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Abstract 

Background:  Identification of individual gait events is essential for clinical gait analysis, because it can be used for 
diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson’s disease. Previous 
research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), how-
ever detection performance was often evaluated only from straight-line walking. For use in daily life, the detection 
performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions.

Methods:  Participants (older adults, people with Parkinson’s disease, or people who had suffered from a stroke) 
performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An opti-
cal motion capture system was used a reference system. Markers were attached to the heel and toe regions of the 
shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used 
to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values 
obtained from the marker trajectories.

Results:  The detection method showed high recall, precision and F1 scores in different populations for both initial 
contacts and final contacts during straight-line walking (IC: recall = 100%, precision = 100%, F1 score = 100%; FC: 
recall = 100%, precision = 100%, F1 score = 100%), slalom walking (IC: recall = 100%, precision ≥ 99%, F1 score =
100%; FC: recall = 100%, precision ≥ 99%, F1 score =100%), and turning (IC: recall ≥ 85%, precision ≥ 95%, F1 score ≥
91%; FC: recall ≥ 84%, precision ≥ 95%, F1 score ≥89%).

Conclusions:  Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking 
and turning. However, more false events were observed during turning and more events were missed during turning. 
For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait 
events.
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Background
Gait is recognized as a surrogate marker of health, and 
provides essential clinical insights in neurological disease 
status [1, 2]. Traditionally, gait has been assessed by visual 
observation, which suffers from subjectivity and impre-
cision [3]. To overcome these limitations, multi-camera 
optical motion capture (OMC) systems can be used, but 
these systems are relatively expensive and restricted to 

Open Access

*Correspondence:  robr@tf.uni‑kiel.de
2 Neurogeriatrics, Department of Neurology, University Hospital 
Schleswig-Holstein, Arnold‑Heller‑Straße 3, Haus D, 24105 Kiel, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2507-0924
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-021-00828-0&domain=pdf


Page 2 of 10Romijnders et al. J NeuroEngineering Rehabil           (2021) 18:28 

expertise laboratories [4]. Furthermore, there is increas-
ing evidence that the gait pattern observed in clinical gait 
assessments does not reflect daily-life gait [5, 6]. Hence, 
to get a more complete picture of health status, there is 
an increasing demand for methods that allow for long-
term gait monitoring in ambulatory settings. Inertial 
measurement units (IMUs) provide a promising alterna-
tive to assess gait in an objective, unobtrusive and uncon-
strained manner [4, 7].

The term “gait” refers to “the way of walking” [8, 9] 
and human gait is commonly segmented into repetitive 
gait cycles. A normal gait cycle begins and ends with ini-
tial contact (IC), the instance when the foot strikes the 
ground [10]. The time interval between two consecutive 
ICs of the same foot is referred to as the gait cycle time 
or stride time. The time interval between two successive 
ICs of the opposite feet is called the step time. If, addi-
tionally, the event of final foot contact (FC) is considered, 
then all phases in the gait cycle can be described: swing 
and stance phase, or single and double support phase [1, 
10]. Identification of gait events (GEs) and phases is con-
sidered essential for clinical gait assessment [8]. GEs can 
be detected from a single low back-mounted IMU [11–
16], however findings suggest that detecting GEs is easier 
from shank- or foot-mounted IMUs [17–19] where foot-
mounted IMUs increase errors, especially in pathological 
gait patterns [19, 20].

The performance of IMU-based GE detection is, how-
ever, often tested only with treadmill walking [12, 14] or 
from walking trials where only the straight-line segments 
of walking trajectories were included in the analysis [13, 
17, 21]. For more complex walking tasks, such as slalom 
walking or dual-task walking, one often relies on visually 
counting of the number of steps, which does not allow 
to assess the time error of the GE detection and is more 
prone to errors. Whether IMU-based GE detection is still 
valid in more complex walking tasks is yet to be shown. 
Daily-life gait is likely influenced by obstacle negotiation 
(approximately 30% of daily-life gait is spent along curved 
trajectories [22, 23]) and dual-/multi-tasking [5].

The aim of this study is therefore to quantify the per-
formance of IC and FC detection in straight-line walking 

under single-task and dual-task conditions, and to quan-
tify detection performance in curved walking and turn-
ing in (healthy) older adults (OA), people diagnosed with 
Parkinson’s disease (PD), and people who have suffered 
from a stroke (ST).

Methods
A step was considered as the interval between consecu-
tive ICs of the ipsi- and contralateral foot [10], and cor-
responding to forward displacement of the foot together 
with a forward displacement of the trunk [24]. A stride 
was the interval between two consecutive ICs of the same 
foot, and as such it was equivalent to the gait cycle and 
every stride consisted of two steps [8, 10].

Study population
Three different groups were distinguished: (1) OAs with 
no signs of any movement disorders, (2) PD participants 
in the medication ON state, and (3) ST participants 
(Table  1). For the OAs the minimum age was 60 years. 
All participants needed to be able to walk independently 
with or without walking aids. Exclusion criteria were a 
high fall risk (i.e. > 2 falls in the last month, as reported 
by the participant), any impairment that refrained the 
participant from giving consent to participate in the 
study, and a score below 20 for the Montreal Cognitive 
Assessment (MoCA) [25]. All participants gave written 
informed consent and the study was approved by the eth-
ical committee of the medical faculty at University Hos-
pital Schleswig-Holstein (UKSH), No: D438/18.

Study protocol
Participants walked a 5-meter distance that was marked 
at the start and end with two cones, approximately 1 
meter apart (Fig.  1). Participants were asked to start 
walking approximately two steps before the start, and 
to stop walking approximately two steps after the end. 
For the analysis of GE detection, we only considered the 
events that were registered within the 5-meter distance.

The following walking trials were performed:

•	 straight-line trial, 5 meter, at preferred speed,

Table 1  Demographic data of the study participants summarized by group

1 Unified Parkinson’s Disease Rating Scale, part III: Motor Examination, 2 for PD: the time since first diagnosis, for ST: the time since stroke

Group Participants (female) Age (years) Height (m) Mass (kg) UPDRS-III1 Disease 
duration

2 
(years)

OA 11 (2) 71±9 1.76±0.07 78.5±13.5 4±3

PD 14 (5) 64±10 1.78±0.08 91.3±14.7 29±21 9±5

ST 9 (2) 68±10 1.75±0.08 81.3±18.0 6±9 2±4
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•	 slalom trial, 5 meter with a cone at every 1 meter, at 
preferred speed,

•	 Stroop-and-walk trial, walking up and down the 
5-meter distance, while performing a numerical 
Stroop test [26] on a hand-held mobile phone until 
completion of the Stroop test, at preferred speed. 
For the numerical Stroop test, two numbers were 
displayed on the mobile screen that were different 
in value and different in semantic size. The par-
ticipant needed to tap the number with the highest 
value. No further instructions as to prioritize any 
task were given.

For the Stroop-and-walk trial, participants started 
within the 5-meter distance, and walked up and down 
whilst turning on either end of the 5-meter distance 
(see Fig. 1 for an example trajectory). Turns were anno-
tated manually using the Qualisys Track Manager 
2018.1 software (QTM; Qualisys AB, Göteborg, Swe-
den), and GEs during turns were analyzed separately.

Optical motion capture system
Equipment
Reflective markers (diameter: 19 mm) were attached 
to the heel and toe of both left and right shoes (Fig. 1). 
Marker trajectories were recorded by a 12-camera optical 
motion capture system (Qualysis AB, Götebörg, Sweden) 
sampling at 200 Hz.

Signal processing
GEs were detected from the heel marker trajectories, and 
provided reference values for the GE timings of ICs and 
FCs. Event timings were based on specific signal features 
from the heel marker vertical velocity and acceleration, 
respectively. Raw marker data were loaded into MAT-
LAB (MATLAB 2018b, The Mathworks, Natwick, USA). 
The raw marker data were first interpolated to fill any 
gaps [27] and subsequently low-pass filtered with a 4th 
order Butterworth filter with a cut-off frequency, fcut , of 
5 Hz. The filter was applied to the marker data by using 
MATLAB’s built-in filtfilt function, such that the filtered 
signal was not delayed.

a b
Fig. 1  Schematic illustration of the setup. a Participants were equipped with inertial measurement units (IMUs) attached to the lateral sides of the 
shanks and reflective markers that were attached to the heel and toe region of the shoes. b Three different walking trials were performed: (top) 
straight-line walking trial, (middle) slalom walking trial, and (bottom) Stroop dual-task walking trial. Straight-line walking and slalom walking were 
performed only under single-task conditions (indicated by the shoe icon), whereas the Stroop task was as a cognitive-motor dual-task (indicated by 
the shoe and mobile phone icons). For the Stroop-and-walk trial, we distinguish between steps during straight-line segments (within the dashed 
vertical lines) and steps during turns (outside of the dashed vertical lines)
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The timings of ICs correlated with timings of local max-
ima in the vertical acceleration [28], whereas the timings 
of FCs closely correlated with timings of local maxima in 
the heel marker vertical velocity [29]. Like in [30], GEs were 
checked manually using QTM.

Inertial measurement units
Equipment
One IMU (Noraxon U.S.A. Inc., Scottsdale, Arizona, USA) 
was attached to each shank with elastic straps. The sam-
pling frequency was also set to 200 Hz and the OMC and 
IMUs were synchronized using a trigger at the beginning of 
each measurement [31].

Signal processing
Sensor data were loaded into MATLAB. IMUs were 
aligned such that the sensitive axes pointed roughly in 
antero-posterior direction (forward being positive), medio-
lateral direction (left being positive), and the vertical direc-
tion (up being positive). Angular velocity was high-pass 
filtered using an IIR filter with fcut ≈ 0.15 Hz to reduce 
the effect of drift [17], and then low-pass filtered using a 
4th order Butterworth filter with fcut = 10 Hz. Both filters 
were applied using the filtfilt function.

Detection of GEs using shank-mounted IMUs was based 
on identifying negative peaks in the medio-lateral angular 
velocity that was high- and low-pass filtered. These nega-
tive peaks closely correlated to timings of mid-swing [17, 
18, 32]. Only negative peaks with a value ≤ 10% of the 
global minimum angular velocity were considered. Fur-
thermore, if two or more consecutive peaks were detected 
within a time interval of 300 ms of each other, then only the 
peak with the lowest value was preserved [21, 33].

Data from the two legs were analyzed independently of 
one another to facilitate a setup with an IMU on a single 
side.

Data analysis
Two GEs, IC and FC, were extracted using the reference 
system as well as the shank-mounted IMUs. For both 
events we evaluated the detection performance in terms 
of correctly identified events (true positives, TP), falsely 
identified events (false positives, FP) and missed events 
(false negatives, FN). TPs were defined as < 300 ms differ-
ence (in terms of magnitude) between an event detected 
by the IMU-based algorithm and the reference event [12]. 
From these metrics the recall, precision and F1 score were 
derived:

(1)Recall = R =
TP

TP + FN

Recall expressed how many of the gait events were 
detected and precision expressed how many of the 
detected gait events were true gait events. The F1 score 
can be considered as a weighted average of the recall and 
precision. Furthermore, algorithm performance was eval-
uated by assessing the time error between the reference 
event (from the marker-based algorithm) and the pre-
dicted event [34, 35], defined as:

where tIC and tFC denoted the time of the predicted IC 
and FC from the IMU-based algorithm, and t ′

IC
 and t ′

FC
 

denoted the reference time of the IC and FC obtained 
from the OMC.

The effect of dual-task conditions was investigated by 
comparing GE detection from the straight-line trial to 
the GE detection from the straight-line segment of the 
Stroop-and-walk trial (Fig. 1). The effect of curved walk-
ing was investigated by comparing GE detection from the 
straight-line walking to slalom walking and turns from 
the Stroop-and-walk trial.

Statistical analysis
Detection of gait events
The algorithm performance in detection of GEs was eval-
uated by generating contingency tables and comparing 
the recall, precision and F1 scores.

Time agreement
Time agreement was assessed by determining the mean 
time error, corresponding 95% confidence intervals and 
the mean absolute error (MAE). Confidence intervals 
(CIs) were computed as x̄ ± 1.96s with x̄ the mean time 
error, and s the standard deviation of the time errors.

Comparison of time errors between tasks for each group. 
A Wilcoxon signed-rank test [36] was used to compare 
each subject’s mean values of the absolute errors for the 
single-task versus the dual-task conditions, and similarly 
for the straight-line walking, slalom walking, and turns 
[18]. Differences were considered statistically significant 
if the p-value was less than 0.05.

Comparison of time errors between groups for each 
task. A Wilcoxon rank sum test was used to compare the 
subject mean values of the absolute errors from the OA 

(2)Precision = P =
TP

TP + FP

(3)F1 score = F1 = 2
P · R

P + R

(4)ǫIC = tIC − t ′IC

(5)ǫFC = tFC − t ′FC
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group and those obtained for the PD and ST group [18]. 
Differences were considered statistically significant if the 
p-value was less than 0.05.

Results
Detection of gait events
Effect of dual‑tasking
IMU-based GE detection showed high recall (IC: ≥ 97% , 
FC: ≥ 96% ), high precision (IC: ≥ 100% , IC: ≥ 100% ) and 
high F1 score (IC: ≥ 99% , FC: ≥ 98% ) for the three dif-
ferent groups in both single-task and dual-task condi-
tions for GEs during straight walking (Table  2). All ICs 
and FCs were detected for the single-task trials. In the 
straight walking segments from the Stroop-and-walk tri-
als a number of false events (1 IC, 5 FC) and a number of 
missed events (18 IC, 28 FC) were observed.

Effect of curved walking and turns
IMU-based GE detection showed high recall (IC: 100% , 
FC: 100% ), high precision (IC: ≥ 99% , FC: ≥ 99% ) and 
high F1 score (IC: 100% , FC: 100% ) for the three differ-
ent groups for the straight-line walking and slalom walk-
ing (Table  3). One IC and one FC were falsely detected 
for a single PD patient in the slalom walking trial, where 
the patient swung its foot forward and backward with-
out taking a step (that is, there was a swing phase but 
the patient did not move forward but rather put its foot 
down on the same spot). For ICs and FCs during turns, 
for the three groups, recall was lower than for the straigt-
line and slalom walking (IC: ≥ 85% , FC: ≥ 84% ), and 
likewise for the precision (IC: ≥ 95% , FC: ≥ 95% ) and F1 
score (IC: ≥ 91% , FC: ≥ 89% ). More events were missed 
by the IMU-based gait event detection (137 ICs, 136 FCs) 
and more false events were detected (44 ICs, 42 FCs).

Table 2  Validation results of gait event detection for the straight-line segments of the single-task trial and the Stroop-
and-walk trial

Initial contacts Final contacts

n TP FN FP R P F1 TP FN FP R P F1

(%) (%) (%) (%) (%) (%)

Straight-line trial
OA 11 83 0 0 100 100 100 83 0 0 100 100 100

PD 14 131 0 0 100 100 100 133 0 0 100 100 100

ST 9 78 0 0 100 100 100 81 0 0 100 100 100

Stroop-and-walk trial (straight-line segments)
OA 11 501 5 0 99 100 100 497 8 1 98 100 99

PD 11 587 1 1 100 100 100 589 2 2 100 100 100

ST 9 457 12 0 97 100 99 451 18 2 96 100 98

Table 3  Validation results of gait event detection during straight-line walking, curved walking, and turns

Initial contacts Final contacts

n TP FN FP R P F1 TP FN FP R P F1

(%) (%) (%) (%) (%) (%)

Straight-line trial
OA 11 83 0 0 100 100 100 83 0 0 100 100 100

PD 14 131 0 0 100 100 100 133 0 0 100 100 100

ST 9 78 0 0 100 100 100 81 0 0 100 100 100

Slalom trial
OA 11 103 0 0 100 100 100 96 0 0 100 100 100

PD 14 181 0 1 100 99 100 190 0 1 100 99 100

ST 9 124 0 0 100 100 100 126 0 0 100 100 100

Stroop-and-walk trial (turns)
OA 11 297 51 11 85 97 91 296 55 15 84 95 89

PD 11 312 45 18 87 95 91 315 42 14 88 96 92

ST 9 281 41 15 87 95 91 282 39 13 88 96 92
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Time agreement
Effect of walking task on gait event detection
Effect of dual-task walking. Table 4 shows the mean time 
errors, mean absolute error (MAE) and the 95% CI for 
the GEs during straight-line walking, either from the 
straight-line trial (single-task) or the Stroop-and-walk 
trial (dual-task). A Wilcoxon signed-rank test showed 
that there are no significant differences between the 

single-task and dual-task conditions, except for the ST 
group (Fig. 2). In the ST group we found that the MAE is 
significantly higher in dual-task conditions compared to 
single-task conditions (p=0.039, W=5.0).

Effect of curved walking and turns. Table  5 shows the 
mean time errors, MAE and 95% CI for GE detection 
during straight-line walking, slalom walking and during 
turns. A Wilcoxon signed-rank test showed that for all 

Table 4  Values for the time errors of the gait events

1 sd: standard deviation

Time error (ms)

Initial contacts Final contacts

Mean± sd1   MAE 95% CI Mean± sd1 MAE 95% CI

OA Straight-line 14 ± 36 32 [− 57,85] − 25±33 31 [− 90,39]

OA Stroop-and-walk 21 ± 33 32 [− 44,86] − 21±38 33 [− 96,54]

PD Straight-line 26 ± 29 33 [− 30,83] − 25±45 40 [− 113,63]

PD Stroop-and-walk 11 ± 40 33 [− 67,89] − 43±49 51 [− 139,52]

ST Straight-line 17 ± 36 31 [− 54,87] − 6±33 29 [− 71,59]

ST Stroop-and-walk 31 ± 43 41 [− 53,116] − 4±38 32 [− 79,71]

single-task

dual-task
*

a b

Fig. 2  Mean absolute errors. Boxplots showing the mean absolute errors for the a initial contacts and b final contacts detection for the gait events 
during straight-line walking under single-task (red) or dual-task (blue) conditions. *: p < 0.05

Table 5  Values for the time errors of the gait events

Time error (ms)

Initial contacts Final contacts

Mean ± sd MAE 95% CI Mean ± sd MAE 95% CI

OA Straight-line 14 ± 36 32 [− 57,85] − 25 ± 33 31 [− 90,39]

OA Slalom 18 ± 32 30 [− 45,81] − 2 ± 31 25 [− 63,59]

OA Stroop-and-walk (turns) 11 ± 57 40 [− 101,123] − 33 ± 77 58 [− 183,117]

PD Straight-line 26 ± 29 33 [− 30,83] − 25 ± 45 40 [− 113,63]

PD Slalom 20 ± 33 30 [− 44,83] − 15 ± 45 35 [− 103,72]

PD Stroop-and-walk (turns) − 11 ± 81 56 [− 170,148] − 45 ± 75 68 [− 192,103]

ST Straight-line 17 ± 36 31 [− 54,87] − 6 ± 33 29 [− 71,59]

ST Slalom 19 ± 36 31 [− 53,90] − 4 ± 34 28 [− 72,63]

ST Stroop-and-walk (turns) 12 ± 62 47 [− 110,133] − 7 ± 77 54 [− 158,144]
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groups there are no significant differences between the 
straight-line walking and the slalom walking, for both ICs 
and FCs. It is also shown that in IC detection significant 
differences exist for the MAE of the straigt-line walking 
and turns, and the slalom walking and turn, for both the 
PD and ST group (Fig. 3). For the FC detection, signifi-
cant differences were observed for the MAEs between 
straight-line walking and turns, and slalom walking and 
turns, for all groups.

Effect of group on gait event detection
A Wilcoxon rank-sum test showed that no significant dif-
ferences were observed between groups for all walking 
tasks, except for slalom walking, where in FC detection 
the MAE is significantly larger in the PD group compared 
to the OA group (p = 0.039, W= −  2.608).

Discussion
In this study, shank-mounted IMU-based detection of 
gait events was tested for different walking tasks and in 
different mobility-limiting chronic diseases. The detec-
tion performance was evaluated for GEs from steps 
during straight-line walking under both single-task and 
dual-task conditions. Furthermore, the detection perfor-
mance was evaluated for GEs from steps during straight-
line walking, curved walking and turns. Three different 
groups of participants were distinguished (OA, PD, ST; 
Table 1) to evaluate whether the detection performance 
is affected by presence or history of neurological disease.

The high (i.e., almost perfect) recall, precision and F1 
score (Table  2) imply that IMU-based detection of ICs 
and FCs is feasible in both single-task and dual-task 
straight-line walking for participants with physiologi-
cal and different pathological walking patterns. Simi-
larly, the high (i.e., again almost perfect) recall, precision 
and F1 score (Table 3) imply that IMU-based gait event 
detection is feasible in curved walking by assessing the 
detection performance in slalom walking. Again, results 
hold for participants across different walking conditions. 

The performance of detecting gait events during turning 
shows lower recall, precision and F1 score which suggests 
that shank-mounted IMUs are less feasible to detect GEs 
during turning. It should be noted that this holds only 
for how currently the signals were processed. If the verti-
cal acceleration signal would also have been used, like in 
[37] for lower limb amputees, then GE detection would 
likely have been less dependent on the (forward) swing-
ing motion of the leg.

Concerning the differences between IMU-based event 
timings and reference event timings, results were in a 
range similar to previous studies [30, 35]. There are many 
possible contributors to the time difference, and possi-
bly a combination of these will be in play. First, and most 
importantly, two different systems were used and dis-
tinct signal characteristics were used to identify the same 
event. For the reference system, local extrema in the 
marker velocity and acceleration marked the instances 
of the event. [28, 29] For the IMUs, local extrema in the 
angular velocity about the medio-lateral axis marked 
the instances of gait events. [17, 18, 32] More recent 
research found that there was no clear feature from the 
angular velocity signal related to FC, at least when walk-
ing on a treadmill. [38] Next, the filtering of the angular 
velocity signal may contribute to the time error, as with 
a lower cut-off frequency less signal details were pre-
served which affects the presence of local extrema. [39] 
Potentially, there is also a minor contribution to the time 
error from the hardware-triggered synchronization [31], 
as mentioned before ( [30, 40, 41]). Most importantly, for 
all groups and walking tasks, the 95% CI of the estimated 
event timing encompassed 0 s and therefore the current 
methods are considered valid for detection of gait events 
[17, 18, 32]. The 95% CI is largest for the time errors of IC 
and FC during turns.

It was found that the absolute time error is not signifi-
cantly different when comparing detection of GEs for sin-
gle-task conditions to dual-task conditions, except for the 
detection of ICs for the ST group. This may be explained 

*
a b straight

slalom

turns

* *
**

* * *
* * *

*

Fig. 3  Mean absolute errors. Boxplots showing the mean absolute errors for the a initial contacts and b final contacts detection for the gait events 
during straight-line walking (red), slalom walking (green) and during turns (blue). *: p < 0.05
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by the altered gait pattern that can be observed in some 
post-stroke patients, especially while executing a cogni-
tive-motor dual-task [42, 43]. The mean absolute time 
error was found significantly higher for IC and FC detec-
tion during turns compared to both straight-line and sla-
lom walking for the PD and ST group. Together with the 
lower recall, precision, F1 score and the larger 95% CI 
this implies that a shank-mounted IMU is less feasible for 
detecting GEs during turning. What are the most proba-
ble reasons for this observation? In straight-line walking, 
the leg is swung forward reaching a peak angular velocity 
at approximately mid-swing [17, 18, 32]. The local max-
ima right before and after the peak are then correlated to 
the instances of FC and IC [17, 18, 32]. However, for steps 
during turning, this swinging motion may not always be 
observed, depending on which turning strategy is used 
[44] which may explain the higher number of FN and 
FP events during turns, compared to straight-line and, 
especially, slalom walking. The study has in our opinion 
a particular clinical relevance, considering that increas-
ingly home-derived data will be used for patient manage-
ment [6] and assessment in clinical trials [45, 46]. IMUs 
are ideally suited for this performance-based assessment. 
Our study suggests that the temporal components nec-
essary for the qualitative assessment of gait (IC and FC) 
can be detected very reliably during straight and slalom 
walking (e.g. go for a stroll or shopping, commuting to 
work), but gait phases with rotations of e.g. 180◦ and 
possibly interrupted forward movement can be detected 
less reliably. This implies that turns should definitely be 
included in unsupervised IMU-based gait detection. Of 
course, this statement only applies to the sensor constel-
lation as used in this study, and not, for example, to data 
from IMUs positioned at the low back. Although meth-
ods derived from low back- or foot-mounted IMUs [12, 
13, 20, 47] may be less susceptible to turns, literature sug-
gested that GE detection is easier and more robust from 
shank-mounted IMUs. [17–19]

Furthermore, to continue improving the current 
methods, and to be less dependent on the forward 
swinging motion of the leg, future research may also 
include vertical acceleration signals [13, 37] or include 
information from both the time and frequency domain 
[34, 48].

One of the limitations of this study is the relatively 
short walking distance. However, the focus of our 
research was on detecting GEs regardless of the walk-
ing distance. Another limitation is that the results are 
from a supervised assessment in a controlled environ-
ment, which is not representative of daily-life condi-
tions [5, 6].

Conclusion
Shank-mounted IMUs can be used to detect gait events 
from steps during straight-line and curved walking, 
under both single-task and dual-task conditions, in dif-
ferent neurological populations. Gait events from steps 
during turns can be detected but result in more missed 
events and more false events. In case spatio-temporal 
parameters are subsequently derived, the higher number 
of missed and false events will have a negative effect on 
these parameters. If turns are not automatically identi-
fied, the spatio-temporal parameters from ambulatory 
assessment should be interpreted with care.
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