, the lack of haptic input in the VE task forced
participants to rely on visual information alone, leading
to different perceptual-motor couplings than in the real
task. In contrast, individuals with Duchenne Muscular
Dystrophy (DMD) did demonstrate transfer of this task
from the virtual to the real environment [69]. Quadrado
and colleagues attributed this finding to the fact that the
VE task was motorically more challenging, suggesting
that transfer may be enhanced by purposefully increas-
ing task difficulty in VEs [69]. However, this speculation
is inconsistent with the negative finding by Massetti
et al. [70] in which individuals with DMD showed no
transfer from a virtual to a real environment in a reach-
ing task. Another study with healthy young adults, where
participants learned a sequential visual isometric pinch
task either with a head-mounted display (HMD) or in a
conventional environment, showed that those who
trained in the HMD did not transfer the task to its real-
life version [71]. Instead, their performance degraded in
this environment, despite identical task interaction in
both environments. Finally, in a typically developing
pediatric sample, Levac and Jovanovic [72] compared a
novel postural reach-to-touch skill in either a flat-screen
projection VE or a real environment. The results showed
that children who acquired the skill in the VE could not
transfer performance to the real environment. The au-
thors suggest that unique task demands in each environ-
ment - in particular, the lower demands on target hit
precision due to lack of haptic and depth cues in the VE
- influenced how, and what, skill was acquired.
Discrepancies in transfer success as reported in these

studies may in part be ascribed to several methodo-
logical shortcomings, such as small sample sizes, low
practice dosages, and short retention intervals. However,
they may also be real and due to the differing sensory-
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motor information between virtual and real environ-
ments. In the following section, we summarize the re-
ported differences in motor execution and motor
learning between VEs and real-world environments and
discuss how they may impact skill transfer. Moreover,
we discuss methods of enhancing skill transfer by in-
creasing practice similarity between virtual and real
tasks. Figure 3 overviews how the fidelity and dimen-
sionality of the virtual environment determines motor
learning, execution and, as a result, skill transfer.

Differences in movement kinematics between virtual and
real environments
Examining the similarity of directly-tracked movements
in virtual and real environments can shed light on the
effects of different viewing mediums in the VE on trans-
fer of skill to real-world scenarios. Kinematic differences
in unconstrained, goal-directed reaching between 2D
flat-screen displays, 3D head-mounted displays (HMDs)
and the real environment have been explored in adults
with stroke, adults with DMD, children with CP and typ-
ically developing controls [73–79]. Comparisons of
reaching movements in a HMD versus in a real environ-
ment in healthy adults and adults post-stroke have
shown that movements in the HMD were slower and
had different spatial and temporal kinematics [73, 78,
80]. These differences were attributed to the uncertainty
of object location in the VE [73, 78, 80]. Subramanian
and Levin [76] found that subjects with and without
stroke made more movement errors and had slower
movements in a HMD compared to a flat-screen projec-
tion system. However, Campbell and Stewart [79] re-
ported that reaching movements in non-disabled adults
in a HMD did not differ from reach kinematics in the
real world. In VEs with 2D flat-screen displays, studies
in adults with and without stroke [74] and in children
with CP [77] showed decreased movement quality in the

VE as compared to the real environment. A limitation of
these studies was their focus on simple reaching tasks
that did not have to be learnt as they were already in
participants’ repertoires. Exploring ‘de novo’ acquisition
of complex tasks between viewing mediums may shed
further light on whether the visual display influences
motor commands in an interaction-specific way, with a
potential limitation for transfer.

Differences in learning mechanisms in virtual and real
environments
Another important question for understanding transfer
is the nature of the learning process. Anglin et al. [81]
evaluated differences in motor learning mechanisms in a
visuomotor adaptation task with a HMD as compared to
a conventional environment in healthy subjects. When
adapting to the visuomotor rotation, participants altered
their motor behavior in response to an external perturb-
ation of the visual information. Visuomotor adaptation
occurs via either explicit cognitive strategies or implicitly
in which participants are unaware of their strategies.
The hypothesis was that the unique experience of the
HMD condition would increase participants’ attention
and engagement to the task, favoring explicit cognitive
strategies, assessed by subsequent self-report. Results
were consistent with this hypothesis, although partici-
pants in both conditions required the same time to
adapt to the perturbation and reduce their errors. Find-
ings suggest that differences in the mechanisms of learn-
ing between VE and real environments should be
explored in other types of tasks, with consideration of
differing task characteristics and the participant’s level of
VE experience. The impact of task characteristics is par-
ticularly relevant when we consider that VEs are inher-
ently safe environments; as such, practice in a VE might
invite more risk and exploration strategies as compared
to the same task in the real world [82].

Fig. 3 Overview of aspects that affect the success of the virtual rendering of real-world tasks and the transfer of skills from the virtual to the real
world. Fidelity and dimensionality of the virtual environment determines motor learning, motor execution and, as a result, skill transfer. A virtual
environment affords the study of execution and learning of motor skills with the goal of enabling transfer to real-world activities
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Enhancing task transfer through VE fidelity and
dimensionality
The hypothesis of specificity of practice expects that
transfer is enhanced when therapeutic practice simulates
the conditions of real-life performance as closely as pos-
sible [83]. There are clear differences in perceptuo-
motor affordances and somatosensory information be-
tween object interaction in flat-screen VEs, stereoscopic
3D HMD VEs, and the real-world [84, 85]. Critical is the
lack of haptic information about interaction forces with
virtual objects in a VE. This significant difference in sen-
sory information limits the specificity of task rendering.
This raises the question of what degree of task specificity
between a VE and the real world is required to enable
transfer? [86] One way to address this issue involves un-
derstanding VE fidelity: the precision with which a VE
imitates interactions in the natural environment [87]. Fi-
delity can be achieved by the display device and by the
interaction methods.
With respect to the display device, HMDs have an advan-

tage for fidelity as they provide a completely simulated ex-
perience in which the user’s view of the virtual world
changes in accordance with his/her head movements.
These display modalities have stereoscopic rendering that
preserves depth cues to assist in determining target dis-
tance, thereby enabling higher fidelity as compared to a
flat-screen that presents 3D computer graphics [84]. Com-
mercially available options include the HTC Vive (HTC
Corporation, Taoyuan City, Taiwan) and the Oculus
Rift (Oculus VR, Irvine, CA). With respect to interaction
methods, systems that include treadmills or 6 DoF motion
bases, such as in the Computer Assisted Rehabilitation En-
vironment (CAREN; Motekforce Link, The Netherlands),
elicit higher fidelity interactions that mimic real life situa-
tions. VEs in which sensor gloves provide haptic feedback
that enables users to obtain sensory feedback from virtual
object touch reduces the discrepancy between the VE and
the physical environment, although the sensory information
may not be identical to interaction with a real object [88].
Indirect measurement methods, e.g., through tracking a
controller, or direct body tracking, e.g., via the Kinect sensor
(Microsoft, Redmond, US), do not necessarily have low fi-
delity. These interaction methods can elicit movements
similar to real-world actions, such as the arm motions re-
quired to serve a volleyball in Xbox 360 Kinect Sports
game. Indirect movement tracking using controllers such
as the Nintendo Wiimote provides greater potential for
‘cheating’ and elicits large variations in movement patterns
within and between users [89]. More research is required to
explore the relationship between display device, interaction
method fidelity and transfer outcomes.
Another index of task specificity that may be relevant

to ensure transfer is dimensional matching. This is de-
fined as the accuracy with which interaction methods in

VEs replicate control dimensions of the real-world task
[90]. VEs with inadequate dimensional matching to the
real world have either fewer control dimensions (e.g.,
not being able to rotate a hand-held virtual object) or
too many control dimensions (e.g. a virtual steering
wheel with more than one degree of freedom) [90].
Interaction with virtual objects that are displayed on a
2D flat-screen has inherently fewer dimensions, as these
objects have only two (x-y) coordinates [87]. Ranga-
nathan et al. [91] explored the importance of shared task
dimensions in VEs to evaluate whether this fact influ-
enced transfer between two complex tasks with redun-
dancy. Subjects wore a data glove and practiced 3D
finger movements that were displayed in a VE. Subjects
learned two tasks that required the same or different
configurations for a target in the x-y screen dimensions.
Results demonstrated that transfer was facilitated when
the two tasks were dimensionally similar. The authors
concluded that the similarity (or lack thereof) of known
task space dimensions to new tasks can bias exploration
and performance during new task acquisition [91].
In summary, the reviewed studies highlight the poten-

tial influence of VE fidelity and interaction characteris-
tics on the extent of transfer from virtual to real
environments. Essential differences between movement
in virtual environments and real-world actions may im-
pact learning strategies and movement quality. However,
these differences should in no way negate the potential
for VEs as rehabilitation training environments, but ra-
ther spur greater inquiry into VE task-specificity to
guide transfer-oriented clinical implementation.

Insights for rehabilitation
VE-based practice can offer multiple benefits for clients
and therapists compared to conventional interventions.
Practical and logistical factors such as the significant
cost as well as the space and training required for equip-
ment operation are pressing influences on therapists
considering the use of VEs in clinical practice [92, 93].
The reviewed findings provide therapists with additional
information to consider beyond these practical realities
when deciding what type of VE might be best suited for
their needs. Specifically, therapists should begin by
closely observing the quality of patient movement in
VEs, considering the differences in how individuals with
impairments move in flat-screen VEs or HMDs as com-
pared to in real environments. This is particularly rele-
vant when the goal is to eventually integrate these
environments into unsupervised home-based practice.
However, more research is required to determine the
clinical significance of these differences. Such observa-
tions can guide decisions to use verbal feedback, demon-
stration or physical guidance to encourage movements
that are relevant to real-world activities. These strategies
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can be used to explicitly emphasize transfer within VE-
based interventions; for example, by combining VE prac-
tice of a part-task component with practice of the
‘whole’ task in the real world. Further, following Quadra-
do’s earlier suggestion, virtual tasks should be more
challenging that the corresponding real-world task to
support transfer [69]. While this is still speculation, ther-
apists may consider increasing the challenge in VE prac-
tice by taking advantage of VE attributes; for example,
by adding cognitive dual-task challenges with either vis-
ual or auditory modalities. Lower-fidelity VEs may be
more realistic options for patients with significant phys-
ical or cognitive limitations. However, it is clear that de-
cisions about type of VE display and interaction method
should be made in consideration of patient goals, abil-
ities and nature of the practice setting, including the
availability of patient supervision and monitoring.

Next steps for research
More basic and clinical studies should evaluate the im-
pact of differing kinematics and learning mechanisms
between virtual and real environments over longer time-
scales and on transfer outcomes [81]. While fully repli-
cating reality in VEs is unattainable and undesired, it is
critical to determine which perceptual, cognitive and
motor attributes of VEs are essential to enhance transfer
and generalization [86]. In particular, further work
should aim to understand whether inherent differences
in haptic input are limiting factors for transfer. HMDs
are becoming more clinically accessible; determining the
advantages with respect to skill acquisition and transfer
of these viewing mediums over flat-screen display VEs is
required. This is especially important as the fidelity ben-
efits of HMDs must be balanced with possible physical
risks posed by prolonged interaction, including visual
strain, [94] motion sickness [95] and postural imbalance
[96].
To date, the VE training strategies (reviewed in Sec-

tion 1) that emphasize measuring or manipulating vari-
ability have not been explored in the context of transfer
from virtual to real environments. This emphasis on the
role of variability in VE skill learning may have transfer
relevance. Practice that includes multiple task variations
may support the learner’s ability to transfer skill to un-
practiced contexts. VEs offer the potential to vary task
presentation in more fine-grained detail than what is
possible in the real world. However, to the authors’
knowledge, little research has explored whether inducing
variability in VEs enhances transfer to real-world tasks.
Clearly, such variability should be a key characteristic of
the real-life task and therefore, likely to be relevant for
transfer. In addition, given the differing sensory-motor
information between virtual and real environments, the
extent to which practice in VEs may elicit more

movement variability as compared to that elicited by
practice in real environments is open for exploration.
We advocate for this type of investigation, because the
redundancy inherent to complex skills naturally invites
variability, and VEs are ideal testbeds to measure and
evaluate it. Overall, much remains to be learned about
how VE affordances might facilitate or limit learners’ ex-
ploration of the solution space, and whether such ex-
ploration might enhance transfer to real-world
performance.

Considerations and conclusions
Challenges of virtual environments as experimental tools
Alongside the numerous advantages, VE experimental
platforms can also present many technological chal-
lenges. For instance, the considerable cost, space re-
quirements, and programming expertise required to
develop and operate custom applications in specialized
VEs with multiple data collection peripherals (e.g. mo-
tion capture cameras, haptic gloves, inertial measure-
ment units, or external stimulus triggering) can be
prohibitive. While off-the-shelf software and hardware
can be low in cost, they may not be sufficiently
customizable or suitable for rehabilitation populations.
Researchers who use technologies originally designed for
entertainment and gaming must take the additional steps
of validating the precision and accuracy of the equip-
ment to meet clinical standards, a task undertaken in
the time before an updated version is released or the
technology becomes obsolete. The availability of open-
source and source-available gaming engines (e.g., Unity
and Unreal Engine), 3D graphics/animation software
(e.g., Blender), and microcontroller software and hard-
ware (e.g., Arduino) has dramatically increased over the
last decade. This has made it easier and more affordable
for developers to learn and use these tools. However, the
learning curve remains steep. In particular, care is
needed to avoid both the sensory conflict that elicits mo-
tion sickness [97] and the ‘uncanny valley’, a term that
describes the discomfort of seeing simulations designed
to look human, but that fall short of natural human
looks and behavior [98]. Ultimately, from a clinical view-
point, it is certainly more practical to ask a patient to
practice a task in the real world as compared to the time,
energy and financial resources required to render the
task virtually. Customized VE platforms that are already
designed for rehabilitation reduce this burden by provid-
ing turn-key clinically-relevant assessments, but these
systems are still more costly than off-the-shelf options.

Opportunities of virtual environments
Despite these concerns, VEs remain powerful research
platforms to evaluate motor learning of complex skills
and develop training strategies to facilitate learning.
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They are also effective rehabilitation interventions,
whose impact will be strengthened by greater under-
standing of the relationships between viewing medium,
interaction fidelity and virtual rendering with skill trans-
fer from virtual to real environments. We argue that a
focus on studying complex tasks with nested redundancy
is required to advance both of these research interests.
These two domains – basic science and clinical imple-
mentation - can be combined through a call for re-
searchers to move from simple to complex skills in VEs,
taking advantage of understanding and controlling the
task physics to measure and manipulate the variability
inherent in learning.
The goal of this review was to summarize insights

from studies on complex tasks in VEs that illuminate the
role of movement variability for learning and discuss op-
tions for VEs to manipulate task attributes to provide
novel forms of feedback and guidance. We summarized
the current state of knowledge about transfer from VEs
to the real world that emphasized how much still needs
to be understood: which perceptual, cognitive and motor
features of real-world tasks and behaviors must be com-
ponents of VEs for transfer to occur? We have identified
broad areas where more research is required; however,
we did not systematically appraise study quality, and
subsequent reviews should do so to support further clin-
ical recommendations. This program of research is sig-
nificant: it can inform clinical decision-making about
how best to apply VEs in rehabilitation and identify the
virtual task delivery and presentation conditions re-
quired to improve skill transfer from VEs to the real
world.
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