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Abstract

Background: Sit-to-stand and stand-to-sit transitions are frequent daily functional tasks indicative of muscle power
and balance performance. Monitoring these postural transitions with inertial sensors provides an objective tool to
assess mobility in both the laboratory and home environment. While the measurement depends on the sensor
location, the clinical and everyday use requires high compliance and subject adherence. The objective of this study
was to propose a sit-to-stand and stand-to-sit transition detection algorithm that works independently of the sensor
location.

Methods: For a location-independent algorithm, the vertical acceleration of the lower back in the global frame was
used to detect the postural transitions in daily activities. The detection performance of the algorithm was validated
against video observations. To investigate the effect of the location on the kinematic parameters, these parameters
were extracted during a five-time sit-to-stand test and were compared for different locations of the sensor on the
trunk and lower back.

Results: The proposed detection method demonstrates high accuracy in different populations with a mean positive
predictive value (and mean sensitivity) of 98% (95%) for healthy individuals and 89% (89%) for participants with
diseases.

Conclusions: The sensor location around the waist did not affect the performance of the algorithm in detecting the
sit-to-stand and stand-to-sit transitions. However, regarding the accuracy of the kinematic parameters, the sensors
located on the sternum and L5 vertebrae demonstrated the highest reliability.
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Background
Being able tomaintain balance duringmovements is a pre-
requisite for an independent life. The inability to do so can
lead to an increased risk of falls and consequently a depen-
dent and inactive life [1–3]. Balance disorders can lead to
problems with postural transitions (PTs), such as the sit-
to-stand movements [4]. These challenging PTs require
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complicated coordination of lower and upper limbs [5]
and frequently occur during daily living activities [6, 7].
As the sit-to-stand transitions are indicative of lower limb
muscle strength and balance control [6, 8, 9], quantify-
ing these movements is key to understand the underlying
problem of balance disorders.
Clinicians conventionally assess the sit-to-stand tran-

sitions by either diaries [10] and questionnaires [11, 12]
or functional tests. Standardized assessment tools can
provide here valuable additional information.
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The five-time sit-to-stand (5xSTS) test which measures
the time to perform five sit-to-stand transitions [13, 14]
and thirty-second chair-rise (30SCT) test which includes
the numbers of sit-to-stands that can be performed within
thirty seconds [8, 15] are standardized functional tests
used in clinical routine to assess the ability to perform, and
the quality of transitions. Although these methods have
been proven to display discriminative properties for bal-
ance disorders [16], subtle differences that may provide
further relevant information about the movement are not
detectable with these tests [17].
For instance, during sit-to-stand transitions, maximum

angular velocity has been shown to be associated with
inadequate momentum generation and consequently, the
success of the PT [18, 19]. Moreover, duration of each
phase of sit-to-stand transitions changes between young
and old adults [20] and between older adults with a low
or a high risk of fall [21]. Peak power of transition has
been reported to be associated with muscle power and
strength [22, 23]. Therefore, instrumenting these func-
tional tests and extracting meaningful parameters can
provide a more in-depth and precise analysis. Sit-to-stand
transitions have been studied with optical motion track-
ers [24] and force plates [25]. Although these methods
provide very detailed and granular information about the
movements, they are limited to the laboratory environ-
ment [7, 17].
The laboratory setting can only assess the performance

of the participants in the confined environment (e.g. in-
clinic) while individuals demonstrate different behavior
in real-life daily activities [26, 27]. For example, sit-to-
stand duration has been shown to be higher during daily
activities compared to the functional test performed in
the clinic in older adults and in patients with idiopathic
Parkinson’s disease (IPS) [28]. Thus, it is important to
develop methods that can also be used in domestic envi-
ronments.
Inertial sensors can be applied in almost every environ-

ment. Moreover, they have been already used to instru-
ment the 5xSTS [29] or the 30SCT [30] tests. Kinematic
parameters extracted from such instrumented assess-
ments have been shown to have greater clinical relevance
than the conventional clinical approach [31, 32]. Wearable
sensors have provided an objective tool to evaluate PTs
during daily activities as well. Barometric pressure sensor
within the pendant device was used as a complementary
source of data to detect the PTs [3, 33]; however, due to the
pressure changes in outdoor environments, the use of the
barometric sensor can adversely affect the detection accu-
racy. For instance, in [3], the sensitivity of the sit-to-stand
detection was decreased by 25% in outdoor environments.
There are some studies on monitoring sit-to-stand tran-

sitions with a single inertial sensor on either the sternum
or on the lower back. In reference [34], the gyroscope

and accelerometer signal along with a discrete wavelet
transform have been used to obtain the trunk angle and
consequently to detect the PTs. A simpler sensor setup
with only a tri-axial accelerometer was used in [35]. In
this study, the tilt angle of the trunk was estimated by the
scalar product of the accelerometer data and gravity vec-
tor obtained during a static calibration at the beginning
of each measurement. These studies were validated under
very controlled conditions that involved sit-to-stand and
stand-to-sit movements with a few other activities. More
daily activities were included in the measurement proto-
col used by [36] and to reduce the false positive trunk
movements, fuzzy rules have been employed to improve
the accuracy of detection based on the previous or next
activity. The performance of the PT detection was further
improved by employing a template matching technique
with dynamic time warping method in [37]. However, the
performance of the detection algorithm was still unsatis-
fying with a positive predictive value and sensitivity of 22%
and 50%, respectively. In another study, with a single iner-
tial sensor on the waist, the candidates of the PTs were
first detected by detecting the peaks of the tilt angle of
the lower back. These were filtered out by double integrat-
ing the vertical acceleration and calculating the elevation
change of the lower back [38].
The drawback of all of these studies [21, 34–40] is that

they require the sensor to be attached to a specific and
fixed location of the body, which is difficult to main-
tain during daily activities and may not be achievable
by patients themselves without a trained operator, thus
limiting its broaden applicability in clinical setting.
This issue has been partially solved through using the

signal vector magnitude which is the Euclidean norm of
the accelerometer signal [41, 42]. The choice of various
wavelets and scale approximations were studied in [42] to
detect the PTs in a large group of healthy younger and
older adults. However, in both of these studies, no method
was suggested to distinguish true PTs from movements
that can have similar wavelets to PTs. Their algorithms
have been validated in measurements involving only sit-
to-stand and stand-to-sit movements with rest periods
in-between.
To this end, an algorithm which is robust to sensor

placement changes and validated in a range of daily activ-
ities is desirable. Furthermore, little is known about the
transferability of algorithms developed within a certain
cohort, to other cohorts (e.g., with different and without
diseases). The goal of this study was therefore to eval-
uate the performance of a new PT detection algorithm
in healthy individuals and patients with different diseases
that were all equipped with an inertial sensor on differ-
ent locations around the waist and on the trunk. The new
algorithmwas validated in both laboratory and daily activ-
ity settings. Finally, the effect of the sensors location on
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Fig. 1 The location of inertial sensors for Dataset A

the detection performance and extracted parameters was
evaluated.

Methods
Materials andmeasurement protocol
In this study, two datasets were used to reach the objec-
tives of the study (Table 1):

• Dataset A: (1) To validate the proposed PT detection
method during simple daily activities with inertial
sensors on different locations around the waist and
on the trunk, (2) to validate the extracted kinematic
parameters against reference systems, and (3) to
investigate the effect of sensor location on the
kinematic parameters

• Dataset B: To demonstrate the performance of PT
detection algorithm in different healthy and patient
populations

Dataset A was obtained through measurements on 15
young healthy adults. Table 1 provides demographic infor-
mation. Participants wore four inertial sensors (Physilog
5, Gait Up, CH) at four different locations on the body
(Fig. 1): chest (TR), lower back at the area of L5 (L5), ante-
rior superior iliac spine (ASIS), and an arbitrary position
on the right hip (RH). Data from the 3D accelerometer and
3D gyroscope was recorded with a sampling frequency of
128 Hz and was used to test the PT detection algorithm
described in the next two sections.

The measurement protocol consisted of two tests. The
first test aimed to validate the performance of the PT
detection algorithm during 10 minutes recording of daily
tasks performed in a fixed order inside a building: sit-
ting on different chairs and sofas with different heights,
walking through different offices, bending to pick up
objects from the floor, lying, tying shoe laces, picking
objects from the fridge, and using stairs and lift. Subjects
were free to move outside the lab and between different
offices. As the reference events for the PTs, the partic-
ipants were video recorded during the whole measure-
ment with a camcorder (Sony, Japan) with 25 frames per
second.
The goal of the second test was to validate the accu-

racy of the extracted kinematic parameters and determine
the effect of the sensor location on the characterization
of the PTs. The participants were asked to perform a
5xSTS test in the lab on a chair without armrest. Reg-
ularly, 5xSTS is performed as fast as possible. Here, the
test was performed with self-selected speed as this is in
our view, closer to daily life behaviour. Two parameters
were validated: the trunk tilt angle and the duration of
each transition. Trunk tilt was validated by an optical
motion capture system (Vicon, UK). Four reflective mark-
ers (Fig. 1) were mounted on the inertial sensors to track
the movements of the trunk and lower back. Furthermore,
the participants were video recorded and transition dura-
tions were validated. All subjects were provided with the
informed consent, and the protocol was approved by the
Human Research Ethics Committee of École Polytech-
nique Fédérale de Lausanne (EPFL), HRECNo: 038- 2018/
09.08.2018.
Dataset B was obtained through measurements on 42

participants: 21 healthy younger adults, 3 healthy older
adults, 5 patients with multiple sclerosis (MS), 5 IPS
patients, and 8 patients who had stroke. Table 1 pro-
vides clinical and demographic information. The mea-
surement protocol consisted of a home setting simulation
in which subjects performed several simple daily living
tasks: Setting a table (including sitting at table, eating
and drinking, and cleaning table afterwards), standing up
and sitting down multiple times (in open space and at

Table 1 Demographic data of Datasets A and B

Population Participants (female) Age Height (cm) Weight (kg) Disease scale

Dataset A Healthy younger adults 15 (4) 27 ±3 172 ±8 67 ±14 -

Dataset B Healthy younger adults 21 (9) 29 ±9 182 ±8 74 ±12 -

Healthy older adults 3 (1) 69 ±4 178 ±8 69 ±13 -

IPS patients 5 (1) 58 ±9 176 ±6 87 ±13 UPDRS1: 22 ±7

MS patients 5 (2) 41 ±17 185 ±5 73 ±8 EDSS2: 3 ±2

Stroke patients 8 (2) 66 ±13 176 ±12 79 ±25 -

1Unified Parkinson Disease Rating Scale [43]
2Expanded Disability Status Scale [44]
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a table), ironing, tooth brushing, and replacing objects
from different heights and out of a cabinet. As reference
for validation, an observer logged the time when the PTs
were performed. All participants gave written informed
consent and the study was approved by the ethical com-
mittee of the medical faculty at Universitätsklinikum
Schleswig-Holstein (UKSH), No: D438/18. Since the
objective here was to further validate the transition detec-
tion algorithm in various populations, data extracted
from the L5 sensor (myoMOTION, Noraxon, USA)
was used.

PT detection algorithm
The main idea to make the detection algorithm inde-
pendent of the sensor location was to use the vertical
acceleration in the global frame. This vertical acceleration
has a positive acceleration peak followed by a negative
acceleration peak in the vertical direction during sit-to-
stand and a negative peak followed by a positive peak
during stand-to-sit transitions [34]. For this purpose, the
vertical acceleration in the global frame was obtained first,
and then a robust peak detection algorithm was designed
to detect the PT candidates. Finally, a fitting model on ver-
tical displacement allowed selecting the actual PTs. The
following section describe these different steps. Figure 2,
illustrates the algorithm flowchart.

Vertical acceleration
Given the measurements from the accelerometer in the
sensor frame (as), the data can be obtained in the global
frame by:

ag = q ⊗ [
0 as

] ⊗ q∗ (1)

in which q is the quaternion specifying the orientation
of the sensor in the global frame and is calculated by a
Kalman filter fusion of accelerometer and gyroscope (a
modified version of the method introduced by [45] in
which the measurement model was changed to include
only the accelerometer and gyroscope data), q∗ is the con-
jugate of the quaternion, the ⊗ operator is quaternion

multiplication, and ag is the accelerometer data in the
global frame. Finally, the acceleration of the movement (a)
can be obtained by subtracting the gravity vector from the
accelerometer data in the global frame:

a = ag − g (2)

in which a = [
ax ay az

]
and az is the vertical acceler-

ation. To remove the noise and artifacts included in the
signal, a low-pass Butterworth filter of order 12 with a
cut-off frequency of 1.3 Hz was used to filter the ver-
tical acceleration. This cut-off frequency was achieved
empirically by attenuating other movements than the PTs.

PT candidates
As the first step to detect the candidates of these PTs,
the continuous wavelet transform (CWT) was applied
to detect the specific sit-to-stand and stand-to-sit pat-
terns in az [33, 34]. By scaling (frequency localization)
and shifting (time localization) of a template signal called
mother wavelet, CWT tries to find the patterns through
the measured signal similar to the mother wavelet. This
will provide us with CWT coefficients (Cw(a, t)):

Cw(a, t) = 1√|a|
∫ +∞

−∞
az(u)ψ(

u − t
a

)du (3)

in which, a is the scale factor, t is the time, az(u) is
the vertical acceleration signal, and ψ(u) is the mother
function.
The “bior 1.5" wavelet was chosen as the mother wavelet

due to the similarity between this wavelet and the sit-to-
stand (or stand-to-sit) vertical acceleration pattern. The
coefficients belonging to the scales of 0.5 to 5 seconds
(0.2 Hz to 2 Hz) were obtained [33]. The sum of the
coefficients was then calculated as:

Aw(t) =
∑

a
Cw(a, t) (4)

The wavelet analysis was performed by MATLAB
Wavelet Analyzer Toolbox. The peaks of the |Aw(t)| can
be chosen as the candidates for the sit-to-stand and stand-
to-sit transitions. In order to make the computation more

Fig. 2 The PT detection algorithm flowchart
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efficient and to avoid less false positives, we have chosen
the peaks that are greater than 1

4max(|Aw(t)|), in which
max(|Aw(t)|) is the maximum value of the entire signal of
|Aw(t)|. The reason for using this value rather than a fixed
threshold is that individuals have different magnitude of
acceleration during PTs. Furthermore, we hypothesized
that it is unlikely to have two consecutive PTs within two
seconds in the real life settings; thus, the peaks of |Aw(t)|
should have minimum time distance of 2 seconds.

PT candidate selection
Since not all the detected candidates belong to the true
sit-to-stand and stand-to-sit transitions, it is required to
filter out these candidates. For each candidate k at time tk ,
the velocity signal of the movement in the vertical direc-
tion (vz) was integrated through an interval of�T seconds
which was set empirically to 4 seconds to get the vertical
displacement of the motion throughout the transition:

dz,k(t) =
∫ tk+�T/2

tk−�T/2
vz(t)dt (5)

where the vertical velocity (vz) was obtained by integrating
the acceleration signal throughout the whole measure-
ment and applying a 3rd order Butterworth bandpass filter
(0.1–50 Hz) to remove the drift caused by the integration
and the noise and bias in the acceleration signal.
Upon each dz,k(t) signal, a Sigmoid model was fitted:

d̃k(t) = p1t + p2
1 + exp( p3−t

p4 )
(6)

in which d̃k(t) is the fitted model and p1, p2, p3, and p4 are
the model parameters which were calculated byMATLAB
“nlinfit" function. In this model, p1 accounts for the linear
drift, p2 determines the amplitude of the elevation change,
p3 is the time localization of the PT event, and as it will be
explained later, p4 is linearly proportional to the transition
duration, Fig. 3.

Fig. 3 The parameters of the estimated displacement during a
sit-to-stand defined by Eq. 6

A PT candidate k is considered as a true sit-to-stand or
stand-to-sit if these conditions were satisfied:

• The R-squared (R2) of the fitting model is above a
certain threshold R̃.

• The elevation change (
∣
∣p2

∣
∣) is between a lower bound

hl and an upper bound hu.

After meeting these requirements, a transition was con-
sidered as a sit-to-stand if p2 > 0 and a stand-to-sit if
p2 < 0.
The reason for choosing the R2 of the fitting model

as a metric to detect the true transitions is that
this parameter corresponds to the quality of the fit-
ting and specifies the degree of similarity between
dz,k(t) and d̃k(t). The value for R̃ was set empirically
to 0.92. The values for hl and hu were determined
by maximizing the sensitivity and positive predic-
tive value of the detection algorithm based on the
L5 location in Dataset A. The same values for the
determined parameters were used for other sensor loca-
tions in Dataset A and the whole data of Dataset B.
A sensitivity analysis was performed to determine the
effect of changing the value of these parameters (i.e.
R̃, hl, and hu) on the performance of the detection
algorithm.

Kinematic features
The following kinematic features were extracted to char-
acterize the sit-to-stand and stand-to-sit transitions:

Transition duration
Two estimates were used for the transition duration, one
based on the angular velocity (TDω) and the other based
on the vertical acceleration (TDa). To calculate TDω, for
each transition, a principal component analysis (PCA)

Fig. 4 The vertical acceleration signal obtained by different locations
of the sensor for a healthy young subject
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Fig. 5 The measured dz,k(t) (in blue) and estimated d̃k(t) (in red)
displacement for PT candidates: a a sit-to-stand transition b a
stand-to-sit transition and c a miscellaneous movement, p1 accounts
for the linear drift, p2 determines the amplitude of the elevation
change, p3 is the time localization of the postural transition event, and
p4 is related to the transition duration. R2 is the R-squared of the fitting

was performed on the gyroscope data, to get the angu-
lar velocity of the trunk in the sagittal plane considered
as the principal plane for trunk rotation. The start of the
transition was defined as the end of the plateau before
the negative peak of the angular velocity (forward trunk
rotation) and the end of the transition was defined as the
start of the plateau after the positive peak of the angular
velocity (backward trunk rotation).
For (TDa) estimation, first an approximation of verti-

cal acceleration was obtained by calculating the second
derivative of d̃k(t):

ãk(t) = d2

dt2
(̃dk(t)) (7)

Then using the model presented in Eq. 6 and consider-
ing a0 as the acceleration threshold to define the start and
end of plateau, TDa was obtained by:

TDa = αp4 (8)

in which,

α = 2ln
(

2β
−2β + 1 − √

1 − 4β

)
(9)

β = p24a0
p2

(10)

p2 and p4 are the displacement model parameters intro-
duced by Eq. 6.

Tilt angle and anterior-posterior angular range
The tilt angle (θ ) was calculated by converting the quater-
nions to the Euler angles [46].
The anterior-posterior angular range (�θAP) was

defined as the change in the tilt angle of the trunk at the
beginning and the end of the flexion phase (forward trunk
rotation) of the sit-to-stand transition.

Peak power
The power was calculated by the product of the vertical
velocity and the vertical force exerted during the PT [23]:

Pk(t) = mãk(t)̃vk(t) (11)

in whichm is the body mass, ṽk(t) = d
dt (̃dk(t)) is the esti-

mated vertical velocity, and ãk(t) is calculated by Eq. 7.
The peak power was defined by the maximum power
during a transition, i.e. Pmax = max(Pk(t))

Peak angular velocity
The peak angular velocity (ωmax) was defined as the max-
imum angular velocity during flexion in a sit-to-stand
transition in the sagittal plane.

Validation and statistical analysis
As described before, Dataset A and Dataset B were used
for the validation of the PT detection algorithm. The per-
formance of the algorithm was reported by the sensitivity
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(SE) and positive predictive values (PPV):

PPV = TP
TP + FP

× 100 (12)

SE = TP
TP + FN

× 100 (13)

in which TP stands for true positive, FP for false positive,
and FN for false negative.
The second test within Dataset A corresponding to the

5xSTS test was used to estimate the accuracy of the rel-
evant kinematic parameters extracted for the sit-to-stand
and stand-to-sit transitions (i.e, TDω, TDa, θ , and �θAP)
and also to determine the effect of sensor location on the
parameters.
For transition duration, two observers logged the dura-

tions recorded by the camcorder. The mean of the values
determined by the observers was used as the reference.
The error was calculated as the difference between the
estimated transition duration (TDω or TDa) and the ref-
erence value. The relative absolute error was also deter-
mined.
For the tilt angle, the tilt angles computed by the marker

clusters on the TR sensor and L5 sensor were used as
the reference. The error was defined as the difference
between the reference and the estimated angle by the
inertial sensor.
The errors were represented by the mean and standard

deviation (std), and the one-sample Kolmogorov-Smirnov
test was used to test the normality of the error.
To determine the associations between the parameters

obtained by different sensor locations, Pearson’s correla-
tion coefficient (ρ) was used. A correlation coefficient of
less than 0.5 was considered as low, between 0.5 and 0.7 as
moderate, and above 0.7 as high [26].
To show the statistical differences between two mea-

surements, t-test was used where the data is normally
distributed; otherwise, Wilcoxon test was employed.

Results
Vertical acceleration
Figure 4 shows an example of comparing the vertical
accelerations (az) obtained by Eqs. 1 and 2 for data
extracted from inertial sensors located at L5, ASIS,
RH, and TR, worn by a healthy young participant
in Dataset A. The vertical accelerations of the differ-
ent locations matched almost perfectly. Pearson’s cor-
relation coefficients between respective positions were
high, i.e. 0.95 between L5 and ASIS, 0.96 between L5
and RH, 0.94 between L5 and TR, 0.98 between ASIS
and RH, 0.91 between ASIS and TR and 0.95 between
RH and TR. However, when the participant bent his
trunk to pick up an object from the ground, conceiv-
ably, higher acceleration in TR was observed compared
to L5.

Vertical displacement
The results of the fitting model for typical sit-to stand
and stand-to sit movements were compared with a non-
PT transition (miscellaneous movements) and shown on
Fig. 5 along with the model parameters.
For the R2 and p2 parameters, the differences between

171 sit-to-stand and stand-to-sit transitions and 35 mis-
cellaneous movements that were detected by the algo-
rithm in Dataset A were shown in Fig. 6. For both of
these parameters, the Wilcoxon rank sum test indicated
a significant statistical difference between the true transi-
tions and miscellaneous movements (p < 0.001).

PT detection
The performance of the algorithm in detecting the sit-to-
stand and stand-to-sit transitions during simulated real-
life condition were shown in Table 2 for different locations

Fig. 6 The comparison between the true PTs and miscellaneous
movements for a the R2 and b the p2 parameters
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Table 2 Performance metrics defined by Eqs. 12 and 13 for the PT detection algorithm: Dataset A (different sensor location), 15 young
healthy adults

sit-to-stand stand-to-sit

TP FP FN PPV SE TP FP FN PPV SE

L5 85 3 5 97 94 79 6 11 93 88

ASIS 88 3 2 97 98 82 6 8 93 91

RH 81 2 9 98 90 70 5 20 93 78

TR 86 14 4 86 96 68 23 22 75 76

of the sensor (Dataset A) and on Table 3 among differ-
ent populations for the L5 sensor (Dataset B). Almost
the same performance was achieved for all the locations
around the lower back, with the ASIS location showing
the best performance. The performance was the lowest
for TR, which was driven by low sensitivity for stand-to-
sit transitions. PPVs for L5, ASIS and RH were above 93%,
indicating that only very few miscellaneous movements
were detected as PTs by the algorithm.
As reported in Table 3, the algorithm achieved lower

performance among IPS patients while for the other pop-
ulations the performance was high.
It should be mentioned that the threshold for the R-

squared (R̃) was set empirically to 0.92. By the sensitivity
analysis, it was observed that a change of±2% in the value
of R̃ will affect the PPV and SE values by ±1%. Further-
more, the hl and hu values determined by maximizing the
mean of the PPV and SE of the sit-to-stand and stand-
to-sit detections were 20 cm and 60 cm, respectively. A
change of ±5 cm for these values affect the PPV and SE
parameters by ±1%.

Kinematic features
The algorithm detected all PTs correctly that were per-
formed during the 5xSTS test. The kinematic features
defined previously were extracted and compared for
different sensor locations; where applicable, the parame-
ters were validated against the reference system.

Transition duration
Regarding the difference between the transition dura-
tions, the Wilcoxon signed rank test showed no signifi-
cant difference between the observers for the sit-to-stand

transitions (p > 0.05); however, there was a significant
difference for the stand-to-sit transitions (p = 0.02).
Among the two methods proposed for the estimation

of the transition duration, (TDω) which was based on
the angular velocity had lower errors for all of the loca-
tions compared to the method based on vertical accel-
eration (TDa). Overall, for both of the methods, the
accuracy of the L5 sensor was the highest, followed by
the TR sensor; whereas, RH sensor was the least accu-
rate (Table 4). The relative absolute error for both of
the methods for the L5 location was calculated. The
75th percentile of the relative error for TDω was 9.8%
and 6.6% for the sit-to-stand and stand-to- sit dura-
tions, respectively while these values for TDa were 18.8%
and 24.0%.
Tilt angle and anterior-posterior angular range
The tilt angle during a typical trial of the sit-to-stand and
stand-to-sit transitions is shown on Fig. 7 in which it is
observed that the angular range was underestimated by
the ASIS and RH sensors.
The error of the total tilt angle signal (θ ) and the

anterior-posterior angular range (�θAP) were compared
to the references obtained by the optical motion tracker
(Table 5). θ was obtained during the whole 5xSTS test of
all the participants and �θAP was calculated for 5 sit-to-
stand transitions giving 75 values for all the participants.
The lowest errors among the sensors belonged to L5 and
TR locations with the 75th percentile relative absolute
error of 5.6% and 8.1%, respectively.
Peak power
For each subject the peak power was calculated for each
of the five sit-to-stand transitions, providing 75 values

Table 3 Performance metrics defined by Eqs. 12 and 13 for the PT detection algorithm: Dataset B (different population), 21 healthy
younger adults, 3 healthy older adults, 5 patients with MS, 5 IPS patients, and 8 stroke patients

sit-to-stand stand-to-sit

TP FP FN PPV SE TP FP FN PPV SE

Healthy younger adults 133 5 8 96 94 133 0 14 100 90

Healthy older adults 15 0 0 100 100 16 1 1 94 94

IPS patients 24 6 6 80 80 21 5 9 81 70

MS patients 23 2 1 92 96 23 1 4 96 85

Stroke patients 48 3 4 97 92 72 5 18 94 80
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Table 4 Mean (standard deviation) of the error (in milliseconds) of the transition duration (TDω and TDa) compared to reference values
obtained by the observers

sit-to-stand stand-to-sit

L5 ASIS RH TR L5 ASIS RH TR

TDω -2 (233) 338 (297) 229 (310) -20 (229) -27 (172) 237 (337) 101 (319) -43 (165)

TDa -18 (387) 54 (344) 208 (564) -21 (318) 224 (275) 160 (352) 312 (539) 80 (281)

for each sensor location. The box plot on Fig. 8 shows
these values for different sensor locations. The sensors
around the belt had almost the same range while trunk
sensor shows higher values. High correlations were found
between the L5, ASIS, and TR sensors (0.95 between L5
and ASIS, 0.77 between L5 and TR, 0.78 between ASIS
and TR). Furthermore, moderate to high correlations were
determined between the sensors around the belt (0.65
between L5 and RH and 0.74 between ASIS and RH). The
correlation between RH and TR was 0.44.

Peak angular velocity
For each subject the peak angular velocity was calculated
for each of the five sit-to-stand transitions, providing 75
values for each sensor location. The box plot for the peak
angular velocity calculated by different sensor locations is
shown on Fig. 9. The peak angular velocity determined
by the trunk sensor was the lowest among all the loca-
tions. The correlation coefficient values were obtained as
0.7 between L5 and ASIS, 0.52 between L5 and RH, 0.54
between L5 and TR, 0.67 between ASIS and RH, 0.35
between ASIS and TR and 0.47 between RH and TR.

Comparison of kinematic parameters between populations
The extracted kinematic parameters from Dataset B (i.e.
TDa, ωmax, �θAR, and Pmax) were compared between

Fig. 7 The tilt angle of the trunk obtained by the inertial sensors on
different locations during one trial of a sit-to-stand and stand-to-sit

healthy (24 participants) and pathological (18 partici-
pants) groups (Fig. 10). TDa was significantly lower (p <

0.05) in healthy subjects compared to the patient pop-
ulation, while ωmax , �θAR, and Pmax were significantly
higher (p < 0.05) for healthy participants. To investigate
the effect size, the Cohend’s d for TDa, ωmax, �θAR, and
Pmax were obtained as 0.6, 0.8, 0.2, and 0.7 respectively.

Discussion
The goal of this study was to develop and validate an
algorithm to detect sit-to-stand and stand-to-sit tran-
sitions in healthy individuals and patients and provide
useful parameters for functional evaluation. The algo-
rithm is applicable on a single inertial sensor around the
waist or on the trunk making the system appropriate for
daily and clinical use. The algorithm validated in the lab
showed high performance and its use in the field demon-
strated little sensitivity to the change between healthy and
pathological group.
Utilizing the vertical acceleration in the global coordi-

nate system made the algorithm robust to sensor place-
ment changes. The estimated vertical acceleration in
the global frame was actually similar between different
locations around the trunk based on high correlations
observed between signals that were extracted from dif-
ferent sensors. Therefore, our hypothesis regarding the
similarity between the vertical accelerations produced by
different sensor locations seems valid even if some dis-
crepancy can be observed in Fig. 4. Not surprisingly, the
ASIS and RH sensor positions which had the closest dis-
tance to each other, had the highest correlation values
while the sensors at TR and ASIS positions had the lowest
correlation, because they were relatively distant from each
other.

Table 5 Mean (standard deviation) of the error of the tilt angle
(θ ) and the anterior-posterior angular range (�θAP) compared to
the reference system (Ref.) in degrees

Location L5 ASIS RH TR

Ref. L5 TR

θ -0.3 (2.1) -6.7 (10.7) -4.8 (6.9) -1.6 (3.3)

�θAP -1.0 (3.2) -6.1 (9.0) 1.2 (11.8) -1.5 (3.0)

For sensors around the belt, the reference was the L5 sensor
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Fig. 8 The peak power calculated by different sensor locations

The performance of the algorithm in detecting the
PTs were validated against video observations (Tables 2
and 3). The protocol of the test included a broad range
of simple activities of daily living rather than only iso-
lated PTs as used by [21, 34, 35, 39, 41, 42, 47]. The
algorithm showed an excellent performance in detect-
ing these transitions with the inertial sensors around
the waist (PPV of more than 97% and SE of more than
90%). However the TR sensor, showed lower accuracy.
During a PT, the upper back performs more rotation
than the lower back area, and because the algorithm
was developed based on the lower back displacement
model, this aspect may best explain this phenomenon.
The differences of rotation values between these body
areas were confirmed by calculations with the tilt angle,
where the flexion and extension angular ranges were
lower in the L5, ASIS and RH positions, than in the TR
position (Fig. 7).

Fig. 9 The peak angular velocity calculated by different sensor
locations

The ASIS position was the most accurate in PT detec-
tion (Table 2) which probably was due to the rigid attach-
ment of the sensor to this position (Fig. 1). RH and L5 sen-
sors may be exposed to some artificial motion, occurring,
e.g., from soft-tissuemovement and less stable positioning
on the body.
Compared to previous studies [3, 33, 36–38] with almost

the same measurement protocol, our algorithm demon-
strated better performance in detecting PTs, with a mean
PPV and SE of 98% and 95% for healthy adults and 89%
and 89% for participants suffering from diverse diseases.
With a pendant device used by 25 community-dwelling
older people, the performance of the algorithm used in
[33] had a SE of 93% and a PPV of 90%. Moreover, com-
pared to this study, we did not use the barometric pressure
sensor, as the pressure changes from one place to another
might affect the accuracy of the algorithm. In studies [36]
and [37] in which a single inertial sensor on chest was
used, the SE and PPV assessed through a group of 15
younger adults in a controlled protocol were less than 80%
[48]. Compared to a study in which a single inertial sen-
sor on lower back was used [38], our algorithm showed
better performance in healthy older adults. In IPS patients
without dyskinesias, the former study reached higher PPV
and SE than our study. The most probable explanation
is that in IPS patients the duration of the PTs may be
longer compared to the healthy subjects [28] and our dis-
placement model might not capture the high amount of
the drift.
Compared to the study in [40], our algorithm had higher

SE in sit-to-stand detection but slightly lower SE in stand-
to-sit transitions. The lower SE in detecting stand-to-sit
movements by our method might be attributed to the
fact that sometimes after sitting down, people try to
adjust their posture on the chair and perform one or two
smaller PTs right after the original stand-to-sit. Therefore,
their vertical displacement does not comply with the sig-
moid model presented in Fig. 5b. The reduced accuracy
in detecting the stand-to-sit movements has been also
observed in [42] in which the authors have considered the
various strategies of individuals in sitting down as the con-
tributing factor. Our hypothesis is in agreement with their
statement.
In previous works, the inertial sensor was always placed

on either TR or L5 [21, 34–38, 42, 47]. We are not aware
of any study that investigated PTs using different inertial
sensor positions on the human body simultaneously. We
investigated the effect of different sensor locations on the
kinematic parameters during the PTs during the 5xSTS
test.
In order to estimate transition duration, the angular

velocity method (TDω) showed a better accuracy (34% less
error); however, the acceleration-based approach (TDa)
is preferable in real life situations. Because, during the
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Fig. 10 Comparison of the kinematic parameters between the healthy and pathological participants in Dataset B

5xSTS test, only sit-to-stand and stand-to-sit movements
with rest periods in between were measured which allows
the detection of the angular velocity plateau (Fig. 11a);
however, this is not the case in daily activities as there are
additional movements involved, e.g. walking after sit-to-
stand movement (Fig. 11b). In fact, the estimated model
of the vertical acceleration (̃ak(t)), isolates the PT move-
ment from the signal (Fig. 12), and with the help of the
parameters of the fittedmodel, the transition duration can
be determined by Eqs. 8-10.
Interestingly, although comparable results were

obtained for the sit-to-stand phase, there was a statis-
tically significant difference between the two observers
concerning the estimation of stand-to-sit phases.
Although we do not have any explanation for this
observed difference, we see this result as a further argu-
ment for the use of objective measurement techniques,
as provided by inertial sensors for instance and the
algorithm introduced here.
Compared to the previous studies that validated the

transition duration against video observations [3, 38, 42,
47], our algorithm achieved higher accuracy with a bias
of 2 (L5 location) and 20 (TR location) milliseconds in
sit-to-stand and 27 (L5 location) and 43 (TR location)
milliseconds for stand-to-sits. The bias of the error was
obtained as 10 to 50 milliseconds for sit-to-stand and 80
to 170 milliseconds for stand-to-sits in [42, 47]. In [38],
the bias of the error was 200 milliseconds compared to
the video observations. Furthermore, the relative absolute
error for L5 location was less than 24% as obtained by [3]
from a pendant device.
The peak power was overestimated by the chest sensor

(Fig. 8) compared to the other three placements, as it is at
the proximal distance relative to the lower back; therefore,
during a rotation, it undergoes higher vertical velocity and
acceleration (Eq. 11). However, in spite of the differences
between the upper and the lower back peak power, high
correlations were found for all of the locations. Since peak
power is based on vertical acceleration and velocity, it
can be considered as a metric that is more robust to the
changes in sensor location.

Fig. 11 The angular velocity of the trunk for a young healthy subject
(a) during the 5xSTS test and (b) real life setting
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Fig. 12 The fitted acceleration model for a sit-to-stand transition
during daily activities for a young healthy subject, az,k(t) is the
measured acceleration and ãk(t) is the estimated acceleration

Comparing the peak angular velocity for different loca-
tions, lower correlations were found for the TR and RH
sensors with respect to the other two locations. For the
RH sensor as it is hinged to the belt with a rubber clip, the
abdominal muscles may push the sensor around the belt,
causing artifacts that are not related to the postural move-
ment itself. This also explains the higher range of peak
angular velocity calculated by the RH sensor compared to
the other locations (Fig. 9). The low correlations with TR
sensor, can be explained by different rotational behavior
of upper and lower back.
Finally, the comparison between healthy and patholog-

ical participants in the extracted kinematic parameters
showed that our algorithm was able to show the subtle
differences between different populations in an objec-
tive manner. The Cohen’s d values for these parameters
revealed that for the peak angular velocity and peak power
the difference between the healthy and patient popula-
tions were greater than the angular range and duration
of the transition. Yet further studies with bigger sample
group are needed to investigate in details the association
of those parameters with specific disease symptoms.
One limitation of our study is the use of wavelet trans-

form as it is computationally expensive and may not be
appropriate for real-time applications. To compare the
signal to the PT templates, cross correlation can be used
instead of the wavelet transform.Moreover, the use of only
accelerometer data rather than the fusion of accelerom-
eter and gyroscope data should be studied in order to
decrease the power consumption of the device [35].
As there was a variety of populations performing the

PTs in this study, the discriminative power of the kine-
matic parameters could be studied. It has been shown

in [32] that the spatiotemporal and kinematic param-
eters extracted during sit-to-stand transitions can help
clinicians detect individuals with frailty and abnormal
functional capacities.

Conclusion
This study presents a novel algorithm for detecting the
sit-to-stand and stand-to-sit transitions in both the simu-
lated home setting and the laboratory environment based
on a single inertial sensor. The novelty of this approach is
that the algorithm is largely independent of the position of
the inertial sensor on the trunk. The algorithm was vali-
dated in both healthy subjects and patients suffering from
diverse diseases in simulated daily activity situations. This
study used a novel approach to estimate the transition
duration and peak power, by introducing a fitting model
on the vertical displacement of the trunk. The effect of the
location of the sensor on the extracted kinematic param-
eters was also investigated, and it was shown that the
L5 and TR positions are the most accurate locations to
evaluate transition duration and tilt angle of the PTs.
Further research should now investigate the predictive

and discriminative power of the kinematic parameters
from the novel PT detection algorithm, for different aging
and diseased populations.
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