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Abstract

Background: Recent advances in wearable sensor technologies enable objective and long-term monitoring of
motor activities in a patient’s habitual environment. People with mobility impairments require appropriate data
processing algorithms that deal with their altered movement patterns and determine clinically meaningful outcome
measures. Over the years, a large variety of algorithms have been published and this review provides an overview of
their outcome measures, the concepts of the algorithms, the type and placement of required sensors as well as the
investigated patient populations and measurement properties.

Methods: A systematic search was conducted in MEDLINE, EMBASE, and SCOPUS in October 2019. The search strat-
egy was designed to identify studies that (1) involved people with mobility impairments, (2) used wearable inertial
sensors, (3) provided a description of the underlying algorithm, and (4) quantified an aspect of everyday life motor
activity. The two review authors independently screened the search hits for eligibility and conducted the data extrac-
tion for the narrative review.

Results: Ninety-five studies were included in this review. They covered a large variety of outcome measures and
algorithms which can be grouped into four categories: (1) maintaining and changing a body position, (2) walking
and moving, (3) moving around using a wheelchair, and (4) activities that involve the upper extremity. The validity or
reproducibility of these outcomes measures was investigated in fourteen different patient populations. Most of the
studies evaluated the algorithm’s accuracy to detect certain activities in unlabeled raw data. The type and placement
of required sensor technologies depends on the activity and outcome measure and are thoroughly described in this
review. The usability of the applied sensor setups was rarely reported.

Conclusion: This systematic review provides a comprehensive overview of applications of wearable inertial sensors
to quantify everyday life motor activity in people with mobility impairments. It summarizes the state-of-the-art, it
provides quick access to the relevant literature, and it enables the identification of gaps for the evaluation of existing
and the development of new algorithms.

Keywords: Disabled persons, Patients, Rehabilitation, Accelerometer, Gyroscope, Inertial measurement unit,
Algorithms, Pattern recognition, Machine learning, Activities of daily living
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People with mobility impairments may have dif-
ficulties in executing activities of daily living (activ-
ity limitations), or they may experience problems in
involvement in life situations (participation restric-
tions) [2]. Rehabilitation services aim to improve these
people’s abilities or make changes to their environment
[3], to achieve a high level of independence and eventu-
ally increase the quality of life. Clinical assessments to
estimate patients’ abilities and their rehabilitation pro-
gress are generally conducted in a standardized envi-
ronment at a single time. Thus, they do not incorporate
environmental and cognitive challenges of a patient’s
habitual environment [4] and might be inaccurate when
the symptoms of the patient fluctuate over time [5].

Recent advances in wearable sensor technologies ena-
ble objective and long-term monitoring of motor activ-
ities in a patient’s habitual environment. They provide
an opportunity to overcome the aforementioned limi-
tations of clinical assessments and complement their
outcome measures. Accelerometers are the most com-
monly used wearable devices to quantify everyday life
motor activity in clinical trials and clinical practice [6,
7]. Conventional outcome measures of accelerometers
are activity counts as well as intensity levels and energy
expenditure estimations based on cut-points of these
counts [8]. These measures provide relevant informa-
tion about whole-body physical activity, but they are
non-specific and cannot determine movement pat-
terns and types of activities performed [9]. In contrast,
using a combination of several inertial sensors, such as
accelerometers and gyroscopes, together with sophis-
ticated data processing algorithms, allows estimating
the quantity and other characteristics of everyday life
motor activities [10]. Additional sensor technology
such as magnetometers, barometers, wearable cameras,
and heart rate monitors measure environmental fac-
tors or physiological responses to motor activities and
can be combined with inertial sensors to gain further
details about patients’ activities [11, 12]. Technological
progress in the field of micro-electromechanical sys-
tems has made these devices small-sized, cost-effective,
energy-efficient, and thus applicable for continuous
long-term monitoring in unsupervised conditions [10].
However, continuous long-term monitoring generates
a tremendous amount of unlabeled data that requires
appropriate data processing algorithms to determine
clinically meaningful outcome measures of everyday
life motor activity. Typically, these algorithms detect
a certain activity in unlabeled data as a first step (e.g.,
walking bouts or grasping an object) and then deter-
mine a measure to quantify the previously detected
activity as a second step (e.g., walking speed or number
of grasping activities).
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The relevance of these outcome measures depends on
end-users’ perspectives and may be different for people
with mobility impairments compared to non-disabled
individuals. For example, the amount of limping, use of
assistive devices, and daily activity of affected limbs are
more relevant to the former population. Altered move-
ment patterns can also be a challenge for data process-
ing algorithms [13, 14] and thus the transferability of
algorithms which were evaluated in non-disabled indi-
viduals to people with mobility impairments could be
limited. Therefore, this review focused on the application
of inertial sensor technologies to quantify everyday life
motor activity in people with mobility impairments and
provides an overview of existing outcome measures as
well as their underlying data processing algorithms. Spe-
cifically, the following research questions were addressed:
(1) Which outcome measures have been used to quan-
tify everyday life motor activity of people with mobil-
ity impairments under free-living conditions, and what
are their corresponding data processing algorithms?
(2) Which inertial sensor technology (accelerometer
or gyroscope), possibly in combination with additional
wearable sensor technology, is required to assess these
measures? (3) Where need inertial sensors be placed to
assess these measures and minimally restrict activities of
daily living? (4) In which patient populations were these
measures applied, and were they and the required sensor
system evaluated in terms of validity, reproducibility, or
usability?

Methods

The detailed protocol of this review was published in
advance [1] and its method section is roughly summa-
rized in the following paragraphs.

The systematic search was conducted in three data-
bases: MEDLINE, EMBASE, and SCOPUS. The selected
search terms can be grouped into five categories: (1)
study population (e.g., “patient’, “stroke’, etc.), (2) meas-
urement tool (e.g., “accelerometer’, “gyroscope’; etc.), (3)
data processing algorithm (e.g., “algorithm’, “signal pro-
cessing’, etc.), (4) free-living condition (e.g., “everyday
life”, “daily living’; etc.), and (5) two terms which incor-
porate categories three and four (“activity classification”
and “activity recognition”). A first search was conducted
in July 2017 and repeated in October 2019.

Title and abstracts (first step), as well as full-text arti-
cles (second step) were screened by the two review
authors independently to identify articles that met the
following eligibility criteria: (1) The study population
involved children, adolescents, or adults with a diagnosed
orthopedic or neurological mobility impairment or peo-
ple who need assistive devices in their daily life activities,
(2) the article used a measurement tool that incorporates
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a wearable accelerometer, gyroscope, or both, i.e., inertial
measurement unit (IMU), and optionally includes addi-
tional sensors, (3) the article described the underlying
data processing algorithm reproducibly or cited a pub-
licly available reference, and (4) the output of the algo-
rithm is a measure that quantifies an aspect of everyday
life motor activity. Whole-body activity counts, as well as
physical activity levels and energy expenditure based on
thresholds of these counts, were not considered for this
review, as they have already been well investigated [15,
16].

The used outcome measures and the method of the
underlying data processing algorithm, the type and place-
ment of required sensor technology, the study popula-
tion as well as the study design were extracted from all
included articles. Some studies investigated more than
one sensor setup and data processing algorithm. In that
case, only the method with the best performance or the
recommended method was included in this review. If
the outcome measures were not explicitly mentioned
or described in the article, which was often the case in
activity classification studies, it was assumed that activity
detection enables to determine the duration of the activ-
ity or count the number of repetitions. The measures
were then retrospectively grouped into four categories:
(1) Maintaining and changing a body position, (2) walk-
ing and moving, (3) moving around using a wheelchair,
and (4) activities that involve the upper extremity. The
sensor placements were simplified by assigning the exact
positions to one of the following body segments: head,
trunk, upper arm, forearm, hand, pelvis, thigh, shank,
foot, and assistive devices. Thus, sensors that were placed
above the lateral malleoli and on the fifth lumbar vertebra
were assigned to the shank and pelvis segment, respec-
tively. To address the second part of the fourth research
question, the study designs were allocated to one or sev-
eral of seven different categories: Classification accuracy
studies investigated the performance of the algorithm to
recognize activities, while technical validity studies deter-
mined the accuracy of activity-related measures, both
with regard to a reference method. Clinical validity stud-
ies correlated the outcome of the sensor system with the
outcome of a clinical assessment. Between-day reliability
studies investigated the consistency of the outcome when
measuring it on two different days. Case/control stud-
ies compared the outcome between the target popula-
tion and a control group. Interventional studies used the
outcome to evaluate the effectiveness of an intervention,
and observational studies incorporated different designs
such as analyzing the changes of the outcome over time
or comparing several outcomes within the same subject.
Besides, it was determined if the studies assessed the usa-
bility of the sensor systems.
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Results

Overview

The systematic search revealed 2272 hits, of which 31
were added retrospectively through reference screening
of the included articles. After title and abstract screening,
473 articles remained for full-text screening, and, even-
tually, 95 articles fulfilled the predetermined eligibility
criteria. The complete flow diagram of the screening pro-
cedure is shown in Fig. 1. The main reason for exclusion
was the study population, with 46% of all excluded arti-
cles. Many research projects developed a new algorithm
to monitor motor activities in daily life and conducted
a preliminary study with healthy subjects. These studies
were not considered in this review, except for one study
that recruited able-bodied individuals which performed
an activity circuit in a wheelchair [17]. The second most
frequent exclusion criterion was the algorithm with 26%.
It was either not described reproducibly (e.g., in cases
of proprietary algorithms of commercial parties) or not
applicable to unlabeled data.

An overview of the used sensor technologies, the body
segments on which sensors were placed, the study pop-
ulation in which the sensors were applied, and the used
study designs for evaluating the outcome measures is
provided in Fig. 2. Note that most of the studies were
allocated to several of the chosen categories.

Sensor technologies

All studies used an accelerometer, a gyroscope, or both
(inclusion criteria) with a clear preference for acceler-
ometers. These sensor technologies were combined with
a barometric pressure sensor to detect changes in alti-
tude, a magnetometer to measure the orientation rela-
tive to the earth’s magnetic field, and a reed switch on
the spokes of the wheelchair to determine revolutions of
the wheel. Six studies used an instrumented insole with
force-sensitive sensors [18—23], and two studies used a
first-person camera [24, 25], all in combination with iner-
tial sensors. These eight studies were not further consid-
ered in this review since they did not use inertial sensors
as their primary measurement tool.

Sensor placement

The sensors were most frequently placed on the trunk,
the pelvis, and the forearm but also on other body seg-
ments and on assistive devices. The frequency of cho-
sen sensor positions depended mainly on the outcome
measures. Studies that used outcomes related to body
positions preferred a sensor on the trunk or a combina-
tion of trunk and thigh sensors. In contrast, studies that
used outcomes related to activities of the upper extremi-
ties (incl. wheeling) placed the sensors on the arms with
a clear preference of wrist sensors. There was no clear



Rast and Labruyére J NeuroEngineering Rehabil ~ (2020) 17:148 Page 4 of 19

Records identified through
database searching: Additional records
NMediine = 796 identified through
c NEmbase = 1368 reference screening
o
.g nScopus = 1159 (n = 31)
E::_’ Niotal = 3323
)
[
(]
S
A 4 \ 4
Records after duplicates removed
(n=2272)
a0 \ 4
'g Records screened N Records excluded
e (n = 2272) (nirrelevant = 1799)
a
v
Full-text articles assessed Full-text articles excluded,
for eligibility > with reasons
(n =473) Npopulation = 173
>
= Nalgorithm = 98
'-ugo Nno full-text = 63
L—: Noutput = 37
Nmeasurement tool = 5
Nianguage = 2
Nexcluded = 378
\ 4
°
S Included studies
= n=
§ (n=95)
Fig. 1 Flow diagram according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [120]

preference for sensor placement in studies with gait- general, is strongly related to the underlying algorithm
related outcomes. Sensors were placed on the trunk, the and, therefore, more thoroughly described in the subse-
pelvis, the shanks, and the feet. The sensor placement, in  quent chapters.
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Sensor technology
Accelerometer 92
Gyroscope 44
Barometer 10

Magnetometer

Reed switch

Sensor placement
Trunk
Pelvis
Forearm
Shank
Thigh
Upper arm
Foot
Assistive devices

Head

Study population
Stroke 29
Parkinson's disease 18
Spinal cord injury 12
Arthritis
Fallers

Amputees

B e e

Cerebral palsy

Others* 18

Study design
Classification accuracy 68
Case/control 17
Technical validity 16
Clinical validity 8
Observational 7

Between-day reliability 4

Interventional | 2
0 20 40 60 80 100
Number of studies

Fig. 2 Frequency distribution of the used sensor technologies, of
the body segments on which sensors were placed, of the study
population in which the sensors were applied, and of the used study

designs to evaluate the outcome measures

Study populations

Wearable inertial sensors were most frequently applied
in stroke survivors, in patients with Parkinson’s disease,
and in patients with spinal cord injury. Fourteen different
study populations were identified, which highlights the
wide range of applications of wearable inertial sensors

Page 5 of 19

to quantify everyday life motor activity in people with
mobility impairments.

Study designs

In terms of validity, the majority of the included stud-
ies evaluated the algorithm’s activity classification accu-
racy. The methods of these studies differed considerably.
Measurements were conducted under laboratory or free-
living conditions. The number of sensors ranged from 1
to 17 and the number of classes/activities from 1 to 11.
Moreover, the methods to split the data into training and
testing samples varied, and the studies used inconsist-
ent metrics to report their results. Technical and clinical
validity studies were conducted less frequently. Technical
validity studies determined predominantly the accuracy
of gait parameters. Sensor-based outcome measures were
compared to those of pressure-sensitive walkways, video
recordings, stopwatches, or other validated sensor sys-
tems. In contrast, the clinical validity studies compared
their sensor-based outcome measures to those of clinical
assessments. These comparisons were unique for each
clinical validity study of this review. Clinical studies were
less frequent than validity studies. Here, sensor-based
outcome measures were often applied in case/control
studies, followed by observational and interventional
studies. In terms of reproducibility, four studies deter-
mined the between-day reliability of their outcome meas-
ure. All of them evaluated gait-related outcomes, but they
differed considerably in the chosen setting. Two studies
assessed the usability of a sensor system by reporting
inconvenience [26] and adverse events [27], respectively,
while eight studies reported the wearing time of the sen-
sors in daily life [28-35].

Outcome measures and underlying algorithms

All outcomes, as well as the underlying type and place-
ment of sensors, are thoroughly described in the subse-
quent chapters. Each chapter is complemented with a
table that provides a list of all outcome measures and how
they were investigated in terms of study populations and
study designs (Tables 1, 2, 3, 4). The underlying data pro-
cessing algorithms to detect activities in unlabeled data
of this review followed either a biomechanical or a sta-
tistical machine learning approach. The former approach
uses explicit, and a priori defined features that are spe-
cific to certain activities (e.g., the orientation of the thigh
during sitting). The concepts of this approach are
described in the following chapters. The latter approach
uses many unspecific features in combination with stand-
ard machine learning algorithms. A description of these
algorithms is provided elsewhere [36], and the detected
activity classes, as well as the used sensor type and place-
ment, are listed in Table 5.
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Table 3 Overview of activities and measures regarding wheeling as well as the corresponding study populations

and study designs

Activity

Measure

Diagnosis/impairment group

Study design

Moving around using a wheelchair

Self-propelled wheeling Duration

Distance
Speed
# of strokes/

Able-bodied wheelchair users [17], spinal cord injury [32,

Classification accuracy [17, 32,62, 97-101]

62,97-101]

Able-bodied wheelchair users [17], spinal cord injury [29]

stroke
frequency

Maneuvering
Playing basketball

Duration
Duration

Spinal cord injury [29, 32]

Spinal cord injury [102]

Able-bodied wheelchair users [17], spinal cord injury [32]
Spinal cord injury [101]

Clinical validity [29], technical validity [32]
Classification accuracy [17], clinical validity [29]
Interventional [102], technical validity [102]

Classification accuracy [17, 32]
Classification accuracy [101]

Table 4 Overview of activities and measures regarding upper extremities as well as the corresponding study populations

and study designs

Activity

Measure

Diagnosis/impairment group Study design

Non-specific hand and arm use
n/a

n/a
n/a

Duration/laterality

Entropy

Range of motion
Shoulder

Elbow

Wrist and finger

Specific hand and arm movements

Reaching

Lifting sth. to the mouth
Pouring sth. (pro-/supination)
Specific hand and arm activities

Writing and reading
Opening a door
Hair combing
Eating

Drinking

Tooth brushing, shirt button-
ing, pant lifting, food cutting

# and duration of
reaching activi-
ties

Reaching distance

Reaching direction

Duration

Duration

Duration
Duration
Duration
Duration

Duration
Duration

Parkinson'’s disease [40], Rotator cuff syndrome
[30], stroke [46, 47, 58, 89, 103, 104]

Case/control [103], classification accuracy [40,
46,47, 58,103, 104], clinical validity [40, 89,
103], observational [30]

Arthritis [105] Case/control [105]
Rotator cuff syndrome [56], stroke [34, 106]
Stroke [34]

Stroke [107]

Observational [34, 56, 106]
Observational [34]
Observational [107]

Parkinson'’s disease [72], stroke [34, 108-111] Classification accuracy [72, 108-111], obser-

vational [34]

Stroke [58]

Parkinson’s disease [72], stroke [58]
Stroke [57, 108-111]

Stroke [108-111]

Observational [58]

Classification accuracy [72], observational [58]
Classification accuracy [57, 108-111]
Classification accuracy [108-111]

Parkinson's disease [42] Classification accuracy [42]

Arthritis [87], stroke [88] Classification accuracy [87, 88]
Stroke [57,112] Classification accuracy [57, 112]
Parkinson’s disease [42], stroke [112], miscel- Classification accuracy [42, 112, 113]

laneous [113]
Stroke [112]
Stroke [57]

Classification accuracy [112]
Classification accuracy [57]

Maintaining and changing a body position
Activities and outcome measures

combined lying and sitting positions as sedentary behav-
ior [33, 60—62]. One study included a measure to assess

The studies of this review often detected lying [26, 35,
37-50], sitting [26, 30, 31, 35, 37-59], and standing
positions [26, 30, 31, 33, 35, 37-50, 52-56, 58-61] and,
thus, estimated how long patients with mobility impair-
ments maintain these positions in daily life. Some studies

the knee angle during these positions [39]. Instead of
quantifying the duration of body positions, it is also com-
mon to count the transitions between these positions.
The transition between sitting and standing was fre-
quently investigated [40, 41, 48, 53, 57, 59, 63—-73], while
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only three studies detected the transition between lying
and sitting [48, 57, 70]. Three of these studies further dis-
criminated between transitions and bending forward [53,
65, 67], and two additional studies specifically detected
sit-to-walk transitions since they aimed to compare the
timed up and go test with transitions in daily life [74, 75].
Standing up was further analyzed in terms of speed [40,
63, 64, 68, 71, 73-75], range of motion [40, 64, 71, 74, 75],
and smoothness [74, 75]. Only one study detected trans-
fers (i.e., moving from one surface to another without
changing body position) [62].

Description of algorithms and sensor placement

Activity classification algorithms in the literature
detected either body positions directly or the transi-
tions between them. Both approaches are widely used
and, eventually, enable to determine how long a specific
position was maintained and to count the number of
transitions.

Detection of body positions based on sensor orienta-
tion The orientation of different body parts are distinct
characteristics of different body positions (e.g., the ori-
entation of the thigh is vertical during standing, while
it is horizontal during lying and sitting). Estimating the
orientation of body-worn sensors and applying prede-
fined thresholds is a common approach to discriminate
between body positions in daily life. The sensors were
placed on the thigh to distinguish between sitting and
standing positions [31, 39, 40, 58, 60] as well as on the
trunk [40] or shank [39, 58] to separate lying from the
remaining positions. One study used the orientation of
the pelvis to classify all three positions with a single sen-
sor [46]. Algorithms to estimate the sensor’s orientation
have already been summarized [76] and are, therefore, not
part of this review.

Detection of transitions based on trunk inclination ~ Stand-
ing up or sitting down is usually performed by leaning for-
ward to maintain the center of mass over the feet. This
characteristic and the trunk inclination angle can be used
to detect transitions between sitting and standing in daily
life. The challenge is to discriminate between sit-to-stand
and stand-to-sit transitions. This distinction was accom-
plished by pattern recognition [26, 41, 53, 64, 65, 67], by
the orientation of the pelvis after the transition [74, 75],
by the orientation change of the thigh during the transi-
tion [66, 68, 70, 72], and by estimating the difference in
elevation with double integration of the acceleration sig-
nal in vertical direction [30, 35, 56, 63, 70, 73] or with a
barometric pressure sensor [44, 69, 71]. Lying was often
detected via the orientation of the trunk, as described
above. Detecting lying and the transitions between sit-
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ting and standing requires only a single sensor on the
trunk such as on the sternum [26, 26, 30, 35, 41, 44, 44, 56,
69-71], the waist [53, 65, 67], or the fifth lumbar vertebra
[73-75]. Other studies used a trunk and a thigh sensor
[33, 68, 70, 72] or just a thigh sensor [66], while the latter
cannot discriminate between lying and sitting positions.

Measures to quantify body positions and transitions The
knee angle during lying, sitting, and standing was esti-
mated with the differential signal of two sensors that
were placed on the thigh and the ipsilateral shank [39].
No other measures were used in the literature to assess
specific characteristics of different postures in daily life.
Standing up, however, was more thoroughly analyzed.
The start and end point of this transition were defined as
the minima before and after peak trunk inclination. These
points reveal the duration and with it a measure to quan-
tify how fast patients are standing up. Five studies used
a sensor on the sternum [40, 63, 64, 68, 71] and three a
sensor on the fifth lumbar vertebra [73-75] to measure
trunk inclination. Moreover, peak trunk inclination [64,
71], peak trunk acceleration [40], the range of acceleration
[40, 64, 74, 75], and gyroscope signals [74, 75], as well as
measures for smoothness [74, 75] were used to quantify
standing up in daily life.

Walking and moving

Activities and outcome measures

The studies included in this review most frequently cov-
ered detecting walking bouts in everyday life of people
with mobility impairments [26-28, 30, 31, 33, 35, 37-58,
60, 61, 63, 68, 70, 72, 77-94], followed by more spe-
cifically detecting turning periods while walking [49, 68,
72,79, 87, 88, 94, 95] and stair climbing [43-47, 50, 51,
54, 55, 59, 60, 83, 84, 87, 88, 96]. Other, less frequently
detected activities were walking sideways [59], walk-
ing while carrying an object [87, 88], walking on sloping
surfaces [47, 87, 88], and running [49, 51]. Several stud-
ies detected and counted steps during walking and stair
climbing periods [26-28, 31, 33, 35, 39, 60, 63, 77, 79, 80,
86, 92, 93]. This in turn enables the estimation of step
frequency and cadence. Walking bouts were further ana-
lyzed in terms of temporo-spatial gait parameters [27, 28,
33, 40, 58, 61, 70, 81, 82, 86, 91, 93], and joint kinemat-
ics (i.e. knee angle) [33, 39]. Turning periods were further
analyzed in terms of duration [68, 72, 79, 87, 88, 94, 95],
turning angle [79, 94, 95], turning speed [79, 94], smooth-
ness [94], mediolateral range of trunk acceleration [94],
and number of steps to complete a turn [79]. Stair climb-
ing was often subclassified in ascending and descending
[43-45, 54, 60, 83, 84, 87, 88, 96], and one study devel-
oped an algorithm that recognized if stairs were climbed
with a step-by-step or a step-over-step pattern [83].
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Description of algorithms and sensor placement

The following chapters describe the concepts of the
underlying algorithm and the used sensor placement to
detect and quantify walking, turning, and stair climbing
activities. Details about the detection of walking side-
ways, walking while carrying an object, walking on slop-
ing surfaces, and running as well as stair climbing with
a step-by-step or step-over-step can be found in Table 5.

Walking bouts and gait parameters

Detection of walking bouts

Two approaches have been used in the studies included
in this review to detect walking bouts of people with
mobility impairments in unsupervised datasets. The first
approach uses the signal magnitude or variance to dis-
criminate walking from static activities such as sitting
and standing. The data is labeled as walking if the signal
exceeds a predefined threshold for a certain duration. For
this purpose, studies used the acceleration signal of the
pelvis [27, 81, 82, 86], thigh [80], shank [68, 72], thigh
and shank [39], or the angular rate of the pelvis [79, 94].
Some studies introduced additional criteria to avoid con-
fusion with other activities. During valid walking bouts,
the orientation of the pelvis [27, 86] or thigh sensor [80]
needs to be vertical or the hip angle, derived from the dif-
ferential signal between the pelvis and the thigh sensors,
needs to be in an extended position [68, 72]. The second
approach more specifically detects steps in the signal, and
a number of consecutive steps are seen as a walking bout.
The initial contact of each step leads to a peak in the sig-
nals and these peaks appear with a certain frequency
that is specific to walking. Thus, peak detection and
optionally verifying if they appear within a predefined
frequency band is a common method to detect steps in
unlabeled data. This method has been implemented with
the acceleration signal of the trunk [28, 30, 35, 44, 56, 63,
70, 78, 92], pelvis [27, 86, 92], thigh [31, 60, 80], ankle [91]
or foot sensor [40], as well as the gyroscope signal of the
shank [26, 33, 41, 70] or foot sensor [79]. Again, to reduce
false-positive rates, peak detection has been combined
with the vertical orientation of the trunk and thigh sen-
sors while walking [40]. Another method to detect steps
is to assess the similarity of the signal to pre-established
templates. The similarity was assessed with dynamic
time warping of the feet’s gyroscope signal [77] and with
cross-correlation of the shank’s acceleration signal [39].
A third method used the fact that the left and right foot
are alternatively active and stationary during walking.
Active and stationary phases were detected with a zero-
velocity algorithm and by fusing the accelerometer and
gyroscope signal of the feet sensors [58]. Some studies
used the first approach to detect walking bouts and the
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second to detect steps within these walking bouts, while
two studies combined both approaches to detect walking
bouts more specifically [53, 93]. The detection of walk-
ing bouts enables to measure the number and duration
of walking activities in everyday life, while the detection
of steps, further, enables to count daily steps as well as
to determine the cadence [26, 28, 31, 78, 92], stride time
[91], and stride time variability [28, 78] of individual
walking bouts. Besides, the cadence was also determined
by frequency analysis of the acceleration signal without
detecting each step individually [92, 93].

Determination of gait parameters

Deriving temporal gait parameters from previously
detected walking bouts, such as the duration of stance,
swing, and double support phase requires a segmentation
of the gait cycle by identifying the initial and final contact
of the feet with the ground. Three different approaches
were used in the literature to identify these gait events
in people with mobility impairments. The first approach
assumes that the lower leg rotates forwards during the
stance phase and backwards during the swing phase.
Zero-crossings of the feet’s gyroscope signal around the
mediolateral axis before and after maximal backward
angular rate (i.e., swing phase) were, therefore, detected
to estimate the timing of the final and initial contacts,
respectively [79]. As an alternative to zero-crossings, the
maxima of forward angular rate were detected to esti-
mate the timing of the gait events. This algorithm was
applied to the gyroscope signal of the feet [40] or the
ankle sensors [33, 70]. The second approach used dis-
tinct features of the pelvis’ acceleration signal in a vertical
direction. It was assumed that the initial contact corre-
sponds to peak deceleration, while the final contact does
to peak acceleration gain [27, 86]. The third approach
determines the start and end points of the stationary
phase (i.e., stance phase) of the feet sensors [58]. Again,
the stationary phase was detected with a zero-velocity
algorithm.

Walking speed was derived directly by estimating the
stride length and divide it by the stride time or indirectly
by identifying a surrogate that correlates with walking
speed. The stride length was determined with biome-
chanical models and kinematic chains to estimate the
distance between the two feet, or with the inverted pen-
dulum model in which the stride length can be derived
from the height change of the center of mass, or with
double integration of the feet’s horizontal acceleration
[40]. The biomechanical models required IMUs on both
thighs and shanks [33, 70] as well as additionally on the
pelvis and the feet [58], while the inverted pendulum
model only needs the vertical acceleration signal of the
pelvis [27, 86]. Several surrogates that are supposed to
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correlate with walking speed were described in the stud-
ies of this review. Namely, the root mean square of the
acceleration signal at the pelvis [93], or of the vertical
velocity of the trunk [28, 78] as well as the stride time
[91]. Moreover, one study recognized comfortable and
brisk walking as two distinct classes, which enables a
dichotomous analysis of slow and fast walking speed [61].
Walking bouts were further analyzed regarding stabil-
ity, foot clearance, and joint kinematics. Gait stability as
a measure for risk of falling was determined with local
dynamic stability [81, 93] and entropy measures [82] of
the pelvis’ acceleration signal. The knee angle was meas-
ured with the differential signal between the thigh and
ankle sensors [33, 39]. And one study estimated the foot
clearance with the position of the foot sensor [58].

Turning Turns during walking bouts were detected
whenever the turning angle or angular velocity around
the vertical axis exceeded a predetermined threshold.
The turning angle was derived from the trunk [68, 72] or
the pelvis sensor [49, 79, 94, 95]. The detection of turns
enables to count the number of turns in daily life. How-
ever, to derive other measures, the start and end point of
these turns need to be detected, too. These time points
were defined when the angular velocity of the pelvis
sank below a predetermined threshold [79, 94], or at the
minima before and after peak turning angular velocity of
the trunk [68, 72], or at the minimum and maximum of
the pelvis’ turning angle [95]. Knowing the start and end
point of turning periods enables to determine its duration
(68, 72,79, 94, 95], turning angle [79, 94, 95], and turning
speed [79, 94] as well as the smoothness [94], mediolateral
range of trunk acceleration [94], and the number of steps
to complete a turn [79].

Stair climbing 'The range of motion at the hip joint is
higher during stair climbing compared to level walking.
This characteristic was used in two studies to recognize
stair climbing activities in daily life. One study used the
orientation of the thigh sensor to discriminate between
stair climbing and level walking [60], while another one
used the variance of the acceleration signal at the hip [47].
A further distinct characteristic of stair climbing is the
change in altitude. Several studies used a barometric pres-
sure sensor to measure the altitude change during loco-
motion and discriminated between going up and down
stairs as well as level walking [44, 45, 84]. Usually, the
shank is rotating forward during the stance phase of walk-
ing trials. However, while ascending a flight of stairs, there
is a period during the stance phase, in which the shank is
rotating backward. One study used this fact to specifically
recognize stair ascending periods with the gyroscope sig-
nal of the shank sensor [96]. And lastly, one article used
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the timing of peak occurrence in the acceleration signal of
the thigh sensor to discriminate between ascending and
descending stairs [60].

Moving around using a wheelchair

Activities and outcome measures

The included articles in this review either specifically
detected active self-propulsion of wheeling activities [97,
98] or discriminated between active self-propulsion and
being pushed passively [17, 29, 32, 62, 99-101]. Stud-
ies that did not distinguish between active and passive
wheeling bouts were not included in this review since
they did not specifically address a motor activity. Active
wheeling was further analyzed in terms of covered dis-
tance [29, 32], speed [17, 29] as well as the number of
strokes and stroke frequency [102]. Moreover, three
studies allocated wheeling bouts either to maneuvering
or covering longer distances [17, 29, 32], five studies dif-
ferentiated between hand use during self-propulsion and
other activities of daily living [29, 62, 99-101], and one
study detected playing basketball [101].

Description of algorithms and sensor placement

Many studies used a statistical machine learning
approach and are already depicted in Table 5. The
remaining concepts of the underlying algorithms and
used sensor placements are described in the following
section.

Wheeling bouts were detected by measuring the rota-
tion of the wheel and setting predefined thresholds. The
rotation of the wheel was measured with a gyroscope [29,
32] or a reed switch [102] on the spokes of the wheel-
chair. The distinction between maneuvering and longer
wheeling bouts was accomplished with two different
approaches. The first approach simply defined wheeling
bouts that are shorter than 5.12 s as maneuvering and the
remaining bouts as longer wheeling bouts [32]. The sec-
ond approach used the acceleration signal of the wheel
sensor and predefined, incremental thresholds to distin-
guish between non-wheeling bouts, maneuvering, as well
as normal speed and high-speed bouts [17]. Two studies
separated active from passive wheeling propulsion when-
ever the acceleration signal of the wrist sensor exceeded a
predefined threshold [17, 97]. Another study specifically
counted the number of strokes within wheeling activi-
ties and, with it, estimated the stroke frequency by means
of peak detection of the acceleration signal of the upper
arm, wrist, or wheelchair sensor [102]. Besides, the speed
and distance of active wheeling bouts were estimated
by measuring the angular velocity and the radius of the
wheel [29, 32].
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Upper extremities

Activities and outcome measures

The measures to quantify hand and arm use in daily life
that were used in the studies of this review were allocated
to one of the following three categories: (1) Non-specific
hand and arm use regardless of the underlying activity,
(2) specific hand and arm movements such as reaching,
and (3) specific hand and arm activities that require a
combination of movements (e.g., eating activity involves
reaching, cutting, and lifting movements). The first cat-
egory includes measures to quantify the amount [30, 40,
46, 47, 89, 103, 104] and diversity [105] of hand and arm
use as well as the range of motion of shoulder [34, 56, 58,
106], elbow [34, 58], and hand movements [107]. The sec-
ond category contains reaching [34, 58, 72, 108—-111], lift-
ing [57, 108-111], and pouring (i.e. pro- and supination)
movements [108—-111], while reaching was further ana-
lyzed in terms of reaching distance [34, 58] and reach-
ing direction [72]. And the activities of the last category
were writing and reading [42], opening a door [87, 88],
hair combing [57, 112], eating [42, 112, 113], and drink-
ing [112] as well as tooth brushing, shirt buttoning, pant
lifting, and food cutting [57].

Description of algorithms and sensor placement

Non-specific hand and arm use Hand and arm use in
daily life is often measured with activity counts that are
derived from the accelerometer signal of the wrist sen-
sors. Applying a sensor on either side enables to estimate
the hand use laterality, which is particularly relevant for
people with unilateral impairments. Studies that based
their outcomes solely on activity counts were not included
in this review since they do not provide innovation to the
state-of-the-art and are already well investigated and
reviewed in the literature [114, 115]. Instead of measur-
ing the amount of hand and arm use, one study included
in this review developed an algorithm do determine the
diversity of hand and arm movements by calculating the
sample entropy of the upper and lower arm accelera-
tion signals [105]. Still, the signals of sensors worn at the
upper extremities are biased by movements of the lower
extremity (e.g., walking leads to large numbers of activity
counts at the wrists even though the arms are not actively
used) and three approaches are described in the literature
to overcome this issue. The first approach stratifies hand
and arm use according to the underlying activity of the
lower extremities (e.g., hand and arm use during sitting,
standing, and walking). This enables the exclusion of pas-
sive arm swing while walking [30, 40, 46, 47]. The second
approach directly discriminates between functional and
non-functional hand and arm use. This distinction was
implemented by training a classifier with machine learn-
ing techniques (see Table 5 for details about sensor type
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and placement) [103, 104] and by limiting the range of
functional hand movement [89]. Here, functional hand
movement was defined whenever the orientation of
the hand was within+30° from the horizontal, and the
range of hand movement in this section exceeded 30° in
a 2 s period. The orientation of the hand was determined
with an IMU on the wrist. And lastly, the third approach
estimated the movement of specific joints of the upper
extremities. Shoulder movement was determined by cal-
culating the angle between the trunk and the upper arm
sensor [34, 58], by estimating the arm elevation with the
orientation of the upper arm sensor [56], and by assessing
the spatial distribution of the elbow position with a kin-
ematic model and the orientation of the upper arm sensor
[106]. Likewise, the elbow movement was determined by
calculating the angle between the upper and lower arm
sensors [34, 58], while the wrist and finger movements
were detected with an IMU (incl. magnetometer) on the
wrist and a magnet on the index finger [107].

Specific hand and arm movements A more sophisticated
approach to discriminate between functional and non-
functional hand and arm use is to detect particular move-
ment primitives such as reaching an object. One research
group developed an algorithm that distinguishes between
reaching, lifting, and pouring movements while mak-
ing a cup of tea by using a single wrist sensor [108—111].
Another study specifically detected lifting food towards
the mouth [57], and three studies detected reaching
movements [34, 58, 72]. These studies used a whole-body
IMU system with up to 17 sensors, which raises ques-
tions about its applicability for long-term measurements
in daily life. Reaching movements were further analyzed
by measuring its range and direction with the difference
between the hand and trunk positions [34, 58] and by
classifying the movement into upwards, mid, and down-
wards reaching directions [72].

Specific hand and arm activities All but one study and
most of the activities of this category were detected with
a statistical machine learning approach. The details about
sensor placement are presented in Table 5. One study used
a pattern recognition approach with template matching to
discriminate between hair combing, eating, and drinking
[112]. The templates were based on the signals of seven
IMUs (incl. magnetometer), and they were placed on the
trunk as well as on the upper arm, forearm, and hand of
each side.

Discussion

This systematic review focused on the application of
inertial sensor technologies to quantify everyday life
motor activity in people with mobility impairments and
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provides an overview of existing outcome measures. It,
further, describes the concepts of the underlying data
processing algorithms as well as the types and place-
ments of required sensors to derive these measures and,
eventually, lists the designs and populations of all studies
that evaluated the measures in terms of validity, repro-
ducibility, and usability.

The included studies of this review covered a large vari-
ety of outcome measures and underlying data processing
algorithms which can be grouped into four categories: (1)
maintaining and changing a body position, (2) walking
and moving, (3) moving around using a wheelchair, and
(4) activities that involve the upper extremity. The validity
or reproducibility of these outcomes measures was inves-
tigated in fourteen different patient populations, of which
the majority comprised stroke survivors, patients with
Parkinson’s disease, and patients with spinal cord injury.
Most of the studies evaluated the algorithm’s accuracy to
detect certain activities in unlabeled raw data, while oth-
ers evaluated the outcome measures in terms of concur-
rent validity, discriminant validity, or reproducibility or
applied them in an interventional or observational study.
The type and placement of required sensor technologies
depends on the activity and outcome measure and are
thoroughly described in this review. The reproducibility
of the outcome measures and the usability of the applied
sensor setups were rarely reported.

This review is limited to applications of wearable iner-
tial sensors that were optionally combined with other
sensor technology. However, among the included articles,
there were two measurement tools that have the poten-
tial to monitor everyday life motor activities without
combining it with inertial sensors: insoles with force-sen-
sitive sensors [18—23] and first-person cameras [24, 25].
Even though instrumented insoles are reliable gait phase
detectors [20], their applicability for long-term measure-
ments in daily life is limited since the user might change
or take off the footwear during the measurement period,
which in turn would lead to biased outcome measures.
First-person cameras might be superior to inertial sen-
sors from a technological perspective since they also pro-
vide information about the user’s environment and social
interactions [116]. However, the application of wearable
cameras in daily life also raises ethical questions, and
it remains to be seen whether this technology will be
accepted by the end-users and the community. Other
technologies, such as external cameras, pressure-sensi-
tive walkways, or instrumented furniture, could be used
to quantify motor activities in daily life. Even though
these technologies would allow for an in-depth analy-
sis of motor activities, they are all limited to a specific
area and, therefore, not feasible to monitor the patients’
activities throughout the day. Consequently, we are still
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convinced that wearable inertial sensors are the preferred
measurement tool to monitor everyday life motor activi-
ties in patients with mobility impairments. Amongst
wearable sensors, accelerometers were the preferred
technology in the articles of this review. Compared to
gyroscopes, accelerometers do have a considerably lower
power consumption [117] and are not susceptible to drift
[12], which might explain their preference for unobtru-
sive long-term measurements in daily life.

The search strategy and eligibility criteria of this review
were designed to get an overview of all reproducibly
described algorithms that process unlabeled raw data
of everyday life measurements into clinically meaning-
ful outcome measures. Despite this systematic search,
there are three reasons why the algorithms and outcome
measures of this review are incomplete. First, proprie-
tary algorithms of commercial devices and insufficiently
described algorithms were not considered in this review,
even though they might determine clinically meaning-
ful outcome measures. Transparency of scientific meth-
ods (including the data processing algorithm) enables
other researchers to interpret the results, to validate
the method, and to replicate the study, which is essen-
tial to the development and evolution of science [118].
We, therefore, encourage the scientific community to
use open-source algorithms or at least describe the used
algorithm reproducibly. Second, only algorithms that are
applicable to unlabeled raw data were included in this
review, and, especially in the field of gait analysis, there
are many algorithms available that determine a clinically
meaningful outcome measure out of labeled walking tri-
als [119]. These algorithms could be combined with an
activity/walking detection algorithm and, thus, extend
the variety of outcome measures to quantify everyday
life motor activities. And third, algorithms that were
evaluated in healthy subjects were not considered in this
review, but might as well provide clinically meaningful
outcome measures. However, whether these algorithms
also work correctly in patients with mobility impair-
ments, has to be shown in future research.

Neither a quality assessment of the included studies
nor a meta-analysis regarding the accuracy or reproduc-
ibility of the described algorithms and outcome measures
were conducted in this review. Although we acknowl-
edge the benefit of these analyses, they are not feasible
for the current review due to missing standards to assess
the quality of activity classification studies and due to the
large heterogeneity of the methods and data reporting of
the studies. For example, we included two studies that
evaluated an algorithm to detect walking and stair climb-
ing in stroke survivors [46, 84]. Even though these stud-
ies had a similar study population and study design, their
algorithms’ performance is still not comparable since
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their algorithms detected three and six activities, respec-
tively, and the authors chose different metrics to report
their results. One study reported sensitivity and specific-
ity, while the other study reported F-scores. This exam-
ple demonstrates the difficulty of determining which
algorithms are superior, and the comparability between
studies is even more complicated when the study popu-
lation and study designs differ. We, therefore, encourage
the scientific community to develop a standard to con-
duct such studies and to report the results consistently.
We suggest that the study protocol either contains obser-
vations of the patients’ daily motor activities in their
habitual environment or an activity circuit that resembles
everyday life and comprises activities not classified by
the algorithm. We further recommend that the confu-
sion matrix is reported, which allows determining a large
variety of statistical measures to quantify the algorithm’s
performance. Moreover, we would like to point out the
difference between measurement error and activity clas-
sification accuracy. Detecting sitting position with an
accuracy of 90%, for example, does not necessarily mean
that the error of estimating the sitting duration of a 24-h
measurement is 10%. In fact, a balanced occurrence of
false positive and false negative detections would lead to
a much smaller error. Although the measurement error is
essential for future applications of the algorithm to daily
life data, it is rarely reported in the literature. Therefore,
we recommend future studies to determine the meas-
urement error of their outcome measures instead of just
reporting the activity classification accuracy.

The usability of wearable inertial sensors was hardly
ever assessed or at least not reported in the studies of this
review article. This finding is somewhat surprising since
the end user’s compliance and acceptance to wear the
sensors throughout the measurement period is crucial
to get comprehensive and unbiased data of the end user’s
motor activities in daily life. We believe that the usability
of the sensor system depends predominantly on the num-
ber and size of sensors, on the location of sensor place-
ment, and on how the sensors are attached to the body.
Moreover, low usability of the sensor system might also
interfere with the end-user’s behavior in daily life. How-
ever, this has yet to be shown, and we, therefore, recom-
mend that future studies consequently report the wearing
time and the obtrusiveness of their sensor system.

Conclusions

This systematic review provides a comprehensive
overview of applications of wearable inertial sen-
sors to quantify everyday life motor activity in people
with mobility impairments. It lists activities and out-
come measures that have been covered in the litera-
ture and describes the concepts of the underlying data
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processing algorithms as well as the required sensor
technologies. It, further, tabulates the study popula-
tions and the study designs of the included articles.
This review, therefore, summarizes the state-of-the-art
of existing sensor applications, it provides quick access
to the relevant literature to the reader that is interested
in quantifying certain activities in a specific patient
population, and it enables the identification of gaps for
the evaluation of existing and the development of new
algorithms.

The studies of this review had a large methodological
heterogeneity and reported their results inconsistently.
This made it impossible to quantify and compare the
validity, reproducibility, and usability of different sen-
sor technologies, its underlying algorithms, and their
outcome measures. Thus, this review neither provides
recommendations about the favored type and place-
ment of sensor technologies, nor a synthesis about the
performance of different algorithms. Therefore, we rec-
ommend that future studies follow a standardized pro-
tocol and use consistent metrics to report their results.

In the literature, wearable inertial sensors are the pre-
ferred technology to monitor everyday life motor activ-
ities in patients with mobility impairments. We further
expect the use of this technology to evolve substantially
as more and more valid algorithms become available for
patient populations that can capture different facets of
everyday life, as can be seen in the healthy population.
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