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Abstract

Background: People use various strategies to maintain balance, such as taking a reactive step or rotating the upper
body. To gain insight in human balance control, it is useful to know what makes people switch from one strategy to
another. In previous studies the transition from a non-stepping balance response to reactive stepping was often
described by an (extended) inverted pendulum model using a limited number of features. The goal of this study is to
predict whether people will take a reactive step to recover from a push and to investigate what features are most
relevant for that prediction by using a data-driven approach.

Methods: Ten subjects participated in an experiment in which they received forward pushes to which they had to
respond naturally with or without stepping. The collected kinematic and center of pressure data were used to train
several classification algorithms to predict reactive stepping. The classification algorithms that performed best were
used to determine the most important features through recursive feature elimination.

Results: The neural networks performed better than the other classification algorithms. The prediction accuracy
depended on the length of the observation time window: the longer the allowed time between the push and the
prediction, the higher the accuracy. Using a neural network with one hidden layer and eight neurons, and a feature
set consisting of various kinematic and center of pressure related features, an accuracy of 0.91 was obtained for
predictions made up until the moment of step leg unloading, in combination with a sensitivity of 0.79 and a
specificity 0.97. The most important features were the acceleration and velocity of the center of mass, and the position
of the cervical joint center.

Conclusion: Using our classification-based method the occurrence of reactive stepping could be predicted with a
high accuracy, higher than previous methods for predicting natural reactive stepping. The feature set used for that
prediction was different from the ones reported in other step prediction studies. Given the high step prediction
performance, our method has the potential to be used for triggering reactive stepping in balance controllers of
bipedal robots (e.g. exoskeletons).
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Background
Human standing balance is related to the positioning and
motion of the body’s Center of Mass (CoM), which can
be considered as the average position of all body parts
weighted according to their masses. In quiet standing, bal-
ance is maintained when the center of mass is maintained
over the base of support (BoS), defined as the support
polygon that is made up by the contact surfaces between
the feet and the ground and the space in between. Humans
use two distinct strategies to maintain standing balance
without additional supports: feet-in-place strategies that
do not change the BoS, and stepping strategies that do.
Hence the question arises, when do people switch from
a feet-in-place to a reactive stepping strategy to maintain
balance? Answering this question would not only provide
insight in human balance strategies, but is also relevant
for human-like controller design in the fields of humanoid
robotics and exoskeletons.
Which strategy humans use to maintain standing bal-

ance depends on the environmental constraints, the mag-
nitude of a possible perturbation, and the human posture.
Two feet-in-place strategies can be discerned. First, the
“ankle strategy” has shown to be dominant in quiet stand-
ing [1, 2]. In this strategy, ankle joint torques are generated
that result in a change in force distribution beneath the
feet on the ground, and therefore in a displacement of the
point of application of the net reaction force (the center
of pressure (CoP)). As a result, the CoM rotates around
the ankle joints. Second, the “hip strategy” is used in more
challenging balancing conditions [1, 2]. The upper body is
rotated through the hip joints, which results in a change
in angular momentum around the CoM. The stepping
strategy can be used when ankle and hip strategy are not
sufficient to maintain balance, however, in reality it is also
used in circumstances similar to the ones in which feet-in-
place strategies are applied [3]. Hence, what exactly makes
that people use a stepping strategy is unknown. Therefore,
this study focuses on predicting the occurrence of natural
reactive stepping.
Several methods have been proposed to detect when

people take a step. Identifying this moment is key for
the development of systems that support balance and/or
prevent falls. These methods generally make use of
an inverted pendulum model. Based on this model, in
early research stability boundaries on a feasible set of
CoM/CoM velocity combinations were presented, within
which a movement can be terminated and a fall prevented
[4, 5]. Continuing on this work, the “extrapolated cen-
ter of mass position” (XCoM) - the vertical projection of
the position of the CoM plus a weighted velocity term -
was introduced as a stability measure [6, 7]. The XCoM
indicates the position where the CoP of the inverted pen-
dulum model should be placed to terminate movement
in an upright position. Therefore, if the XCoM is within

the BoS, balance can be maintained without stepping.
Step predictions based on the XCoM corresponded well
with the stability boundaries on the CoM and CoM veloc-
ity [4, 6]. As a follow-up on the stability boundaries, a
method was presented to predict the occurrence of addi-
tional steps as well as an initial reactive step in response to
a perturbation, based on the time required for the CoM to
reach the boundary of the BoS [8]. A step must be taken
if the “CoM-time-to-boundary” is smaller than a certain
threshold. This concept was based on the idea that the
central nervous system requires a minimum amount of
time to initiate a step, and that a safety margin is employed
that causes steps to be initiated earlier than absolutely
necessary. In the field of bipedal robotics, stability mea-
sures were (independently) introduced that show a strong
similarity with the XCoM, such as the “capture point”
[9], the “foot placement estimator” [10], the “generalized
foot placement estimator” [11] and the “maximum out-
put admissible set” [12]. With the exception of the CoM
time-to-boundary concept [8], the aforementioned mod-
els can give a good prediction of when a stepmust be taken
to maintain balance. While this is useful for fall preven-
tion, it does not necessarily predict when reactive stepping
appears naturally.
Alternatively, a controller-based approach can be taken

to predict balance responses and to predict the occur-
rence of reactive stepping. A Model Predictive Control
scheme was introduced to generate ankle, hip and step-
ping balance recovery strategies in simulations based on a
linear inverted pendulum model with a flywheel segment
[13, 14]. By adjusting weights in a certain optimization
criterion the different balance strategies were regulated.
An advantage of such a control scheme is that it is gen-
eralizable to untested balancing conditions. However, it is
unclear whether humans apply a similar optimization cri-
terion. While step length and step duration seem to be in
line with experimental results, it has not been validated
whether the model can predict natural reactive stepping.
Instead of using a model-based or controller-based

approach, the problem of when people take a step can
also be approached as a two-class classification prob-
lem. A set of observations with known outcomes (i.e. a
step is taken or no step is taken) is used to train a clas-
sification algorithm. Algorithms that are often used are
discriminant analysis, support vector machines and arti-
ficial neural networks. In discriminant analysis the mean
and (co)variance of each class are used to determine to
which class a data sample belongs to. A decision bound-
ary is obtained such that the distances between the class
means and the decision boundary are large, while the class
overlap is small [15–17]. A decision boundary can also
be obtained through the application of a support vec-
tor machine. In this case not all data samples are taken
into account, but only the ones closest to the decision
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boundary, the support vectors. The support vector
machine tries to maximize the margin between the deci-
sion boundary and any of the data samples [16]. For
the aforementioned classification algorithms the form of
the function describing the decision boundary is known
beforehand, which is not the case for artificial neural net-
works. The artificial neural network is a structure with
an input layer, hidden layers consisting of multiple “neu-
rons,” and an output layer. In these neurons the inputs are
amplified with a weight, added together and put through
a sigmoid function. The output of each hidden layer is a
new input for the following hidden layer until the output
layer is reached. Which classification algorithm performs
best is dependent on the classification problem. In previ-
ous studies on human balance, support vector machines
have been used for the detection of compensatory bal-
ance responses during walking [18], for pre-impact fall
detection [19] and for predicting physiotherapists’ ratings
on balance performance [20]. However, predicting natural
reactive stepping is a different problem. Hence, comparing
multiple classification algorithms is useful.
The performance of the classifier does not only depend

on the type of classifier that is used, but it also depends
on the features that are used to make a prediction. The
parameters that are used for describing limits on balance
without using a classification approach can be potential
features for training a classification algorithm. In model-
based or data-driven approaches, a common choice is to
use the CoM and CoM velocity to describe standing bal-
ance [4, 5, 8, 13, 14, 21, 22]. Furthermore, the CoP and
CoP velocity were used as stability margins [23–25] and
the trunk angular velocity was used as a controller input
for predicting balance responses [13, 14]. It is still unclear
what are the best features for predicting whether people
will use a stepping strategy.
In this paper our goal was to predict the natural reactive

stepping response of young healthy subjects in response to
an external perturbation, without using any information
of the perturbation for that prediction. Here, we present
a novel step prediction method that is based on binary
classification. To find out which classification algorithm
is most suitable for step prediction, we trained and com-
pared several algorithms. Furthermore, we identified the
key features that are best able to predict natural reactive
stepping. To put the performance of our step predic-
tion method in perspective, we compared our method
to the stability boundary, the XCoM, and CoM-time-to-
boundary concept.

Experiments
In this study, we trained several classification algorithms
to predict the occurrence of natural reactive stepping. To
collect training data, standing balance experiments were
performed in which the aimwas tomimic natural stepping

in response to a perturbation. The experimental setup
(Fig. 1) and study were approved by the local medical
ethical committee (Medisch Ethische Toetsingscommissie
Twente).

Subjects
Ten healthy subjects (five women, age 23.6 ±1.9 years,
mass 75 ±11 kg, height 1.80 ±0.09 m, mean ± SD) par-
ticipated in the experiment after giving written informed
consent. Subjects were only included if they had no neu-
rological, musculoskeletal or other medical impairments
that could affect functional movement performance.

Experimental setup
Subjects stood on a custom made split-belt instrumented
treadmill (Y- Mill, Motek, Amsterdam, The Netherlands)
that has force plates beneath each belt to collect ground
reaction forces and moments. An actuated perturbation
device, referred to as “Pusher,” was placed at the rear of
the treadmill to provide forward and backward perturba-
tions at the pelvis. It consists of a motor (SMH60, Moog,

Fig. 1 a Schematic overview of the experimental setup. b
Representative reference perturbation force profile of the Pusher
(reference) and all generated perturbation forces (real)
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Nieuw-Vennep, The Netherlands) connected to a hori-
zontal push rod (0.8 m) through a lever arm (0.3 m), as
shown on the right of Fig. 1a. At the end of the push rod a
modified universal hip abduction brace (Distrac Wellcare,
Hoegaarden, Belgium) was attached, which was tightly
worn by the subjects. A load cell (model QLA131, FUTEK,
Los Angeles, CA, USA) was mounted on the lever arm
for torque sensing [26]. The rod was approximately hori-
zontal, such that a motor torque would result in forward
pushing or backward pulling of the subject. The motor
was admittance controlled over Ethernet (User Datagram
Protocol) at 1000 Hz, using xPC-target (The Mathworks,
Natick, MA, USA). The reference perturbation force was
a rectangular pulse with a duration of 0.2 s and vari-
ous magnitudes. Although the Pusher motors could not
track the desired reference force perfectly, the provided
pushes were consistent (Fig. 1b). In between these per-
turbations the Pusher was transparent, meaning that the
interaction force between the subject and the device
was regulated to zero. Subjects wore a safety harness to
prevent a fall.

Protocol
At the start of the experiment the subject’s baseline
pose was measured: a comfortable upright pose in which
the feet were placed next to each other underneath the
hips, with the weight evenly distributed over both legs.
The positions of the feet were marked with tape on the
floor and checked throughout the experiment. Subjects
were instructed to maintain balance in a natural way
(with or without stepping) and to return to their base-
line pose within the taped area when they had taken
a step. The arms were crossed in front of the body to
prevent arm movements and the subjects had to look
at a dedicated point that was about three meters in
front of them. The subjects performed a counting back-
wards distraction task (in steps of 13) to enforce natural
stepping.
The experiment was divided in five trials. In the first

trial the goal was to find a first estimate of the step-
ping threshold on the perturbation force, the “force
threshold,” which we defined as the strongest perturba-
tion force for which the subject did not take a step to
maintain balance. Perturbation force magnitudes were
applied ranging from 0.04mg N to 0.16mg N in steps
of 0.02mg, with a maximum of 133 N in both for-
ward and backward directions, where m is the subject’s
mass and g the gravitational acceleration. Each pertur-
bation was repeated three times. The time between per-
turbations varied randomly between eight and twelve
seconds.
In trials 2 to 5 perturbation forces were applied that

had a magnitude close to the force threshold (0.11mg ±
0.029mg N in forward direction, 0.074mg ± 0.023mg N

in backward direction, mean ± SD). Perturbation force
magnitudes were applied ranging from the force thresh-
old minus 0.02mg to the force threshold plus 0.06mg in
steps of 0.005mg with a Pusher related maximum of 133
N for both forward and backward perturbations. Pertur-
bation force magnitudes higher than the limit were not
applied. Each force was repeated five times, resulting in a
theoretical maximum total of 170 perturbations, divided
over four trials. In reality this number was lower, given the
limit on the perturbation force. Only the forward pertur-
bations (722 in total) were further analyzed for predicting
reactive stepping.

Data collection and processing
Motion data were collected at 100 Hz through the use
of a camera-based motion capture system (Visualeyez
II, Phoenix Technologies, Burnaby, Canada). Therefore,
three-LED marker clusters were placed on the subjects
on the feet, lower legs, upper legs, the pelvis, the trunk
and the head. In addition to the marker clusters, sin-
gle LEDs were placed on the lateral epicondyles of the
femur and on the lateral malleoli. Prior to the exper-
iment, measurements were taken in which anatomical
landmarks were pointed out using a LED-based probe
[27, 28]. The force plate and perturbation data were
collected at 1000 Hz using xPC-target (MathWorks,
Natick, MA, USA). A signal composed of pseudo-random
numbers and a time interval of 0.1 s between two sam-
ples was sent from the xPC-target to the Visualeyez PC
and logged on both systems. By computing the cross-
correlation between the (resampled) signals, the delay
between the systems was established and used for data
synchronization.
The motion data were reconstructed into joint and seg-

ment positions, joint angles, CoM position and velocity,
and whole body angular momentum, assuming the human
body segment parameters as described in Dumas et al.,
2007 [28]. Because the LEDs on the marker clusters of
the feet often failed during the experiment, the measure-
ments of these clusters were unreliable. Therefore, the
CoM-based parameters were reconstructed without using
the position and mass of the feet. Given the low mass of
the feet, and the limited movement of the feet before a
step is taken, the effect of this simplification is assumed
to be negligible. To be able to use the force data together
with the motion data, the force data were resampled to
100 Hz. All motion and force data were smoothed with a
4th order, zero-lag Butterworth filter using a low pass cut-
off frequency of 5 Hz and 8 Hz respectively. These cut-off
frequencies were selected such that noise was attenuated
while preserving relevant signal characteristics, based on
visual inspection of the filtered and unfiltered data. The
CoP was computed from the measured moments and
normal forces of the force plates.
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px = −My
Fz

(1)

py = Mx
Fz

(2)

where px is the CoP in x-direction (forward), py is the CoP
in y-direction (outward), My and Mx are the moments
around the y and x-axis respectively, and Fz is the vertical
ground reaction force.

Data set preparation
The balance responses were sorted in two groups: step-
ping and non-stepping responses. A reactive step was
assumed to be taken if: 1. the vertical ground reaction
force on one of the feet dropped below 20 N; 2. the
step took place within two seconds after the application
of the perturbation; and 3. the step length was at least
20% of the foot length of the subject. The last condi-
tion was added to prevent that voluntary foot lifts were
counted as a reactive step. Since vertical foot lifts do not
increase the BoS, they are not considered to be reac-
tive stepping responses. If 1. was met, but 2. and/or
3. were not, the response was not included in further
data-analysis.
During the experiment motion data of 654 stepping and

non-stepping responses were recorded properly over all
subjects, that is, without errors due to failing or occluded
LEDs, and non-traceable marker registration issues. For
these responses we checked if subjects showed consistent
behavior at the onset of the applied perturbation. In par-
ticular, data were dismissed if at the onset of the pertur-
bation: subjects showed a deviation of more than 0.03 m
in forward or backward lean; subjects were swaying exces-
sively; or subjects did not distribute their weight evenly
over both legs. Furthermore, the responses in which sub-
jects showed a lot of heel lift without taking a step were
assumed to be unnatural reactions to the perturbations,
as they indicate that great efforts were made not to step.
These responses were therefore dismissed. A total of 580
balance responses, of which 182 stepping and 398 non-
stepping, were left for step prediction. These responses
were divided over three data sets: a training set, a vali-
dation set and a test set. Validation was performed using
the holdout method. Because the validation set was also
used for improving and selecting classifiers, an indepen-
dent test set was required to verify the final performance.
15% of the stepping and non-stepping responses was
assigned to the test set. Of the remaining responses, 70%
was assigned to the training set and 30% to the valida-
tion set. For each subject individually the ratio of step-
ping and non-stepping responses was conserved over the
data sets.

Step predictionmethods
We approached the problem of predicting whether people
will take a reactive step to maintain balance as a classi-
fication problem. Hence we compared the performances
of several commonly used classification algorithms: a lin-
ear discriminant analysis model (LDA), a quadratic dis-
criminant analysis model (QDA), a linear support vector
machine (LSVM) and neural networks (NN) with one hid-
den layer and five to eight neurons. For the training of
these classification algorithms a data set of observations
was needed of which the outcome classes were known.
The experimental data that we collected consists of (time-
series) responses that have a known outcome class instead
of (time instance) observations that have a known out-
come class. Therefore, we defined a relation between the
outcome class of a response and the outcome class of an
observation that was part of that response. For the non-
stepping responses all observations from the start of the
perturbation until four seconds after the start of the per-
turbation were labeled as “non-stepping” and included in
the data set. However, for the stepping responses it did not
make sense to label all observations as “stepping,” since
stepping and non-stepping data were not distinguishable
immediately after the perturbation was applied (Fig. 2).
Therefore, we decided to include only one observation
from each stepping response in the training data set. The
timing and performance of the step prediction is then
dependent on the chosen observation. The selection of
suitable observations is further discussed in section “Data
used for training.”
The performances of the trained classification algo-

rithms were also compared to the performances of con-
ventional step prediction methods. The classification
algorithm that performed best was used to find the fea-
tures that are essential for predicting reactive stepping.
Finally, the step prediction performance was calculated
using the best classifiers and the optimized feature sets.

Step prediction using conventional methods
The stability boundary [4, 5], the XCoM [6] and the CoM-
time-to-boundary concept [8] were used to predict the
occurrence of reactive stepping. The stability boundary is
a limit on the CoM velocity given the position of the CoM.
For forward perturbations the limit on the anterior veloc-
ity normalized to body height is 0 s−1 when the CoM is
positioned above the toe and 0.45 s−1 when the CoM is
positioned above the heel [4]. We used the line passing
through these points as the stability boundary. Using this
method, a step was predicted if the combination of CoM
position and velocity exceeded this boundary.
The XCoM is based on the inverted pendulummodel of

human standing balance [29, 30]. For movements in the
sagittal plane it is given by
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Fig. 2 Top: Vertical ground reaction forces acting on the right foot of
subject S9. The ground reaction forces were used to detect step leg
unloading (circles) and toe-off (crosses) for a selection of stepping
(red) and non-stepping (blue) responses. For one of the stepping
responses all prediction time steps are shown (dots). The grey area
represents the duration of the perturbation. Bottom: Timing of
prediction time steps (in seconds) with respect to toe-off of subject
S9. SLU indicates step leg unloading, TO indicates toe-off, tSLU−n and
tTO−n indicate the nth time step before step leg unloading and toe-off
respectively. Note that the times are rounded to the nearest
hundredth, since motion data were collected at a 100 Hz

ξ = xcom + ẋcom√
g
l

(3)

where ξ is the XCoM, xcom the position of the CoM in
anteroposterior direction, g the gravitational acceleration
and l the pendulum length. We predicted a reactive step
using this method if the XCoM was larger than the upper
limit of the BoS. The full size of the BoS was assumed to
be the foot length from heel to toe, as measured for every
subject before the experiment, but for step prediction we
also used various smaller BoS sizes, since the effective BoS
is smaller than the foot length [6, 7].
The CoM-time-to-boundary is the time required for the

CoM to reach the boundary of the BoS, given the CoM
velocity. Since we are only considering forward perturba-
tions in the sagittal plane the instantaneous CoM-time-to-
boundary (τ ) was defined to be

τ =
{ xbos−xcom

ẋcom if ẋcom > 0
Inf if ẋcom ≤ 0

(4)

where xbos is the upper limit of the full size BoS, that is, the
position of the toes.We predicted a reactive step using this
method if the CoM-time-to-boundary was smaller than
a certain threshold. This threshold value was optimized
such that the number of correct prediction divided by the
total number of predictions was highest [8].

Training classification algorithms
Data used for training
For the non-stepping responses all observations from the
start of the perturbation until four seconds after the start
of the perturbation were included in the data set, whereas
for the stepping responses only one observation from
each stepping response was included. Since reactive step-
ping should be predicted before a step is actually taken,
we wanted to include the last observation before step
initiation in the data set. However, the moment of step ini-
tiation is not unambiguously defined. A step is assumed
to be taken when the foot of the stepping leg has left the
ground, that is, when the ground reaction force on that
foot is zero. This moment is referred to as “toe-off” (TO),
as shown in Fig. 2. However, anticipatory postural adjust-
ments may already occur several moments before TO.
A typical anticipatory postural adjustment for gait initi-
ation is peak loading of the stepping leg [31]. Although
this anticipatory postural adjustment is not always present
in reactive stepping [32], for the exemplary subject in
Fig. 2 this moment can clearly be distinguished. Even
when subjects did not show a large peak in the loading
of the stepping leg, for each stepping response there was
a time instant from which on the ground reaction force
decreased towards zero. This moment is referred to as
“step leg unloading” (SLU). Note that this moment can
only be derived from the ground reaction force data when
they are analyzed in reversed direction, that is, when the
moment of TO is known.
Although it is reasonable to take SLU as the moment at

which a step is initiated, we decided to train the classifi-
cation algorithms using various observations between the
start of the perturbation and to monitor the performance
of the step prediction over time and to check whether
good predictions can be made even before SLU. Figure 3
shows that the time between the start of the perturbation
and TO varies a lot between subjects (0.56 ± 0.20 s, mean
± SD), while the time between SLU and TO is less variable
(0.16 ± 0.03 s). Therefore, we used for every perturbation
response the time between SLU and to create five equally
spaced prediction time steps between and including SLU
and TO, and two prediction time steps before SLU. The
mean timing of these prediction time steps is shown in
Table 1.

Features
For the training of the classification algorithms we ini-
tially used a fairly large feature set consisting of the joint
positions, joint angles, CoM-based parameters and CoP-
based parameters shown in Fig. 4 and Table 2. For each
subject the features were normalized using the normaliza-
tion factors shown in Table 2. Furthermore, features were
standardized such that each feature had zero-mean and
unit-variance.
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Fig. 3 Timing of step initiation and toe-off for all subjects. Top: time
between the start of the perturbation and toe-off. Bottom: time
between step initiation and toe-off

x′ = x − x̄
σ

(5)

Where x is the original feature vector, x̄ is the mean of
that feature vector, and σ is its standard deviation. The
means and standard deviations are shown in Table 2.
Since CoP data are generally difficult to collect reliably

outside an experimental lab, we also trained the classifiers
using a feature set that only contains kinematics.

Settings for training the classification algorithms
The classification algorithms were trained with the Statis-
tics and Machine Learning Toolbox and the Neural Net-
work Toolbox from MATLAB (2015b, The Mathworks,
Natick,MA, USA) using the training set defined in section
“Data set preparation.” Inputs for training the classifiers
were the observations of the parameters in the feature

Table 1 Mean timing of prediction time steps (in seconds) with
respect to toe-off

Prediction time step

tSLU−2 tSLU−1 SLU tTO−3 tTO−2 tTO−1 TO

-0.23 -0.19 -0.16 -0.12 -0.08 -0.04 0

Fig. 4 Features and normalization measures used for training the
classifiers. A description of the features is presented in Table 2.
Normalization measure H is the subject’s body height, hcom is the
height of the center of mass in the baseline pose, lfoot is the length of
the foot measured from heel to toe, and wstance is the stance width
measured from the head of the fifth metatarsal of the left foot to the
head of the fifth metatarsal of the right foot. Fz is the vertical ground
reaction force. Joint angles are positive for knee flexion and hip
extension and they are defined to be zero in the baseline pose.
Positions are expressed with respect to the mean position of the left
and right ankle over the two seconds before the perturbation

set and their corresponding class labels. Note that the
number of non-stepping observations was much larger
than the number of stepping observations, since for the
non-stepping responses all observations from the start of
the perturbation until four seconds after the perturbation
were included in the training set, whereas for the stepping
responses only one observation was included. Therefore,
for the LSVM, the weights on the stepping observations
were empirically increased to 35 times the weights on
the non-stepping observations, to enforce the classifier
not to predict every new observation as a non-stepping
response. The training settings for the LDA, QDA and
NN were not adapted. For the LDA and QDA the train-
ing is not affected by class imbalance. The training of
the NN was affected by the ratio between stepping and
non-stepping responses, but this had a minor effect on
the predictions made using the validation set. The effect
of class imbalance on predicting the outcome classes
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Table 2 Full feature set used for training the classification models

Feature Description Norm. Mean SD
factor x̄ σ

xcom Position of the CoM in x-direction (anteroposterior) 1/hcom 0.056 0.030

ẋcom Velocity of the CoM in x-direction 1/hcom 0.000 0.057 1/s

ẍcom Acceleration of the CoM in x-direction 0.001 0.388 m/s2

kcom Whole body angular momentum around the CoM 1/(Mh2com) 0.000 0.012 rad/s

xcop Position of the CoP in x-direction 1/lfoot 0.233 0.161

ẋcop Velocity of the CoP in x-direction 1/lfoot 0.000 0.578 1/s

ẍcop Acceleration of the CoP in x-direction 0.000 2.090 m/s2

ycop Position of the CoP in y-direction (mediolateral) 1/wstance 0.009 0.047

ẏcop Velocity of the CoP in y-direction 1/wstance -0.001 0.185 1/s

ÿcop Acceleration of the CoP in y-direction -0.003 1.308 m/s2

θhip Mean joint angle of left and right hip 0.002 0.075 rad

θknee Mean joint angle of left and right knee 0.090 0.085 rad

xCJC Position of the cervical joint center in x-direction 1/H 0.035 0.028

xhip Mean position of the left and right hip in x-direction 1/H 0.035 0.016

xknee Mean position of the left and right knee in x-direction 1/H 0.029 0.013

Figure 4 shows the features and normalization factors. All positions are expressed with respect to the mean position of the left and right ankle over the two seconds before
the perturbation. For the kinematics feature set the CoP-based features were dismissed

of the validation set is discussed in “Performance of clas-
sification algorithms” section.

Performance of classification algorithms
The classification algorithms were compared based on
their performance when predicting the outcome classes
of the validation set that consisted of data of 45 step-
ping and 103 non-stepping responses. For the stepping
responses inputs for the classifiers were the observa-
tions in the time window from the onset of the per-
turbation up until each prediction time step, while
for the non-stepping responses all observations were
used. A balance response was predicted to be of the
non-stepping class if all individual observations were
classified as “non-stepping.” If one or more observa-
tions were classified as a step, the balance response
as a whole was classified as “stepping.” Each obser-
vation was classified based on a certain “prediction
score” that is the output of the classifier. This predic-
tion score indicates the likelihood that a new obser-
vation belongs to a particular class. For the LDA and
the QDA the prediction score is the posterior proba-
bility, for the LSVM it is the signed distance from the
observation to the decision boundary, and for the NN
it is the probability distribution over the predicted out-
come classes that was generated by the Softmax out-
put activation function [16]. Whether an observation
is classified as stepping or non-stepping is dependent
on the threshold on the prediction score. Generally,
the predicted outcome class is the one for which the

likelihood that the observation belongs to that class is
highest. However, by varying the threshold on the pre-
diction score the performance of the classifier can be
optimized based on the validation set. This is desired,
because we want a high performance in classifying bal-
ance responses as a whole, and not necessarily in clas-
sifying individual observations. Furthermore, by varying
the threshold on the prediction score we compensate
for the effects of class imbalance in the predictions of
the LDA and the QDA, because changing the thresh-
old is equivalent to changing the prior probability or the
misclassification cost.
The used performance measures were the accuracy,

sensitivity and specificity: the accuracy is the total num-
ber of correct predictions divided by the total number
of predictions made, the sensitivity is the number of
correctly predicted steps divided by the total num-
ber of steps taken, and the specificity is the num-
ber of correctly predicted non-steps divided by the
total number of non-steps. Therefore, a high sensi-
tivity means that the algorithm is highly accurate at
predicting steps, while a high specificity means that
the algorithm is highly accurate at predicting non-
steps. By varying the threshold on the prediction score
for each classifier, prediction time step and feature
set the maximum achievable accuracy was obtained
together with the corresponding sensitivity and speci-
ficity. If multiple thresholds lead to the same maxi-
mum accuracy, the one was used for which the sum
of the sensitivity and specificity was highest. The best
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classifier was defined to be the classifier that resulted in
the highest accuracy.

Feature selection
Through recursive feature elimination (RFE) the goal was
to find the subset of features that were most impor-
tant for step prediction. Since this is a time-consuming
task, only the classification algorithms with the highest
performances on the validation set for prediction time
step SLU were trained, as SLU is assumed to be the
moment at which a subject decides to take a step. First
these algorithms were trained using all features. Then, to
get a measure of feature importance, they were trained
using all combinations of all minus one feature. The least
important feature was defined to be the feature that was
absent when the highest accuracy on the validation set was
achieved. This feature was removed from the feature set
and the algorithms were trained again using all combina-
tions of all minus one feature, and so on, until only one
feature was left.
The best performing classification algorithms turned

out to be the neural networks. Since the results of trained
neural networks are dependent on randomly assigned
initial weights and biases, each training run using a cer-
tain combination of features was repeated ten times. The
performance on the validation set was the average perfor-
mance over the ten runs. We started the RFE using the full
feature set and the kinematics feature set to obtain at least
two smaller feature sets: one with (possibly) CoP-based
features and one with kinematic features only.

Step prediction performance
The classifiers that performed best on the validation
set for prediction time step SLU were trained using the
smaller feature sets that followed from the RFE on the full
feature set and on the kinematics feature set. As with the
comparison of classification algorithms, the threshold on
the prediction score was varied such that the highest accu-
racy was obtained of predicting outcome classes of the
validation set. Then the performances of these optimized
classifiers were computed using the test data set and com-
pared to the performances of the classifiers trained using
the full feature set and the kinematics feature set.

Results
Comparison of classification algorithms
Figure 5 shows that generally the highest accuracy on the
validation data set was obtained using a NN, for both the
full feature set and the kinematics feature set, indepen-
dent of the observation time window. The NN models
score high on the sensitivity, while the obtained speci-
ficity is similar to the other classifiers, indicating that they
are able to accurately predict both stepping responses
and non-stepping responses. Overall, the performance of

classifiers trained using the full feature set was higher
than the performance of classifiers trained using only
kinematics.
The stability boundary, XCoM and CoM-time-to-

boundary performed worse than the trained classification
algorithms. Using the CoM-time-to-boundary or stabil-
ity boundary for step prediction resulted in the high-
est specificity, but the matching sensitivities, and there-
fore the accuracies, were low. Therefore, the stability
boundary and the CoM-time-to-boundary are conserva-
tive step predictors that are reluctant to predict a stepping
response. The performance of the XCoM using a BoS size
equal to the foot length was similar to the performance of
the stability boundary and therefore not shown in Fig. 5.
By adapting the size of the BoS, and therefore the upper
limit on the XCoM, the sensitivity and accuracy could be
increased. Hence, reducing the effective BoS increased the
number of correctly predicted stepping responses. Still,
the optimized XCoM model performed worse than the
trained classification algorithms.
The accuracy of the prediction increased with the length

of the observation time window. When predictions were
made up until TO, the classifiers trained using the full
feature set predicted balance responses with a maximum
accuracy of 0.99, which reduced to 0.90 and 0.82 for pre-
dictions made up until SLU and the second time step
before SLU (tSLU-2) respectively. Predictions made using
the kinematics feature set were slightly worse: for predic-
tions made up until TO, SLU and tSLU-2 the maximum
accuracies were 0.97, 0.90 and 0.80 respectively.
For predictions made up until SLU the best performing

classification algorithms were the NN with eight neurons
for the full feature set and the NNwith five neurons for the
kinematics feature set. Therefore, these classifiers were
used for RFE.

Feature selection
When the full feature set was used for RFE the classifica-
tion accuracy on the validation set remained constant for
the remaining features until five features were left. These
features were: the acceleration of the CoM, the position of
the cervical joint center (CJC), the velocity of the CoM,
the position of the CoP in mediolateral direction and the
acceleration of the CoP in mediolateral direction, in order
of importance (Fig. 6). As more features were removed the
accuracy decreased. A similar trend was found when the
kinematics feature set was used for RFE (Fig. 7). In this
case the most important features were also the accelera-
tion of the CoM, the position of the CJC and the velocity of
the CoM, supplemented with the position of the knee and
the position of the CoM. Based on this RFE three reduced
feature sets were defined: two feature sets consisting of the
five most important features following from the RFE on
the full feature set and the RFE on the kinematics feature
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Fig. 5 Performance of classification algorithms on the validation set using a the full feature set including CoP related features and b the kinematics
feature set. In the Specificity plots lines for the CoM-time-to-boundary (TTB) and stability boundary (SB) concepts are overlapping. SLU indicates step
leg unloading, TO indicates toe-off, tSLU−n and tTO−n indicate the nth time step before step leg unloading and toe-off respectively. Predictions were
made using various observation time windows: from the start of the perturbation until each prediction time step

set, and one feature set consisting of the three features that
both feature sets have in common.

Test set performance
We tested the step prediction performance of five
classifiers:

• a neural network with eight neurons trained with the
full feature set,

• a neural network with five neurons trained with the
kinematics feature set,

• a neural network with eight neurons trained with the
reduced feature set including CoP-based features, that
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Fig. 6 Recursive feature elimination based on the full feature set
including CoP-based features using a neural network with one
hidden layer and five neurons. The moment of step leg unloading
was used as prediction time step. The accuracies were achieved on
the validation set

is, the feature set containing the five most important
features resulting from the RFE on the full feature set,

• a neural network with five neurons trained with the
reduced kinematics feature set, that is, the feature set
containing the five most important features resulting
from the RFE on the kinematics feature set,

• a neural network with eight neurons trained with the
three most important features resulting from both
the RFE on the full feature set and the RFE on the
kinematics feature set.

Fig. 7 Recursive feature elimination based on the kinematics feature
set using a neural network with one hidden layer and five neurons.
The moment of step leg unloading was used as prediction time step.
The accuracies were achieved on the validation set

The shorter the observation time window, the lower the
accuracies of the predictions. The corresponding sensitiv-
ities showed a similar trend, whereas the corresponding
specificities were generally high for all prediction time
steps (Fig. 8).

Fig. 8 Performance on the test data set using the original full feature
set and kinematics feature set, and the three reduced feature sets that
followed from recursive feature elimination. SLU indicates step leg
unloading, TO indicates toe-off, tSLU−n and tTO−n indicate the nth time
step before step leg unloading and toe-off respectively. Predictions
were made using various observation time windows: from the start of
the perturbation until each prediction time step
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Figure 8 shows that reactive stepping can be predicted
with a maximum accuracy of 1.00, 0.91, and 0.78 for pre-
dictions made up until TO, SLU, and tSLU-2 respectively.
Using the full feature set the corresponding accuracies
were 0.99, 0.91 and 0.78 (Table 3). When the reduced
feature set including CoP-based features was used, accu-
racies similar to the ones using the full feature set were
achieved for late prediction time steps, but accuracies for
early predictions were low (0.69 for predictions made up
until tSLU-2). On the contrary, using the kinematics feature
set or the reduced kinematics feature set, the early pre-
diction accuracies were similar to the ones using the full
feature set, but accuracies for late prediction time steps
were lower (<0.97 for predictions made up until TO). The
accuracy of predictions made up until SLU using the full
feature set (0.91) was clearly higher than the ones obtained
using the reduced feature set including CoP-based fea-
tures and the reduced kinematics feature set (0.86 for both
sets). The prediction accuracies were lowest when only
three features were used (0.86, 0.83 and 0.67 for prediction
made up until TO, SLU and tSLU-2 respectively).

Discussion
In this work we predicted natural reactive stepping
responses through the use of classification algorithms. By
comparing various classification algorithms we found that
neural networks with one hidden layer and five or eight
neurons were most suitable for step prediction using an
input feature set without or with CoP-related features,
respectively. The step prediction accuracy was depen-
dent on the length of the observation time window. For
predictions made up until the time steps between (and
including) step leg unloading and toe-off, high accura-
cies (>0.9) could be obtained. The most important input
features were the acceleration of the CoM, the position
of the cervical joint center and the velocity of the CoM.
However, the performance of the classifier trained using
only these three features was low (Fig. 8, “NN-8, 3 fea-
tures”). When the position of the knee and the position
of the CoM were added as a feature, performances simi-
lar to the ones using the full feature set could be obtained
for the prediction time steps before step leg unloading
(Fig. 8, “NN-5, 5 features”). For the prediction time steps

Table 3 Prediction accuracy, sensitivity, and specificity on the test
set for each prediction time step obtained using a neural network
with eight neurons that was trained with the full feature set

Prediction time step

tSLU-2 tSLU-1 SLU tTO-3 tTO-2 tTO-1 TO

Accuracy 0.78 0.81 0.91 0.91 0.98 0.99 0.99

Sensitivity 0.55 0.62 0.79 0.79 0.97 0.97 0.97

Specificity 0.90 0.90 0.97 0.97 0.98 1.00 1.00

after step leg unloading the position and acceleration of
the CoP (in mediolateral direction) could best be added
(Fig. 8, “NN-8, 5 features”).

Feature contribution
The performances of the classifiers are dependent on the
used features and the assumed relation between those fea-
tures. In our classification algorithms comparison (Fig. 5)
the performances of the conventional methods (stability
boundary and XcoM) were low, although at TO they were
similar to the ones presented by Pai et al. [5] for young
healthy subjects (accuracy 0.83, specificity 1). Firstly, this
is a result of the assumed (approximate) linear relation
between the features. Our study showed that the trained
NNs performed better than the other classifiers, especially
at early prediction time steps. Using a NN with one hid-
den layer the decision boundary can be described by a
wide variety of non-linear functions [16, 33], whereas for
the other classifiers the function form is fixed (i.e. linear
or quadratic). Secondly, the low performance of the con-
ventional methods is a result of the choice to use the CoM
and CoM velocity as features. Even with a linear model
(LSVM) a higher accuracy could be obtained by using
more features (Fig. 5), showing that using only the CoM
and CoM velocity is not a good choice for the prediction
of natural reactive stepping.
We found that the three most important features for

predicting reactive stepping were the acceleration of the
CoM, the location of the CJC and the velocity of the CoM.
The velocity and acceleration of the CoM are parameters
often associated with balance [34–36], but the location
of the CJC is not commonly used. The positioning of the
CJC is related to upper body rotation, which is assumed
to play an important role in balance, for example in the
‘hip strategy’ [1]. In our feature set the position of the
CJC is the only body-fixed feature in which flexion of the
trunk is expressed and this feature could be a measure
of whether the hip strategy can be applied effectively and
efficiently to counteract the perturbation. Therefore, this
result indicates that for predicting natural reactive step-
ping it is important to take this degree of freedom into
account.
The added value of CoP-related features in the feature

set is dependent on the observation time window. For pre-
dictions made up until a time step after SLU, the feature
sets that contain CoP-related features performed better
than the feature sets that only contain kinematics (Fig. 8).
For predictions made up until TO even the maximum
prediction accuracy (1.00) was obtained using the five fea-
tures that resulted from the RFE on the full feature set
(Fig. 8, “NN-8, 5 features”). At this time step the weight of
a subject, and therefore the CoP, has fully shifted to one
leg. Hence, it makes sense that good predictions can be
made when the CoP in mediolateral direction is part of
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the feature set. However, for predictionsmade before SLU,
the reduced feature set including CoP-based features per-
formed worse than the kinematics feature set and similar
to the feature set with only three features (Fig. 8, “NN-
8, 5 features”, “NN-5 Kinematics”, and “NN8-8, 3 features”
respectively). This indicates that the CoP-related features
that are important predictors for predictions made up
until TO are not relevant for early predictions.

Methodological considerations
The sensitivity of the step prediction was quite low at
early prediction time steps (0.38 for predictions made up
until tSLU-2 for the reduced kinematics feature set, Fig. 8,
“NN-5, 5 features”). Hence, at early prediction time steps
the stepping responses are often not correctly predicted.
This is a result of the choice to optimize for the accuracy.
Due to the imbalance in the number of stepping responses
and non-stepping responses in our data set, an incorrectly
predicted stepping response has a larger influence on
the sensitivity than an incorrectly predicted non-stepping
response has on the specificity. However, they both have
the same influence on the accuracy. In some cases it is
desired to achieve a high sensitivity. For example, in fall
prevention it can be particularly important that steps are
predicted correctly on time, because it is better to make
an unnecessary corrective step than to step too late. Using
our prediction method this can be achieved by choosing
the threshold on the prediction score such that a high sen-
sitivity is obtained. However, that comes at a price of a
lower accuracy.
The data collected from the perturbation responses

were time series. However, we did not make the predic-
tions based on the complete time series, but based on
individual observations in the time series. For the step-
ping responses only one observation from each stepping
response was included in the training set. Furthermore,
we predicted a stepping response if at least one observa-
tion was classified as a step, that is, based on a single hit.
We also trained the classification algorithms using more
observations, e.g. all observations between the perturba-
tion and the prediction time step, but that did not improve
the performance. Although our initial attempts did not
show any added value of including more samples, more
extensive testing should be done to determine whether
the prediction performance can be improved by including
multiple observations from each stepping response in the
training set, or by predicting a stepping response based on
multiple hits.
Furthermore, it is possible that the prediction perfor-

mance can be improved when the causal relation between
time samples is taken into account. We tried to include
information of multiple observations in one sample by
passing the data through a moving average filter, but that
did not improve the prediction performance. There are

also more sophisticated methods to classify time series
data, for example through dynamic time warping [37] and
hidden Markov models [38]. However, these methods are
more complex and non-trivial to implement for predict-
ing reactive stepping in real-time. As we could already
obtain good results with a simpler, sample-based method
we did not look further into classification methods for
time-series.
This study had several limitations. First, we tried to pre-

dict natural balance responses in an experimental setting.
It is not certain whether subjects indeed reacted natu-
rally. By giving the subject the task to count backwards,
we tried to ensure that they were not preparing a balance
response. Still, in a few cases subjects seemed to react
‘unnaturally’ to a perturbation. By removing these data
afterwards we tried to minimize the effects of unnatural
balance responses. Second, the classification algorithms
that we tested have hyperparameters, which we did not
systematically optimize. By optimizing these hyperparam-
eters to minimize the prediction error on the validation
set, the performance of the classifiers could be further
improved. Last, the classifiers were optimized for one spe-
cific dataset. The data in the training, validation, and test
set were from the same subjects and the same experi-
mental setting. Therefore, it is possible that the obtained
results don’t generalize well to new subjects and other
perturbations. Yet, we showed the potential of using a
classification-based method for step prediction, and indi-
cated important features for such a prediction.

Possible applications & future work
In this work a classification-based method was presented
to predict the occurrence of natural reactive stepping.
Future work includes further validation of the results
using data sets with other subjects and other perturbation
types.
The classifiers obtained with the proposed method can

be used in several applications, such as balance training
and robotic support. In these cases, the trained clas-
sifiers can be implemented to decide whether or not
the subject and/or robot should take or support a step
to maintain balance. Therefore, the features need to be
tracked real-time in various settings, inside and outside a
biomechanics lab.
The setting of the application affects which feature

set can be used. The kinematic features can be esti-
mated using inertial measurement units on the body,
or in case of robotic support, using joint encoders on
the device. However, CoP-related measures are generally
difficult to collect reliably outside a biomechanics lab.
Therefore, if the application is not in a lab setting, within
this method a classifier can be chosen that only requires
kinematic input data to accurately predict reactive
stepping.
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Considering the step timing, given that an actual step
has to be taken, the classifier should be able to make an
early prediction. Hence a classifier that is trained using
observations up until the moment of step leg unloading
can be used for the prediction. A step can then for exam-
ple be initiated when a new observation is classified as
stepping, but it is also possible to wait until multiple sam-
ples predict a stepping response. The latter increases the
robustness of the step prediction, but also increases the
risk of initiating the step too late.
Ultimately, our goal is to implement this step predic-

tion method in a human-like balance controller for an
exoskeleton. Therefore, future research directions are to
investigate the influence of the exoskeleton on reactive
stepping, the timing of step initiation with respect to the
timing of the step prediction and where to place the foot
when a step is initiated.

Conclusion
In this study we trained classification algorithms to pre-
dict natural reactive stepping in response to an external
perturbation. We found that using a neural network with
one hidden layer prediction accuracies could be obtained
of 0.91 for predictions made up until the moment of step
leg unloading and 1.00 for predictions made up until toe-
off. In general, the performances were dependent on the
timing of the step prediction - the later the prediction
the higher the accuracy - and the feature set that was
used for training the algorithms. The three most impor-
tant features were the acceleration of the center of mass,
the location of the cervical joint center and the velocity of
the center of mass.

Abbreviations
BoS: Base of support; CJC: Cervical joint center; CoM: Center of mass; CoP:
Center of pressure; LDA: Linear discriminant analysis; LSVM: Linear support
vector machine; NN: Neural network; QDA: Quadratic discriminant analysis;
RFE: Recursive feature elimination; SB: Stability boundary; SLU: Step leg
unloading; TO: Toe-off; TTB: Center of mass-time-to-boundary; XCoM:
eXtrapolated center of mass

Acknowledgments
Not applicable.

Authors’ contributions
AE, VP, EA and HK designed the study and interpreted the data, AE and VP
collected and analyzed the data, AE wrote the manuscript, EA and HK revised
the manuscript. All authors read and approved the final manuscript.

Funding
The work presented here was performed in the SYMBITRON project which is
supported by EU research program FP7, FET-Proactive initiative “Symbiotic
human-machine interaction” (ICT-2013-10) under project contract #611626.
The SYMBITRON project is coordinated by the University of Twente.

Availability of data andmaterials
The datasets generated and analysed during the current study are available in
the 4TU repository, DOI:
10.4121/uuid:21cb6675-9b97-438b-b6d7-93313e27646b (data upload in
progress)

Ethics approval and consent to participate
Ethical approval for the experiments was given by Medisch Ethische
Toetsingscommissie Twente, the Netherlands. Subjects gave written informed
consent prior to the experiments.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 3 October 2019 Accepted: 17 June 2020

References
1. Horak FB, Nashner LM. Central programming of postural movements:

Adaptation to altered support-surface configurations. J Neurophys.
1986;55(6):1369–81.

2. Runge CF, Shupert CL, Horak FB, Zajac FE. Ankle and hip postural
strategies defined by joint torques. Gait Posture. 1999;10(2):161–70.

3. Maki BE, McIlroy WE. The role of limb movements in maintaining upright
stance: The ’change- in-support’ strategy. Phys Ther. 1997;77(5):488–507.

4. Pai YC, Patton J. Center of mass velocity-position predictions for balance
control. J Biomech. 1997;30(4):347–54.

5. Pai YC, Rogers MW, Patton J, Cain TD, Hanke TA. Static versus dynamic
predictions of protective stepping following waist–pull perturbations in
young and older adults. J Biomech. 1998;31(12):1111–18.

6. Hof AL, Gazendam MGJ, Sinke WE. The condition for dynamic stability.
J Biomech. 2005;38(1):1–8.

7. Hof AL, Curtze C. A stricter condition for standing balance after
unexpected perturbations. J Biomech. 2016;49(4):580–85.

8. Schulz BW, Ashton-Miller JA, Alexander NB. Can initial and additional
compensatory steps be predicted in young, older, and balance-impaired
older females in response to anterior and posterior waist pulls while
standing? J Biomech. 2006;39(8):1444–53.

9. Pratt J, Carff J, Drakunov S, Goswami A. Capture Point: A Step toward
Humanoid Push Recovery. In: 2006 6th IEEE-RAS International Conference
on Humanoid Robots. IEEE; 2006. https://doi.org/10.1109/ichr.2006.
321385.

10. Wight DL, Kubica EG, Wang DWL. Introduction of the Foot Placement
Estimator: A Dynamic Measure of Balance for Bipedal Robotics. J Comput
Nonlinear Dyn. 2007;3(1):11.

11. Yun S, Goswami A. Momentum-based reactive stepping controller on
level and non-level ground for humanoid robot push recovery. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE; 2011. https://doi.org/10.1109/iros.2011.6094491.

12. Yamamoto K. Control Strategy Switching for Humanoid Robots Based on
Maximal Output Admissible Set. Robot Auton Syst. 2016;81(C):17–32.

13. Aftab Z, Robert T, Wieber PB. Ankle, hip and stepping strategies for
humanoid balance recovery with a single Model Predictive Control
scheme. In: 2012 12th IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2012). IEEE; 2012. https://doi.org/10.1109/
humanoids.2012.6651514.

14. Aftab Z, Robert T, Wieber PB. Balance Recovery Prediction with Multiple
Strategies for Standing Humans. PLoS ONE. 2016;03(11):1–16.

15. Fisher RA. The Use of Multiple Measurements in Taxonomic Problems.
Ann Eugenics. 1936;7(7):179–88.

16. Bishop CM. Pattern Recognition and Machine Learning. Berlin:
Springer-Verlag; 2006.

17. Tharwat A. Linear vs quadratic discriminant analysis classifier: a tutorial. Int
J Appl Pattern Recog. 2016;3(2):145–80.

18. Nouredanesh M, Tung J. Machine learning based detection of
compensatory balance responses to lateral perturbation using wearable
sensors. In: 2015 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE; 2015. https://doi.org/10.1109/biocas.2015.7348282.

19. Li M, Xu G, He B, Ma X, Xie J. Pre-Impact Fall Detection Based on a
Modified Zero Moment Point Criterion Using Data From Kinect Sensors.
IEEE Sensors J. 2018;18(13):5522–31.

20. Bao T, Klatt BN, Whitney SL, Sienko KH, Wiens J. Automatically
Evaluating Balance: A Machine Learning Approach. IEEE Trans Neural Syst
Rehab Eng. 2019;27(2):179–86.

https://doi.org/10.1109/ichr.2006.321385
https://doi.org/10.1109/ichr.2006.321385
https://doi.org/10.1109/iros.2011.6094491
https://doi.org/10.1109/humanoids.2012.6651514
https://doi.org/10.1109/humanoids.2012.6651514
https://doi.org/10.1109/biocas.2015.7348282


Emmens et al. Journal of NeuroEngineering and Rehabilitation           (2020) 17:84 Page 15 of 15

21. Mille ML, Rogers MW, Martinez K, Hedman LD, Johnson ME, Lord SR, et
al. Thresholds for inducing protective stepping responses to external
perturbations of human standing. J Neurophys. 2003;90(2):666–74.

22. Vallée P, Tisserand R, Robert T. Possible recovery or unavoidable fall? A
model to predict the one step balance recovery threshold and its
stepping characteristics. J Biomech. 2015;48(14):3905–11.

23. Tortolero X, Masani K, Popovic MR. Step prediction during perturbed
standing using center of pressure measurements. Sensors. 2007;7(4):
459–72.

24. Patton JL, Pai YC, Lee WA. Evaluation of a model that determines the
stability limits of dynamic balance. Gait Posture. 1999;9(1):38–49.

25. Ayena JC, Zaibi H, Otis MJ, Mé BJ. Home-Based Risk of Falling Assessment
Test Using a Closed-Loop Balance Model. IEEE Trans Neural Syst Rehab
Eng. 2016;24(12):1351–62.

26. Vlutters M, van Asseldonk EHF, van der Kooij H. Center of mass
velocity-based predictions in balance recovery following pelvis
perturbations during human walking. J Exp Biol. 2016;219(10):1514–23.

27. Cappozzo A, Catani F, Croce UD, Leardini A. Position and orientation in
space of bones during movement: anatomical frame definition and
determination. Clin Biomech (Bristol, Avon). 1995;10(4):171–178.

28. Dumas R, Chèze L, Verriest JP. Adjustments to McConville et al. and
Young et al. body segment inertial parameters. J Biomech. 2007;40(3):
543–553.

29. Geurssen JB, Altena D, Massen CH, Verduin M. A model of the standing
man for the description of his dynamic behaviour. Agressologie.
1976;17B:63–69.

30. Winter DA. Human balance and posture control during standing and
walking. Gait Posture. 1995;3(4):193–214.

31. Lu C, Huffmaster SLA, Harvey JC, MacKinnon CD. Anticipatory postural
adjustment patterns during gait initiation across the adult lifespan. Gait
Posture. 2017;57:182–187.

32. McIlroy WE, Maki BE. Do anticipatory postural adjustments precede
compensatory stepping reactions evoked by perturbation? Neurosci Lett.
1993;164(1):199–202.

33. Cybenko G. Approximation by superpositions of a sigmoidal function.
Math Control Signals Syst. 1989;2(4):303–14.

34. Welch TDJ, Ting LH. A feedback model reproduces muscle activity during
human postural responses to support-surface translations.
J Neurophysiol. 2008;99(2):1032–8.

35. van Asseldonk EHF, Carpenter MG, van der Helm FCT, van der Kooij H.
Use of Induced Acceleration to Quantify the (De)stabilization Effect of
External and Internal Forces on Postural Responses. IEEE Trans Biomed
Eng. 2007;54(12):2284–95.

36. Fujimoto M, Chou LS. Dynamic balance control during sit-to-stand
movement: An examination with the center of mass acceleration.
J Biomech. 2012;45(3):543–548.

37. Müller M. Dynamic Time Warping. Berlin, Germany: Springer Berlin
Heidelberg; 2007, pp. 69–84. https://doi.org/10.1007/978-3-540-74048-
3_4.

38. Juang BH, Rabiner LR. Hidden Markov Models for Speech Recognition.
Technometrics. 1991;33(3):251–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Experiments
	Subjects
	Experimental setup
	Protocol
	Data collection and processing
	Data set preparation

	Step prediction methods
	Step prediction using conventional methods
	Training classification algorithms
	Data used for training
	Features
	Settings for training the classification algorithms

	Performance of classification algorithms
	Feature selection
	Step prediction performance

	Results
	Comparison of classification algorithms
	Feature selection
	Test set performance

	Discussion
	Feature contribution
	Methodological considerations
	Possible applications & future work

	Conclusion
	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

