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Abstract

Background: Compensations are commonly observed in patients with stroke when they engage in reaching
without supervision; these behaviors may be detrimental to long-term functional improvement. Automatic
detection and reduction of compensation cab help patients perform tasks correctly and promote better upper
extremity recovery.

Objective: Our first objective is to verify the feasibility of detecting compensation online using machine learning
methods and pressure distribution data. Second objective was to investigate whether compensations of stroke
survivors can be reduced by audiovisual or force feedback. The third objective was to compare the effectiveness of
audiovisual and force feedback in reducing compensation.

Methods: Eight patients with stroke performed reaching tasks while pressure distribution data were recorded. Both
the offline and online recognition accuracy were investigated to assess the feasibility of applying a support vector
machine (SVM) based compensation detection system. During reduction of compensation, audiovisual feedback
was delivered using virtual reality technology, and force feedback was delivered through a rehabilitation robot.

Results: Good classification performance was obtained in online compensation recognition, with an average F1-
score of over 0.95. Based on accurate online detection, real-time feedback significantly decreased compensations of
patients with stroke in comparison with no-feedback condition (p < 0.001). Meanwhile, the difference between
audiovisual and force feedback was also significant (p < 0.001) and force feedback was more effective in reducing
compensation in patients with stroke.

Conclusions: Accurate online recognition validated the feasibility of monitoring compensations using machine
learning algorithms and pressure distribution data. Reliable online detection also paved the way for reducing
compensations by providing feedback to patients with stroke. Our findings suggested that real-time feedback could
be an effective approach to reducing compensatory patterns and force feedback demonstrated a more enviable
potential compared with audiovisual feedback.
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Background
Stroke is the leading cause of long-term disability in adults
worldwide [1], and many poststroke patients suffer from
varying degrees of upper extremity motor dysfunction [2].
Skilled reaching is an important aspect of upper limb motor
ability but is impaired after stroke [3, 4]. Patients with
stroke usually develop adaptive compensatory patterns,
particularly by recruiting excessive trunk or shoulder move-
ments during reaching [5, 6]. The use of compensatory mo-
tions could be beneficial for an immediate improvement in
function; however, such a functional improvementoccurs
because of a reinforcement of compensation instead of true
motor recovery [7]. Patients with stroke who commonly
use compensatory strategies may form nonoptimal motion
patterns, hindering long-term recovery of their impaired
arms [8, 9]. Previous studies have demonstrated that redu-
cing compensatory patterns has the potential to improve
the final functional outcome. Improvements were accom-
panied by lager active joint range [8], higher FMA-UE score
[10] and recovery of lost motor patterns [7]. Therefore,
therapists correct undesired compensatory motions when
they supervise therapeutic exercises. However, stroke pa-
tients perform many exercises without supervision, such as
home therapy, which highlights the need to detect and re-
duce compensationin unsupervised rehabilitation [10].
Automatic detection of compensation can ensure sub-

sequent intervention to prompt the patient into the cor-
rect pose. Previous studies have evaluated the feasibility
of sensor-based and camera-based systems to detect
compensation without the supervision of a therapist
[11–15]. However, camera systems are not appropriate
for application in clinical or home settings, which face
challenges such as object obstruction, complex setups
and privacy [13, 16]. Sensor-based systems suffer from
inducing unnatural motions due to the attachment of
sensors. Moreover, the reliability of the outcome esti-
mates from these sensors is still a challenge for re-
searchers [14, 16]. While the detection of compensatory
patterns still lacks a simple, unobtrusive and practical
method, we have proposed a pressure distribution-based
compensation detection system [17, 18]. With a pressure
mattress mounted on the chair, participants performed
seated reaching tasks, and the pressure distribution data
were recorded. Several features were extracted from the
pressure distribution data that reflected the information
for different kinds of compensatory motions. Different
models were applied to recognize compensatory patterns
and achieved excellent offline recognition accuracy. Our
previous studies pave the path toward detecting com-
pensation based on pressure distribution data and ma-
chine learning methods. However, there is still a gap
between online and offline detection performance, and
few studies on the real-time detection of compensation
have been reported. To our knowledge, no previous

study has evaluated the feasibility and validity of detect-
ing compensatory motions based on pressure distribu-
tion data and machine learning methods in real time.
Therefore, the purpose of this study is to investigate
whetherthe pressure distribution-based method can be
implemented in the real-time monitoring of compensa-
tory motions in patients with stroke.
Based on the real-time detection of compensation,

various feedback strategies, in the form of visual [19, 20],
auditory [21, 22], or force feedback [23], were provided
to patients with stroke to modify their motion patterns.
However, there is still no consensus on the kind of feed-
back modalities that would be effective in reducing com-
pensation. In this study, virtual reality (VR) technology
was employed to provide audiovisual feedback, while a
rehabilitation robot was employed to provide force feed-
back. This pilot study aimed to investigate whether the
compensation of stroke survivors during reaching can be
reduced by audiovisual and force feedback and to exam-
ine whether one feedback method is superior to the
other.
Therefore,the main contributions of this paper are as

follows:

1) The implementation and validation of thepresented
compensation-detecting method using pressure
distribution data and machine learning algorithms
in real time;

2) The use of virtual reality and a rehabilitation robot
to reduce compensatory motions in patients with
strokeduring reaching tasks; and

3) The comparison of audiovisual and force feedback
for reducing compensation.

Methods
Participants
Eight poststroke subjects were recruited from the Third
Affiliated Hospital, SUN Yat-sen University. A summary
of the participants’ demographics was provided in Table 1.
Ethical approval was obtained from the Guangzhou First
People’s Hospital Department of Ethics Committee. All
participants reviewed and signed an informed consent
form prior to entering the study.
Participants were included if they had experienced

their first-ever stroke, if they were either in the subacute
(between 1 to 6 months poststroke) or chronic (over 6
months poststroke) stage of recovery, if they were able
to remain in a sitting posture (without back or arm
rests) for at least 10 min and if they were able to perform
the required motions. Participants were excluded from
the study if they had the following: upper limb pain > 4/
10 on a visual analogue scale (VAS) [24]; upper limb
spasticity > 2 on the Modified Ashworth Scale (MAS)
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[25]; Mini-Mental State Examination (MMSE) score ≤ 23
[26]; or visual spatial neglect based on clinical judgment.

Experimental setup
The integrated platform comprised a pressure distribu-
tion mattress (Body Pressure Measurement System
(BPMS), Model 5330, Tekscan, Inc., South Boston, MA,
USA), a rehabilitation robot, 3D motion capture system
(VICON, Oxford Metrics, UK), and a personal computer
(see details in Fig. 1). The BPMS system was mounted
on the chair to record the pressure distribution data of
each patient during the seated reaching tasks. The re-
habilitation robot, which is based on UR5 (Universal Ro-
bots Ltd., Odense, Denmark) [27], can support and guide
the movement of the impaired arm in 3D space. A handle
was attached at the end of UR5 for participants to hold.
An admittance control scheme [28–30], which is a pos-
ition controller with force feedback, was implemented. A
6-DOF force sensor is attached to the end effector of the
ReRobot, then the input from this sensor is used to pro-
duce velocity commands for the device. The rehabilitation
robot can be commanded to maintain the correct direc-
tion or provide haptic feedback in the form of assistive
force to the subject. And the assistive force was provided

based on the ‘assistance-as-needed’ principle [31, 32],
that is, the ReRobot can adaptively generate the neces-
sary assistive force based on the estimated user’s force
output. Transmission Control Protocol/Internet Proto-
col (TCP/IP) was used for communication between the
rehabilitation robot and the MATLAB (MathWorks
Corp., Natick, MA, USA) user interface. The virtual en-
vironments (VEs) were employed to provideaudiovisual
feedback, which was built in Unity3D (Unity Technolo-
gies, CA, USA) [33] and connected to the rehabilitation
robot and pressure distribution mattress through the
TCP/IP. The pressure distribution data were recorded
at 50 Hz. The VICON system was used to track partici-
pants’ upper limb and trunk movements at 100 Hz.
The experiment consisted of three sessions, including no

feedback,audiovisual feedback and force feedback,as shown
in Fig. 2. Subjects were divided into two groups: Group 1
(S1-S6) and Group 2 (S7, S8). Several familiarization trials
were performed to ensure that the subjects understood and
felt comfortable with the experimental procedures. Suffi-
cient rest periods were given to the participants between
each reaching task to avoid mental and muscle fatigue.
Participants sat on a chair and held onto the handle of

the rehabilitation robot. The height of the chair was

Table 1 Demographic and clinical data for participants with stroke

Subject Age Gender Height (cm) Weight (kg) Affectedside Months post stroke MMSE FMA

S1 54 F 150 60 Left 2 26 34

S2 45 M 164 54 Left 3 30 55

S3 68 F 155 39.5 Left 2 30 38

S4 52 M 175 65 Left 6 27 19

S5 37 M 173 72.5 Right 5 30 32

S6 65 M 172 65 Right 9 26 35

S7 65 M 170 51 Left 4 25 36

S8 66 M 167 65 Left 3 27 29

Average ± SD 56.5 ± 10.64 165.8 ± 8.39 59 ± 9.75 4 ± 2 27.6 ± 1.93 35 ± 9

Fig. 1 The experimental setup. (a) and (b) display the integrated platform, including (A) The rehabilitation robot, (B) TV screen (display deviceof
virtual reality), (C) pressure distribution mattress, (D) 3D motion capture system, (E) computer and (F) reflective markers
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adjusted to keep participants’ hips and knees flexed at
approximately 90°. If participants could not hold the
handle, they were provided with a strap. Each subject
performed three basic kinds of reaching, including (i)
back-and-forth (Fig. 3b), (ii) side-to-side (Fig. 3c), and
(iii) up-and-down reaching (Fig. 3d). To avoid fatigue,
each participant was allowed 10 s of rest between two
reaching motions and 3min of rest after a certain type
of reaching task. The total session total approximately
an hour and a half on average for each participant, includ-
ing resting time. Three types of compensatory patterns
were commonly elicited, including an excessive trunk rota-
tion (TR), trunk lean-forward (TLF) and shoulder-elevation
(SE) [34].

Session 1:no feedback
No feedback was provided in this experimental trial; that
is, the visual display was turned off, and the rehabilita-
tion robot was commanded to maintain the correct
direction during the execution of each motion. Each
subject in Group 1 performed three kinds of reaching
tasks, and each task was repeated 30 times with his/her
healthy arm and affected arm. Each patient performed
180 movements in total, with 90 motions on each arm.
Reaching movements performed by the participants’
healthy arm were labeled as noncompensation (NC)

motions. A therapist visually monitored these moments
performed by the affected arm and labeled these com-
pensatory motions. The raw data of each subject in
Group 1 were recorded as Dataset 1 for training a classi-
fier that could be used to detect compensation from
pressure distribution data. Each subject in Group 2 per-
formed each reaching task with his/her healthy side and
affected side 15 times at a self-selected speed. This
process lasted about half an hour to 45 mins, including
resting time. The raw data of all the participants were
recorded as Dataset 2, and the classifier trained by Data-
set 1 was employed to detect compensation online. The
motion data of S7 and S8 were recorded by the VICON
system.

Session 2:audiovisual feedback
Each subject performed reaching movements with his/
her affected side, and therehabilitation robot was com-
manded to maintain the correct direction. Visual display
was turned on, and audiovisual feedback was provided
when the online motion recognition system detected
that the participant compensated during a reaching
movement, as shown in Fig. 4. Virtual scenes mainly
consist of a progress bar showing the progress of sub-
jects’ movements, an avatar instructing recommended
actions to reduce compensation, and some necessary

Fig. 2 Experimental design

Fig. 3 Reaching tasks and pressure maps. (a) Sitting straight, (b) back-and-forth reaching, (c) side-to-side reaching, (d) up-and-down reaching, (e-
h) corresponding pressure maps
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guidance in the obvious places. Subjects could see their
motion from the progress bar in real time, and there was
an arrow beside the progress bar indicating the direction
of movement. In this study, VE resembled the traditional
rehabilitation items so that participants could be
immersed. The avatar did not appear on the virtual
scene until compensatory motions were detected by the
online compensatory pattern recognition system that we
previously described. For instance, when TLF was de-
tected during back-and-forth reaching, the avatar mim-
icking subjects’ movements was displayed on the screen,
along with an animation of trunk lean-backward, thus
introducing participants to correct compensatory motions.
There was also an arrow along with the avatar, indicating
the direction of decreasing compensatory motions (Fig. 4a).
Simultaneously, auditory feedback was provided to inform
participants of compensation and to give instructions on
how to reduce compensation. Audiovisual feedback was
provided similarly when patients with stroke performed
side-to-side and up-and-down reaching. Each reaching task
was completed 15 times in total, and the participants’ kine-
matics were measured by the VICON system. This process
lasted about 20 mins to half an hour, including resting time.

Session 3:force feedback
In this experimental trial, visual display was turned off,
and the rehabilitation robotprovided force feedback when
a compensatory motion was detected. When participants
performed reaching tasks without compensation, the re-
habilitation robot was commanded to maintain the correct
direction. During the familiarization trials, each partici-
pant confirmed that he could sense the change in force
when compensating and ensure the assistive force was
suitable for him. Each reaching task was repeated 15 times
with the paretic hand, and the participant’s kinematics
were recorded by the VICON system. This process lasted
about 20 mins to half an hour, including resting time.

Data preprocessing and feature extraction
The pressure maps were displayed as a color-coded real-
time display in the BPMS software (Fig. 3, bottom panels).
Each pressure map consists of a 32 × 32-dimensional

vector, and the pressure distribution data were exported
into ASCII format for processing in MATLAB. By review-
ing existing research on pressure distribution mattresses
[35, 36] and our previous studies [17, 18], ten features
were extracted from the pressure distribution data for
classification, including the average pressure sensor values
(AVESSV), the maximum of the pressure sensor values
(MAXSV), the average value and standard deviation of the
medial/lateral center of pressure (AVEM/L-COP and
SDM/L-COP), the average value and standard deviation of
the anterior/posterior center of pressure (AVEA/P-COP and
SDA/P-COP), average value and standard deviation of the
ratio of the pressure on the medial to lateral side
(AVEM/L-ratio and SDM/L-ratio), and the average value and
standard deviation of the ratio of the pressure on the an-
terior end to the pressure on the posterior end (AVEA/P-ra-
tio and SDA/P-ratio).

Classification
Based on previous studies on healthy subjects [17] and
stroke patients [18], the support vector machine (SVM)
classifier [37, 38] was employed to classify compensatory
patterns. In this study, we trained an SVM classifier with
a radial basis kernel function using LIBSVM in
MATLAB [39]. Extracted features from pressure distribu-
tion data of Dataset 1 were normalized and combined in a
random order before implementation of SVM classifier.
The classification performance was assessed using leave-
one-subject-out (LOSO) cross-validation [40]. With LOSO
cross-validation, a model was trained on data from all sub-
jects except one, who was “left out”, and the data from the
one subject was used as a test dataset. The process was
repeated until the data from each subject were used as a
test dataset and could be used to determine the average
recognition rate of the model. In the online compensation
detection, an SVM classifier trained using Dataset 1 was
employed to recognize compensatory patterns of subjects
(S7, S8) with the aforementioned pressure features.
Confusion matrix displays information about actual and

predicted classifications done by a classifier and is a con-
venient tool for evaluating the classification performance
[41]. For binary classification, confusion matrix contains

Fig. 4 Screenshots from three reaching tasks in the virtual environment with audiovisual feedback active. (a) Back-and-forth reaching task, (b)
side-to-side reaching task, and (c) up-and-down reaching task
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true positives (TP), true negatives (TN), false positives
(FP), false negatives (FN), as shown in Table 2.
Based on the confusion table, precision [42, 43] describes

the accuracy of the detection and can be calculated with
(1). Recall refers to how well the target objects are detected
without being missed and can be calculated with (2).

Precision ¼ TP
TP þ FP

ð1Þ

Recall ¼ TP
TP þ FN

ð2Þ

The cross-validation performances of the SVM classi-
fier were evaluated by computing overall F1-scores (har-
monic mean of precision and recall) [37, 44, 45]. The
F1-score can be obtained as follows:

F1 ¼ 2� Precision� Recall
Precision þ Recall

ð3Þ

Statistical analysis
Differences in F1 scores were tested for statistical signifi-
cance using the Friedman nonparametric tests. We con-
ducted two-way repeated measures analyses of variance
(ANOVA) (random effect: participant; fixed effect: feed-
back condition) to determine if compensation under the
three conditions was significantly different. When the
test statistic was significant, Bonferroni post hoc tests
were performed to determine if differences between each
of the two conditions were significant. Statistical analysis
was performed using IBM SPSS statistics software (ver.
24.0, IBM Corp., Armonk, NY, USA), and a level of sig-
nificance of 0.05 was selected.

Results
Classification performance
The offline compensatory pattern recognition performance
was assessed using Dataset 1 by computing precision, recall
and F1-scores. The SVM classifier exhibited excellent per-
formance in offline detection of compensatory patterns,
with an average F1-score of 0.986 ± 0.014. As shown in
Table 3, the SE compensatory pattern was well detected
(F1-score = 1.000), followed by TR compensation (F1-
score = 0.995), NC (F1-score = 0.984) and TLF compensa-
tion (F1-score = 0.963). The Friedman nonparametric test
provided statistical evidence of a significant difference in
F1- scores across different compensatory patterns (p =

0.032). Furthermore, the performance of each class was an-
alyzed using the SVM classifier across all subjects. The
pressure distribution-based method generally classifies well
(average F1-score > 0.90) for all participants. The minimum
and maximum F1-scores of these four patterns among all
subjects were 0.857 and 1.000, respectively.
The online classification performance in the recognition

of compensatory patterns was evaluated using Dataset 2,
as shown in Table 4. The SVM classifier performed well,
with an average F1 score of 0.985, which indicated that
the proposed method can accurately detect compensation
online. The SE compensatory pattern was well detected
(F1-score = 1.000), followed by TLF (F1-score = 0.992),
NC (F1-score = 0.986) and TR (F1-score = 0.965). The
classification accuracy was higher than 95% for both S7
and S8, which can be functionally useable for monitoring
compensation in patients with stroke during reaching.
Thus, based on real-time detection of compensatory pat-
terns, different kinds of feedback, such as visual, auditory
and force feedback, can be provided to participants to help
them reduce compensation.

Different feedback modalities in reducing compensation
Three different reaching conditions were evaluated in
the present study: no feedback, audiovisual feedback and
force feedback. Fifteen motions of each reaching task
per condition were used to generate mean kinematic
data for each participant, which were used to compare
differences among different conditions. All kinematic
variables in the no-feedback condition were used as
baseline comparisons. As shown in Fig. 5, compensation
was measured by the angle of TLF (α), the angle of TR
(β) and the angle of SE (γ). These three angles of S7 and
S8 in the no-feedback, audiovisual feedback and force

Table 2 Confusion matrix

Actual Class

Positive Negative

Predicted class Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

Table 3 Offline classification performance of the SVM classifier
in the detection of compensatory patterns

TLF TR SE NC Average

SVM

Precision 0.939 0.990 1.000 0.998 0.982

Recall 0.994 1.000 1.000 0.970 0.991

F1-score 0.963 0.995 1.000 0.984 0.986

Table 4 Online classification performance of the SVM classifier
in the detection of compensatory patterns

Subject TLF TR SE NC Average

S7 Precision 1.000 1.000 1.000 0.957 0.989

Recall 1.000 0.867 1.000 1.000 0.967

F1-score 1.000 0.929 1.000 0.978 0.978

S8 Precision 1.000 1.000 1.000 0.989 0.997

Recall 0.967 1.000 1.000 1.000 0.992

F1-score 0.983 1.000 1.000 0.994 0.994
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feedback conditions were analyzed. For audiovisual feed-
back, both S7 and S8 reduced their compensation sig-
nificantly (p < 0.001) compared with baseline. Compared
with the baseline, S7 showed greater improvement, with
a reduction of 29.9, 19.8 and 2.4% in the angles of TLF,
TR and SE, respectively. The maximum amount of re-
duction, which was 5.67°, was obtained in the back-and-
forth reaching. A slight reduction of 0.36° was observed
in the up-and-down reaching. For S8, the angles of TLF,
TR and SE were reduced by 13.3, 4.2 and 10.3%, respect-
ively. The maximum and minimum values of reduction
were 2.05 ° and 0.63°, which were observed in up-and-
down and side-to-side reaching tasks, respectively. This
result indicated that effects of audiovisual feedback on
different tasks differed. Specifically, significant differ-
ences (p < 0.001 for TLF compensation, p = 0.03 for TR
compensation) between the audiovisual feedback and
the no-feedback conditions were observed, while there
was no significant difference (p = 0.177) in the SE com-
pensatory pattern. Reaching with force feedback effect-
ively reduced compensatory motions for both S7 and S8
in comparison with baseline (p < 0.001). For S7, the an-
gles of TR, TLF and SE were reduced by 48.6, 35.7 and
23.6% in comparison with the baseline. Reduction in the
side-to-side reaching task was largest, which was up to
6.77°. The minimum amount of reduction was detected
in theback-and-forth reaching task, which was 3.58°.
Similarly, S8 obtained a maximum reduction of 6.83° in
the side-to-side reaching. When comparing the force

feedback condition with the baseline, S8 reduced the an-
gles of TR, TLF and SE by 45.3, 29.0 and 23.9%, respect-
ively. Our observed reduction of these compensatory
parameters in the audiovisual and force feedback condi-
tions suggests that both kinds of feedback were effective
in reducing compensation of patients with stroke. Sur-
prisingly, the difference between audiovisual and force
feedback was significant (p < 0.001), which indicated that
force feedback seemed morepromising in reducing com-
pensatory patterns in stroke survivors during reaching
tasks. For S7, the angles of TR, TLF and SE were re-
duced by 28.8, 21.2 and 5.8% under force feedback when
compared with audiovisual feedback. Reaching with
force feedback led to greater decreases in compensation,
especially in the side-to-side reaching task, and the max-
imal difference was 3.98°. For S8, compared with audio-
visual feedback, which decreased the angles of TR, TLF
and SE by 0.63°, 1.73° and 2.05°, respectively, reduction
by using force feedback was more obvious with 6.83°,
3.78° and 4.73°, respectively. Overall, these results sug-
gested that force feedback was a more appropriate ap-
proach to incorporate into the upper limb rehabilitation
program, as it demonstrated a more efficient reduction
of compensations during reaching.

Discussion
Our first objective was to verify the feasibility of real-
time monitoring compensation using a machine learning
classifier from the pressure distribution data of patients

Fig. 5 Individual results for compensation under different conditions. (a-c) represent the results of S7; (d-f) represent the results of S8. Related
compensation angles are presented across the reaching cycle (back-and-forth reaching, side-to-side reaching and up-and-down reaching). The
curves represent the three different conditions: no feedback (blue), audiovisual feedback (green) and force feedback (red). * indicates a significant
difference (p < 0.05) with respect to the no-feedback condition, §indicates a significant difference (p < 0.05) between the audiovisual feedback
and force feedback conditions
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with stroke. To our knowledge, this is the first time that
an online pattern recognition analysis has been accom-
plished on compensatory motions for the population
with stroke. The combination of pressure distribution
data with the SVM classifier provided good classification
performancein the online detection of compensations,
with an average F1-score of 0.986, indicating that the
pressure distribution-based system may be a viable mon-
itoring scheme in the detection of compensatory pat-
terns for stroke survivors during reaching tasks.
Our second objective was to investigate whether the

compensatory motions of stroke survivors observed dur-
ing reaching tasks can be reduced by audiovisual feedback
and force feedback. Based onthe presented compensation-
detection method using pressure distribution data and
machine learning algorithms in real time, both audiovisual
and force feedback decreased compensation exhibited by
individuals with stroke in reaching; however, the effective-
ness on reducing compensatory patterns varied with dif-
ferent individuals and reaching tasks.
Our third objective was to examine whether audiovi-

sual feedback or force feedback was more effective in re-
ducing compensation for patients with stroke. From the
outcome measures used in this study, force feedback is a
more promising approach to decreasing compensatory
motions in reaching tasks. Therefore, training with force
feedback is recommended for stroke patients to control
motor compensation and promote motor learning dur-
ing rehabilitation training.

Online detection of compensation
Thus far, there have been no reports on the real-time
monitoring of compensatory motions in patients with
stroke during reaching using a machine learning model
from pressure distribution data. Without inducing unnat-
ural motions or increasing concerns related to privacy, a
pressure distribution-based detection system is more port-
able and convenient to use in clinical and home settings
than are sensor-based and camera-based systems. Our
previous studies [17, 18] demonstratedthe feasibility and
validity of offline recognition of compensatory patterns
based on pressure distribution data and machine learning
algorithms. However, offline performance is insufficient
for further application in upper limb rehabilitation
training, and there is usually a gap between online and
offlinerecognition accuracies. An SVM classifier was
trained on features from the pressure distribution data
to detect three types of compensatory patterns (TLF,
TF and SE) and NC in stroke patients in real time. On-
line recognition accuracies were higher than 95% for
both S7 and S8, indicating that the method proposed in
this study can be used as a real-time detection system
of compensatory motions and a promising adjunct to
incorporate into the upper limb rehabilitation program.

Rajiv Ranganathan et al. [13] employed a wearable
sensor-based system to detect compensation in real time
and obtained a classification performance with an F1-
score = 0.857 for TR and an F1-score = 1.000 for SE. A
camera-based system for online compensation detection
has also been studied [15]; however, the classification
performance was worse in stroke survivors for TR (F1-
score = 0.27), TLF (F1-score = 0.17), and SE automatic
detection of compensation (F1-score = 0.07). Compared
to the results of previous research, our method provided
more reliable accuracy of online recognition, with an
average F1-score of 0.992 for TLF, 0.963 for TR, and
1.000 for SE. This evidence validated that the pressure
distribution-based system can reliably detect and categorize
compensatory patterns in patients with stroke during seated
reaching tasks and can be used as an input for feedback sys-
tems to reduce compensation.

Real-time reduction of compensation
Based on the motion data of stroke patients, reaching au-
diovisual feedback or force feedback effectively reduced
compensation in comparison with the no-feedback condi-
tion (p < 0.001). Previous studies [19, 23, 46–49] have re-
ported similar results for different feedback modalities on
decreasing compensation in patients with stroke. Audiovi-
sual feedbackhas been a frequent focus of research due to
the popularization of VR technology. Providing auditory
instructions when compensation is detected, simulating
the presence of a virtual therapist, or using negative visual
cues within the therapy game can improve the quality of
motions so that they are more similar to therapist-
supervised motions [12]. In this study, TLF and TR com-
pensation were significantly reduced when participants
were provided audiovisual feedback; however, we did not
find any statistically significant difference in the SE com-
pensatory pattern between the audiovisual feedback and
the no-feedback conditions. This may indicate that the ef-
fect of audiovisual feedback is related to different levels of
task difficulty. The SE compensatory pattern is mainly
employed by patients with stroke in up-and-down reach-
ing, which is also the most difficult task, as stated by par-
ticipants in the experiment. Given the challenge to motor
ability, the use of increased SE to aid arm and hand posi-
tioning/orientation for reaching tends to be an adaptive
compensatory strategy [7]. Although audiovisual feedback
was provided in real time to participants, it cannot make
the up-and-down task easier. This result is consistent with
the result of Norouzi-Gheidari, et al. [50], who showed
that the reaching performance of patients with stroke did
not differ between a physical environment and a virtual
environment. As stated by Alankus, et al. [49], when au-
diovisual feedback is employed to remind patients of im-
proper motor patterns, difficulty parameters need be
adapted to user abilities. It is the difficulty of the motion
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itself that affects the improvement achieved under the au-
diovisual feedback condition; thus, providing audiovisual
feedback is not enough in some exercises. Likewise, thera-
pists sometimes need to correct motions, rather than only
providing instruction when they supervise rehabilitation
training. It may also be explained that reaching the per-
formance of stroke patients was significantly improved
(p < 0.001) under the force feedback condition when com-
pared to the no-feedback or audiovisual feedback condi-
tion in this study. We noticed that neither force feedback
nor audiovisual feedback was superior in reducing com-
pensationin previous studies [23, 46]. This difference is
likely the result of two kinds of force feedback. Specific-
ally, force feedback was provided in the form of a resistive
force acting in the opposite direction of motion in previ-
ous studies [23, 46], while force feedback was supplied as
an assistive force acting in the same direction of motion in
our study. Given that providing resistance to the partici-
pant’s limb movements makes movement tasks more diffi-
cult or challenging, providing assistive force instead of
resistive force as feedback can help patients with stroke to
move their affected limbs in desired patterns and reduce
compensation more directly [51]. Meanwhile, the active
assist strategy is the most developed control paradigm in
rehabilitation robots and is widely used in robotic therapy
[52]. Therefore, when compensatory patterns were de-
tected during reaching, it was more reasonable to use re-
habilitation robot to assist the impaired limb to reduce
compensation and recover desired interjoint coordination.

Limitations
There were several limitations in the current pilot study.
Firstly, there were only eight patients with stroke partici-
pating in this study. Though our results suggested that
force feedback showed a more promising potential than
audiovisual feedback in improving reaching perform-
ance, large sample size of patients with stroke with dif-
ferent levels of upper limb impairment are needed to
draw stronger conclusions. Secondly, the experiments
were carried out in order of reaching with no feedback,
reaching with audiovisual feedback and reaching with
force feedback, rather than in a random order. Caution
must be taken before applying our results to reducing
compensation in patients with stroke and experiment
with a random order is recommended. Thirdly, in this
study, our classifier detect the main compensation when
multiple compensation occur simultaneously. Consider-
ing that detecting compound compensation may provide
more information to both the patients and therapists, we
will investigate the feasibility of detecting multiple com-
pensatory patterns. Finally, besides kinematic results, clin-
ical outcome assessments indexes on stroke should be
included in the following studies. Longitudinal studies are
required to explore the long-term effects of different kinds

of feedback in motor improvement and whether one kind
of feedback is superior to another in the longer-term func-
tional recovery of the upper extremities.

Conclusion
In this study, good classification performances were ob-
tained, with an average F1-score of 0.985 using an SVM
classifier. Based on accurate online detection, rehabilita-
tion robot and VR technologies were applied to decrease
compensation in real time by providing force and audiovi-
sual feedback to stroke patients. Effective improvements
in motion patterns were observed under both the audiovi-
sual and force feedback conditions when compared with a
no feedback condition. In addition, reaching with force
feedback was more promising for reducing compensation
in patients with stroke.
This study is an early step in investigating feasibility of

detecting compensations in patients with stroke using a
machine learning algorithm from pressure distribution data
in real time. Caution must be taken before applying our
results to reducing compensation and further studies are
required to determine the effects of choice of feedback.
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