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Abstract 

Background:  Current commercial prosthetic hand controllers limit patients’ ability to fully engage high Degree-of-
Freedom (DoF) prosthetic hands. Available feedforward controllers rely on large training data sets for controller setup 
and a need for recalibration upon prosthesis donning. Recently, an intuitive, proportional, simultaneous, regression-
based 3-DoF controller remained stable for several months without retraining by combining chronically implanted 
electromyography (ciEMG) electrodes with a K-Nearest-Neighbor (KNN) mapping technique. The training dataset 
requirements for simultaneous KNN controllers increase exponentially with DoF, limiting the realistic development of 
KNN controllers in more than three DoF. We hypothesize that a controller combining linear interpolation, the muscle 
synergy framework, and a sufficient number of ciEMG channels (at least two per DoF), can allow stable, high-DoF 
control.

Methods:  Two trans-radial amputee subjects, S6 and S8, were implanted with percutaneously interfaced bipolar 
intramuscular electrodes. At the time of the study, S6 and S8 had 6 and 8 bipolar EMG electrodes, respectively. A 
Virtual Reality (VR) system guided users through single and paired training movements in one 3-DoF and four differ-
ent 4-DoF cases. A linear model of user activity was built by partitioning EMG feature space into regions bounded by 
vectors of steady state movement EMG patterns. The controller evaluated online EMG signals by linearly interpolating 
the movement class labels for surrounding trained EMG movements. This yields a simultaneous, continuous, intuitive, 
and proportional controller. Controllers were evaluated in 3-DoF and 4-DoF through a target-matching task in which 
subjects controlled a virtual hand to match 80 targets spanning the available movement space. Match Percentage, 
Time-To-Target, and Path Efficiency were evaluated over a 10-month period based on subject availability.

Results and conclusions:  In 3-DoF, S6 and S8 matched most targets and demonstrated stable control after 8 and 
10 months, respectively. In 4-DoF, both subjects initially found two of four 4-DoF controllers usable, matching most 
targets. S8 4-DoF controllers were stable, and showed improving trends over 7–9 months without retraining or at-
home practice. S6 4-DoF controllers were unstable after 7 months without retraining. These results indicate that the 
performance of the controller proposed in this study may remain stable, or even improve, provided initial viability and 
a sufficient number of EMG channels. Overall, this study demonstrates a controller capable of stable, simultaneous, 

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  dustin.tyler@case.edu
1 Department of Biomedical Engineering, Case Western Reserve 
University, 10900 Euclid Avenue, Cleveland, OH 44106‑1712, USA
Full list of author information is available at the end of the article

https://orcid.org/0000-0002-1333-3790
https://orcid.org/0000-0002-0478-7985
https://orcid.org/0000-0002-9370-0000
https://orcid.org/0000-0003-2564-1800
http://orcid.org/0000-0002-2298-8510
https://orcid.org/0000-0002-3402-249X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-021-00833-3&domain=pdf


Page 2 of 15Lukyanenko et al. J NeuroEngineering Rehabil           (2021) 18:50 

Background
At present, an outstanding challenge in biomedical engi-
neering is the restoration of hand function to upper limb 
amputees. Current commercially available myoelec-
tric hand prostheses are typically limited to one or two 
Degrees of Freedom (DoF) and experience a 10–35% 
abandonment rate [1]. The man–machine interface, 
limited in both feed-forward control and closed-loop 
control, is a major contributor to abandonment [2, 3]. 
Advanced prosthetic systems, such as the 10-DoF DEKA/
LUKE Arm [4] and the 16-DoF Modular Prosthetic Limb 
[5], have expanded prosthetic hand capabilities, but place 
even higher demands on prosthetic hand controllers.

Recent work has demonstrated the potential of chroni-
cally implanted man–machine interfaces. Chronically 
implanted nerve electrodes have shown stable sensory 
feedback [6–9], and chronically implanted Electromyo-
graphic (ciEMG) electrodes have demonstrated stable, 
low-crosstalk EMG recording capabilities [10]. Using 
ciEMG to improve feed-forward EMG controllers could 
allow users to gain more functional benefit from both 
advanced and commercially available prosthetic devices.

Feed‑forward EMG controllers
Feed-forward EMG controllers interpret user EMG to 
drive a prosthetic hand, and typically involve three main 
steps. First, raw EMG is recorded, filtered, and windowed 
into sections of 100–200 ms. Then, features such as the 

mean-absolute-value or number of zero crossings are 
extracted from the windowed EMG. Lastly, features are 
mapped to hand velocities. Prior work suggests that feed-
forward EMG controllers should meet several criteria to 
provide natural hand control (Table 1) [11–19].

Recent studies demonstrate intuitive, simultaneous, 
proportional controllers
Intuitive prosthetic hand control has been widely 
adopted since its introduction by (Hudgins 1993) [20]. 
Intuitive controllers are generated by recording a sample 
of user EMG, a training data set, and tailoring control-
ler behavior to the user based on this sample. Studies 
have demonstrated that intuitive controllers, generated 
by machine learning methods, are capable of simultane-
ity, allowing combined movements, and proportional-
ity, allowing hand speed to change with user effort, as 
3-DoF classifiers [9, 18, 21]. Continuous controllers have 
also been demonstrated through 2-DoF [12, 22], and very 
recently, 3-DoF [10] regressions. In this work we propose 
a novel simultaneous, continuous, intuitive, and propor-
tional controller for 4 + -DoF.

Higher DoF control is limited by training data collection
One limit on simultaneous, intuitive, proportional 
3 + -DoF prosthetic hand control is training data acqui-
sition. Gathering and labelling sufficient volumes of data 

proportional, intuitive, and continuous control in 3-DoF for up to ten months and in 4-DoF for up to nine months 
without retraining or at-home use with minimal training times.

Keywords:  Electromyography, Prosthetic control, Virtual reality, Interpolation

Table 1  Natural hand control criteria [11–19]

The terms proportional, simultaneous, and intuitive commonly appear in literature. Continuous controllers typically appear in literature as regressions and contrast 
with classifiers, which only allow movement in fixed, pre-defined DoF ratios. Studies often increase the number of movement classes rather than the number of 
continuously-controlled DoF

Category Criteria (a controller providing natural hand control should…)

Runtime be responsive; processing time < 100 ms

Theoretical Capability have many Degrees of Freedom (DoF)

be Proportional; allow variable hand speed

allow Simultaneous DoF activation

be Continuous; not limit simultaneous DoF activations to fixed ratios

Accuracy have a low error rate

Practicality provide Intuitive control

have a low daily set-up time

require infrequent training

Impact be functionally beneficial

be tolerant to daily use

address a large commercial audience
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is particularly problematic for simultaneous high DoF 
controllers: providing a single complete training set for 
a simultaneous 4-DoF controller, for example, would 
require sampling 80 non-rest movement combinations 
and, at 30  s per movement, correspond to a 40-min 
exercise. Training periods of this length are impractical 
for commercial systems and unduly burden users. As a 
result, training data is often limited to individual move-
ments or limited simultaneous combinations (Young 
2013) [14]. Training data collection time can be reduced 
either by lowering the controller’s reliance on data vol-
ume or by reducing the frequency of controller re-train-
ing [21, 23–25].

Synergy Theory can reduce training data volume
Synergy Theory is a framework for describing muscle 
activity which states that muscles are driven in syner-
gies, sub-movements in which individual muscles are 
contracted in fixed ratios commanded by a common neu-
ral signal [26]. The formulation of Synergy Theory used 
in this study describes synergies as time-invariant and 
assumes that EMG signals are at steady state and that 
only the mean-absolute-value (mABS) feature is used. 
Under these assumptions, the EMG signal for a move-
ment is a linear combination of EMG from underlying 
sub-movements. Synergy Theory can be used to allow 
control over complex movements from small training 
sets [23], which is typically done by identifying synergies 
and using them to control individual DoF [23, 27, 28]. 
This work instead engages Synergy Theory to motivate 
the choice of controller algorithm and training data set.

Users have direct control over synergy magnitudes, 
and synergy magnitudes relate linearly to force, a proxy 
measurement for user effort [29]. This implies that user 
movements have unique steady-state EMG patterns. It 
is therefore unnecessary to sample movements at sev-
eral levels of effort if the controller used is a mapping 
homogeneous in degree one (e.g. a linear map). Also, if 
the number of synergies used equals the number of EMG 
channels, the mapping from EMG feature space to syn-
ergy space is an orthogonal change of basis. Under these 
conditions, mappings such as linear regression and linear 
interpolation implicitly operate in synergy space. Such 
mappings would also implicitly implement proportion-
ality using synergy magnitudes, which has been hypoth-
esized to reduce user effort compared to traditional 
mappings [29].

Linear interpolation follows from linear regression studies
Linear regression for prosthesis control has been exam-
ined in past work [15, 22, 30]. Notably, Nowak and Cas-
tellini [31] found that linear regression performance 
improves if un-trained multi-DoF movements are 

approximated by linear combinations of trained single-
DoF movements. Additionally, Nowak and Castellini 
found that non-linear regression methods are more accu-
rate than linear regression (although importantly propor-
tionality was not evaluated).

In this work, we have developed a controller that uses 
linear interpolation to map EMG mABS features to user 
intent. Linear interpolation implicitly combines the EMG 
of trained movements to predict the EMG of un-trained 
movements. Linear interpolation is also piecewise-linear, 
presenting a middle ground between non-linear and lin-
ear approaches. Interpolation estimates outputs from a 
set of input–output pairs. Input space is partitioned into 
regions bounded by the sample inputs, outputs are pre-
dicted by linearly interpolating partition vertices. In the 
context of EMG, this can be accomplished by loosely 
viewing all steady-state EMG for a trained user move-
ment as a point in EMG feature space. This lumps train-
ing repetitions together and ties controller performance 
to the repeatability, rather than volume, of training data. 
The controller’s goal is, from a collection of such irreg-
ularly spaced points, to determine a user’s movement 
given a new signal in EMG feature space. These meth-
ods have been extensively developed in other fields [32, 
33]. Linear interpolation is best compared to regression 
controllers, as the output of interpolation is continuous. 
An important distinction between linear interpolation 
and linear regression is that interpolation fits user data 
exactly rather than in a least-square sense: if a user rec-
reates a training movement exactly, interpolation will 
always provide the correct movement.

Stability of chronically implanted EMG
Chronically implanted EMG (ciEMG) has been shown 
to reduce the need for frequent controller re-training, 
as recently demonstrated 3-DoF simultaneous, intuitive, 
regressive, proportional controller employing a K-near-
est-neighbor mapping that retained performance in a 
posture-matching task over several months [10]. Sepa-
rately, ciEMG has also been shown to improve user per-
formance with standard tests and reduce fatigue [2].

Additionally, combining the synergy framework and 
ciEMG can potentially reduce user effort associated 
with implementing proportional control. Proportional-
ity is often implemented by scaling prosthesis speed by 
the average magnitude across all EMG recordings (e.g. 
Simon 2011 [19]). This is less effective with ciEMG, 
where a user’s movement might only manifest on a single 
EMG channel. Instead, synergy magnitudes can be used 
to implement proportionality [30]. This work engages 
ciEMG recordings from two subjects.
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Hypothesis
In this work we propose a novel, intuitive, simultaneous, 
proportional and continuous controller for prosthetic 
hands. The controller uses ciEMG recordings to model 
user activity through linear interpolation as inspired by 
the synergy framework. The controller is evaluated in an 
online Virtual Reality (VR) posture-matching task.

In particular, we hypothesize that, provided a sufficient 
number (at least two per DoF, see Methods) of relevant 
ciEMG channels, (1) subjects will be able to use such a 
controller to match most targets in 3-DoF and 4-DoF 
and (2) that controllers will remain stable, showing no 
decline in performance for more than 6 months without 
retraining. Additionally, we explore controller perfor-
mance when trained on a single ‘best’ training repetition 
for each trained movement, with the hypothesis that per-
formance will remain unchanged compared to a default 
training set.

Methods
Two subjects with unilateral, transradial limb loss, S6 
and S8, participated in the study. Both were previously 
implanted with 8 pairs of intramuscular myoelectric 
signal (IM-MES [34]) recording electrodes, accessible 
through percutaneous leads. After recording training 
data, a controller incorporating a synergy framework was 
developed and evaluated through a posture-matching 
task. Controllers were evaluated in lab over 8–10 months 
and varied by subject availability. Between lab sessions, 
subjects used a single-DoF prosthesis controlled by two 
surface myoelectric sites as provided by their prosthetist. 
All research was conducted as an IDE trial granted by 
the Food and Drug Administration and under approval 
and oversight by the Louis Stokes Cleveland Veterans 
Affairs Medical Center Institutional Review Board, and 
the Department of Navy Human Research Protection 
Program.

Data and training
Seven bipolar IM-MES electrodes were implanted in the 
pronator, FCR, FDS, FCU, supinator, ED, and ECU mus-
cles of both subjects. An eighth electrode was placed 
in the ECRL for S6 and the ECRB for S8. (Dewald [10]) 
describes surgical details and stable  3-DoF controller 
performance over several months without retraining 
in S6. After fitting new sockets on S6, electrodes in the 
pronator and ECRL exhibited considerable noise 11 and 
17 months post-implant, respectively, and were not used 
in this study.

A computer visualization (Fig.  1) previously used in 
similar studies [35] guided the acquisition of training 
data. The visualization displays two hands whose joints 

can be controlled in real time through a Matlab/Simulink 
interface. The controllable joints mimic the capabilities of 
the LUKE prosthetic hand. During training, both hands 
present target postures guiding the user through a set 
of movements. During online evaluation, one hand pre-
sents a target posture, while the other is under the user’s 
control.

Five training sets were collected per subject: one 3-DoF 
set and four 4-DoF sets. The movements collected for 
each training set were determined by which DoF were 
included. All training sets included three DoF from 
(Dewald 2019): wrist flexion/extension, wrist prona-
tion/supination, and D2 (index) flexion/extension. The 
4-DoF sets also included either thumb flexion/extension, 
thumb ab/adduction, synchronous D3-5 flexion/exten-
sion, or wrist radial/ulnar deviation as the 4th DoF. These 
DoF reflect the capabilities of the LUKE prosthetic hand 
(Table 2). Visually, radial-ulnar deviation was mapped to 
a thumb movement as the LUKE is not capable of con-
trolling this motion independently. Additionally, when 
synchronous D3-5 flexion/extension was not evaluated, 
user D2 (index) flexion/extension was made to con-
trol fingers D2-5. While this does not allow meaningful 
grasps in 3-DoF, it limits user confusion during control-
ler evaluation. In practice, D2 flexion/extension can be 
mapped to a grasp.

To generate training data, subjects attempted to move 
their phantom limb as prompted by a visualization at a 
self-selected medium level of exertion while mirroring 
the motion with their intact limb. Every N-DoF training 
set consisted of individual movements ( 2(N) movement 
classes: two directions (‘ + ’, ‘−’) per DoF) and all simul-
taneous pairs of movements (4(N!/(2!(N-2)!)) movement 

Fig. 1  Training and testing setup. The subject was seated in front of a 
VR representation of a prosthetic hand. The Ripple Grapevine system 
collected ciEMG at 2 kHz with a 15–350 Hz band-pass filter. The only 
EMG feature collected was the mean absolute value over a 200 ms 
window updated every 50 ms
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classes: four directions (‘ + / + ’, ‘+/-’, ‘−/ + ’, ‘−/−’) for 
each DoF pair). Training was done in batches of 5–10 
movement prompts, grouped by movement similarity 
and complexity. Each batch was repeated five times with 
random presentation order to collect five repetitions 
of each movement. To mitigate fatigue, subjects could 
choose to take short breaks following each movement 
batch. Subjects determined break length, and typically 
chose to proceed without one. Each movement prompt 
had three periods: a two-second no-movement visualiza-
tion period to recognize the target posture, a two-second 
muscle contraction period to move the phantom, and 
then a one-second break period. Screen color changes 
indicated period transitions. To ensure that subjects fol-
lowed the intended movement, a researcher mimicked 
this exercise while sitting next to the subject and watch-
ing his intact limb.

Total training time for all five training sets was 
approximately 135 min including breaks, producing one 
18-movement 3-DoF set and four 32-movement 4-DoF 
sets (Table  2). Training data was recorded 23  months 
post-implant for S6, and 12 (3-DoF) and 17 (4-DoF) 
months post-implant for S8. Both subjects had substan-
tial experience with training data collection and wore 
their regular prosthesis during both data collection and 
controller evaluation. The only EMG feature collected 
was the mean-absolute-value feature from a 200 ms win-
dow of EMG sampled at 2  kHz, updated every 50  ms.
The mean-absolute-value EMG feature on each channel 
was normalized to a maximum of ‘1′ per training data 
set [36]. A visualization of the ciEMG patterns for the S8 
3-DoF training set (18 movements, 5 repetitions of each) 
is provided as Additional file 1.

Channel sufficiency
A previous study, (Muceli 2010 [37]), found that 2-DoF 
multi-DoF movements can be accurately reconstructed 
using four, but not three, synergies extracted from single-
DoF movements. The same could also be achieved with 
only three synergies extracted from multi-DoF move-
ments, but depended strongly on the choice of sampled 
movements. As we cannot guarantee that the movements 
sampled in this study meet the second criteria, Channel 
Sufficiency is defined as twice the number of DoF.

Controller
The controller used in this study uses linear interpolation 
to map user ciEMG to intended prosthesis movement. 
Prior to controller generation, the five repetitions of 
each movement are limited to steady state activity, here 
defined as a half-second interval beginning one second 
after the ‘go’ instruction. Additionally, two repetitions 
with EMG patterns most distant from the movement 
mean are removed to account for errors during user 
training.

Partitioning space (Fig. 2a, b)
Fit steady state. Per trained movement, a vector is drawn 
through the cluster of steady state EMG points via a 
least-distance fit (uncentered 1st principal component). 
A point, s , is then found by projecting the movement’s 
steady-state EMG points onto this vector, then averag-
ing their positions. s is representative of its movement’s 
steady state EMG pattern at a medium level of exertion. 
s ∈ R

n

≥0; n is the number of EMG channels; S is the set of

all s in some fixed order.
Assign movement labels. For each s a corresponding 

movement label c is made. c is an array encoding the user’s 
movement that generated s : the values in c represent 

Table 2  Usability of trained controllers

Subjects could deem a controller unusable during controller tuning and testing. Each subject deemed the 3-DoF (3D) and two of four 4-DoF (the radial-ulnar 
movement RU, and a thumb movement, TH) controllers usable

User training sets

3-DoF 4-DoF 4-DoF 4-DoF 4-DoF

DoF Trained Wrist Pro/Supinate  √  √  √  √  √

Wrist Flex Extend  √  √  √  √  √

D2 Flex Extend  √  √  √  √  √

D3-5 Flex Extend  √

Thumb Ab/Adduct  √

Thumb Flex/Extend  √

Radial-Ulnar Deviate  √

Usable S6 Controllers 3D TH RU

S8 Controllers 3D TH RU
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the direction and level of effort in each DoF. (Ex: [1,0,0] 
is the label for supination in 3-DoF; [−  1,0.3,0,0] is the 
label for a simultaneous pronation (negative supi-
nation) and slight wrist flexion in 4-DoF.) c ∈ RDoF

; 
C is the set of all c; The ith element of C is the movement

label for the ith element of S.

Normalize all elements of S to have L1 norms of 1, gen-
erating Ŝ  and Ĉ. ‖x‖1 denotes the L1 norm for any vec-
tor x . Let −→si be the vector from {0} to si ∈ S. ; 
The corresponding element ŝi ∈ Ŝ is si

�
−→
si �1

; The move-
ment label for ŝi is ĉi = ci

�
−→
si �1

; ĉi ∈ Ĉ

Expand Ŝ  and Ĉ. Activity on individual EMG chan-
nels appears on Cartesian basis vectors {e1, e2, . . . , en} in 
EMG feature space. 

∼

S is Ŝ appended with {e1, e2, . . . , en} 
and {0}. 

∼

C is Ĉ appended with (n+ 1 ) DoF-dimensional 

zero vectors: individual EMG channels and the origin 
are conservatively assigned movement labels indicating 
no movement.

Partition space with Delaunay triangulation. Delau-
nay triangulation tessellates EMG space into simplices 
emanating from the origin in a way that maximizes the 
minimum simplex angle using 

∼

S as a set of vertices. 
(Normalizing S to a one-norm of one and including the 
origin forces simplices to emanate from zero.)

Online EMG evaluation (Fig. 2c, d)
For an incoming EMG signal, p , the controller must find 
the corresponding movement label cp.

Scale p to have an L1 norm of 1. 
p̂ =

p

�
−→
p �1

;
−→
p being the vector from {0} to p.

Fig. 2  Graphical description of controller. a Per trained movement, a representative steady-state point in feature space is found and assigned a 
movement label b Representative points are normalized to have unit L1 norm, and Delaunay Triangulation partitions feature space into regions 
emanating from the origin c The movement label for online EMG is determined by linear interpolation, providing an estimated level of user intent in 
every DoF (D) A physiologically inspired relation maps estimated levels of user intent to nominal hand velocity. Subject preferences then set gains 
and thresholds
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Find the simplex containing p̂
Simplices are parsed until the simplex containing p̂ is 

found.
Let T be the set of (n + 1) points bounding the simplex 

being parsed. T includes n points of 
∼

S and the origin. Let 
U be the elements of 

∼

C which correspond to T  ; T and U  
depend on the simplex.
p̂ can be described as a weighted sum of steady-state 

EMG activity from training data by:

Solving this linear system yields k1, . . . , kn+1

If min
i

ki ≥ 0 and 
∑n+1

1 ki = 1 , the correct partition has 
been identified.

Interpolate to find cp̂.
Once the correct partition has been found, linear inter-

polation determines cp̂:

Scale cp̂ by �−→p � to find cp.

uibeingtheithelementofU; k1, . . . , kn+1scalars

Post-interpolation. The output cp is an estimate of user 
effort in each DoF, with ‘a medium level of exertion’ cor-
responding to the value ‘1’. Two further steps convert 
user effort to hand velocity.

First, every actuated DoF is scaled in a physiologi-
cally-inspired mapping (Fig.  2d) to set nominal hand 
velocity [38]. The mapping is a smooth, piecewise curve 
consisting of four regions: very low, low, medium, and 
high effort. The regional mappings exhibit exponential, 
linear, square-root, and constant relationships, respec-
tively. This effort-velocity mapping sets user activity 
below 50% of ‘a medium level of exertion’ to cap out at 
only 25% of maximum speed and penalizes effort exceed-
ing ‘medium’. The mapping is meant to allow precise 
movements at lower EMG levels as well as quick move-
ments at higher EMG amplitudes [39].

Second, prior to controller evaluation, the gains and 
thresholds for each degree of freedom are calibrated to 
user preference. This allows a “medium level of exertion” 
to correspond to any desired speed.

Controller evaluation
Prosthetic hand controllers were evaluated by having 
subjects complete a target-matching task in the same VR 
environment used for controller training. Given the long 
training period needed to gather all training datasets and 

p̂ = k1t1 + · · · + kn+1tn+1; t i being the i
th point in T ; k1, . . . , kn+1 scalars

cp̂ = k1u1 + · · · + kn+1un+1;ui being the i
th element of U; k1, . . . , kn+1 scalars

cp =
(∥∥�p

∥∥
1

)
∗ (k1u1 + · · · + kn+1un+1)

corresponding questions of user fatigue, as well as exist-
ing evidence of ciEMG controller stability, controllers 
were not evaluated on the same day as they were trained.

Target matching process
The target-matching task includes 80 targets in 5 batches 
of 16, with user-defined rest periods between batches. 
This number balances user fatigue against a thorough 
target selection [22].

To match a target posture, subjects use an EMG con-
troller to move each DoF of a virtual hand to within 15% 
of the Range-of-Motion (RoM) of the target posture and 
then remain within that window for a continuous second. 
In our experience, subjects encounter difficulty in visual-
izing posture errors when tolerances are below 15% RoM 

(see Kinematic 4D videos—Additional file  2, Additional 
file  3). Subjects are given a 30  s time limit to match a 
target.

Targets
Target postures span transitions in joint-movement space 
in a quasi-random manner:

First, generic movement directions are listed and shuf-
fled. In 4-DoF, there are 80 generic movement direc-
tions (4-DoF, each of which can be − 1, 0 or 1, with ‘rest’ 
excluded). In the 3-Dof case, there are 26 generic move-
ment directions. These were repeated thrice and, after 
shuffling, padded with two extra targets, excluded from 
analysis, to maintain the 80-target test length.

Target postures begin with a neutral hand posture, 
and subsequent postures are set by randomly changing 
each DoF based on the list of generic movement direc-
tions. No targets are within matching range of a range-of-
motion limit. For example: if all DoF are limited between 
−  1 and 1, the matching window is 15% RoM, and the 
current generic movement direction is [1, − 1, 0] (a com-
bined supination and wrist extension), the generated 
target will be at [rand(0.6,0.7), rand(−  0.6, −  0.7), 0]. If 
a target cannot be placed for the current generic move-
ment direction, the next one is attempted. If none can be 
placed, the previous target is removed, the list of generic 
movement directions is circularly shifted, and the pro-
cess proceeds from one target back.

This generates a set of targets that includes simultane-
ous movements in variable ratios and covers all generic 
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movement directions without returning to a neutral pos-
ture. Target postures cover transitions requiring three 
or four combined movements despite training data only 
including single and paired movements.

Analysis
Target matching metrics are described in prior work 
[40]. Briefly, Match Percentage is the percentage of tar-
gets matched within the time limit. Time-To-Target is the 
time it takes a subject to match a target. Path Efficiency 
compares the travel path taken by the subject with the 
minimum straight-line travel path to the target posture. 
A 50% Path Efficiency, for example, indicates that the 
virtual hand traveled twice as far as strictly necessary 
to reach the target. Time-To-Target and Path Efficiency 
were only calculated for targets which were matched 
within the time limit. Path Efficiency excludes movement 
within the target matching window preceding a match 
(overshoots are accounted for), and Time-To-Target 
excludes the 1-s dwell time.

Match Percentages were compared using Fischer’s 
exact test. Time-To-Target and Path Efficiency were com-
pared using two-way ANOVAs followed by paired t-tests. 
Bonferonni corrections were applied when comparing 
more than two data sets. Pearson’s Coefficients were used 
for determining the significance of trends over time. Sig-
nificance was set at the p < 0.05 level. All metrics are writ-
ten as mean ± standard error and drawn as mean with 
95% CI.

Kinematic recordings
To provide subject-specific reference points, 3-DoF and 
4-DoF target matching tasks were also repeated with the 
subjects’ intact limb. Electrogoniometer (Biometrics Ltd., 
Ladysmith, VA) recordings, with the fourth DoF con-
trolled by thumb flexion/extension, were used.

In analyzing Path Efficiency with kinematic recordings, 
small-magnitude movements were adjusted to remove 
the effect of sensor noise. Pronation-supination record-
ings had a high resolution, and changes in sensor val-
ues were thresholded by assuming noise to be Gaussian 
around 0: a Normal curve was fitted to a 30-point histo-
gram of frame-to-frame differences in sensor recordings, 
and the histogram window was adjusted until a mini-
mal Root Mean Square Error was found for the fit. The 
threshold was set at three times the standard deviation 
of this fitted Normal curve, excluding movements below 
(0.12–0.34% RoM per 50-ms frame). Qualitatively, this 
approach excludes Gaussian low-magnitude movements. 
Wrist, finger, and thumb flexion–extension sensors had a 
lower resolution (around 0.17% RoM), and jitter between 
discretization levels was removed.

Results
Controller usability
During controller evaluation, subjects were given the 
option to declare a controller ‘unusable’ at any point in its 
evaluation. This would usually be decided while gains and 
thresholds were being tuned prior to controller evalua-
tion, but sometimes occurred within the first few 16-tar-
get blocks. If a subject indicated that a controller was 
‘unusable’, its evaluation would be de-prioritized for the 
day to minimize the effects of fatigue on other control-
lers being evaluated. Controllers which provided unreli-
able control over single-DoF movements were typically 
declared ‘unusable’.

Initially, both subjects found the 3-DoF (3D) controller 
and two of four 4-DoF controllers usable—one with the 
thumb controlled by a thumb movement (TH) and one 
with the thumb controlled by a radial-ulnar movement of 
the wrist (RU). (Table 2).

3‑DoF performance over time
3-DoF controllers were evaluated for both sub-
jects shortly after training and again after a period of 
8–10  months (Fig.  3). Neither EMG controller showed 
significant (p < 0.05) changes after this period.

Subject S6, with his intact limb, matched all targets 
averaging 1.80 ± 0.17  s/target and 46 ± 2% Path Effi-
ciency. In initial tests, the EMG controller matched all 
targets averaging 2.69 ± 0.21  s/target and 39 ± 3% Path 
Efficiency.

Subject S8, with his intact limb matched all targets 
averaging 2.41 ± 0.21 s/target at a 52 ± 3% Path Efficiency. 
In initial tests, the EMG controller matched all targets 
averaging 5.36 ± 0.46 s/target at a 32 ± 3% Path Efficiency.

Anecdotally, S8′s movements appear to be less ballistic 
and more carefully planned than S6′s, potentially leading 
to slower match times (see S6 3-DoF video—Additional 
File 4; S8 3-DoF video, for data shown in Fig. 5,– Addi-
tional file 5).

4‑DoF performance over time
4-DoF controllers were evaluated for both subjects over a 
period of up to 9 months (Fig. 4). This evaluation shows 
trends that may indicate improvement over time without 
either retraining or at-home use.

Subject S8 matched all targets with his intact limb aver-
aging 5.28 ± 0.39 s/target at a 30 ± 2% Path Efficiency.

With one radial-ulnar 4-DoF EMG controller, S8 ini-
tially matched 86% of targets, averaging 10.94 ± 0.88  s/
target at a 22 ± 2% Path Efficiency, then significantly 
improved in Time-to-Target and Match Percentage over 
the following 9 months (Pearson, p < 0.05). With an ear-
lier 4-DoF RU controller (see 3.4), S8 matched 100% of 
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targets, averaging 8.62 ± 0.64  s/target at a 34 ± 2% Path 
Efficiency.

With one thumb ab/adduction 4-DoF EMG con-
troller, S8 initially matched 98% of targets, averaging 
11.07 ± 0.65  s/target at a 22 ± 1% Path Efficiency; after 
7 months S8 matched 94% of targets with this controller, 
averaging 8.48 ± 0.70 s/target at a 23 ± 2% Path Efficiency, 
significantly improving in Time-To-Target (paired t-test, 
p < 0.05). Although these S8 TH controllers were later 
found to be missing 2/32 training movements and the 
initial TH controller evaluation used a slightly different 
target set consisting solely of simultaneous movements 
in all 4-DoF, these changes did not affect performance 
as S8, with an earlier TH controller, matched 88% of tar-
gets averaging 12.42 ± 0.89 s/target at a 24 ± 2% Path Effi-
ciency (see 3.4).

Subject S6 performance was also evaluated in a 4-DoF 
case, despite the subject having fewer than 2xDoF EMG 
channels. With his intact limb, S6 matched 98% of targets 
averaging 5.66 ± 0.48 s/target at a 31 ± 2% Path Efficiency.

In initial tests with a 4-DoF thumb-flexion EMG 
controller, S6 matched 94% of targets, averaging 
9.24 ± 0.71  s/target at a 20 ± 2% Path Efficiency. The 
controller was unstable upon re-evaluation after seven 
months.

While subject S6 did find the radial-ulnar 4-DoF EMG 
controller initially usable, matching 86% of targets and 
averaging 10.88 ± 0.88  s/target at a 20 ± 2% Path Effi-
ciency, the controller was later found to be incorrectly 
trained and missing all paired movements involving 
radial-ulnar deviation (12/32 training sets). Although this 
controller was not usable on re-evaluation after seven 
months, no general conclusions about controller stability 
can be drawn from the RU evaluations.

Reduced training dataset performance
One goal in prosthetics research is to reduce control-
ler training time. The controller presented in this 
study builds a piecewise-linear model of user activity 
and needs an accurate, rather than large, training set. 
We hypothesized that controller performance with a 
reduced, single-best-repetition, training set would be 
comparable to performance with the default, multiple-
repetition, training set. Default and reduced sets were 
compared to evaluate the controller’s performance with 
a minimal data set (Fig. 5). Default sets were run first. 
Order effect was examined in the 4-DoF S8 RU case, 
which was evaluated twice with different controllers 
1 month post training, alternating whether the default 
or reduced case was run first.

Fig. 3.  3-DoF performance over an 8–10 month period. S6 (Red, a–c) and S8 (Blue, d–f) performances in 3-DoF over an 8–10-month period are 
shown. (a, d) All targets were matched (b, c, e, f) EMG controllers were different (ANOVA, p < 0.05) from kinematic recordings, and showed no 
significant changes over 8–10 months. Values are presented as mean with 95% CI
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Default: The default case (used in Figs. 3, 4) averages 
three of five movement repetitions to set the muscle 
pattern corresponding to a movement. This was done 
after accounting for possible user errors by removing 
two of five training repetitions with steady state pat-
terns furthest from the mean movement pattern.

Reduced: The reduced case uses only one of the three 
‘default’ repetitions—the repetition whose pattern is 
closest to the movement mean—to set the muscle pat-
tern corresponding to a movement. Assuming that the 
distribution of EMG activity reduces with practice, 
shown in past studies [41, 42], this case represents the 
performance of a skilled user.

In 3-DoF, subject S6′s performance did not change 
with a reduced repetition set; subject S8′s Time-To-
Target and Path Efficiency improved (paired t-test, 
p < 0.05; Video in Additional File 6).

In 4-DoF, subject S8′s performance did not change 
significantly with a reduced repetition training set, 
excepting a drop in Path Efficiency, but not other met-
rics, in the Default-Controller-First RU case. However, 
general conclusions on the interplay between training 
volume and Path Efficiency cannot be drawn as this was 
not observed in the second S8 4-DoF RU case. Missed 

S8 4-DoF targets were primarily composed of simulta-
neous 3-DoF and 4-DoF movements. Fatigue from suc-
cessive evaluations does not appear to play a major role: 
in no case did the controller that was evaluated second 
have more than 20% of missed targets appear in the last 
of five batches.

In 4-DoF, subject S6′s Time-To-Target increased (paired 
t-test, p < 0.05) with a thumb-based 4-DoF controller; the 
reduced repetition radial-ulnar-based 4-DoF controller 
was unusable.

Results imply that the controller proposed in this study 
can function without performance loss, and possibly even 
with performance gains, in minimal-data conditions pro-
vided sufficient EMG channels. Under minimal-data con-
ditions, training data collection times for the 32 recorded 
movements in a 4-DoF controller could be reduced to 
just under three minutes at five seconds per target.

Discussion
We used linear interpolation, inspired by the synergy 
framework, with ciEMG electrodes to evaluate a novel 
simultaneous, intuitive, continuous, and proportional 
4-DoF controller in VR.

Fig. 4.  4-DoF performance over nine months. a–c Subject S6 4-DoF performance was unstable over time and differed from kinematic performance 
(paired t-test). d–f Subject S8 performance in 4-DoF over a 9-month period is shown. S8 RU showed an improving trend in Time-To-Target (Pearson, 
p < 0.05). S8 TH performance after 7 months showed significant improvement in Time-To-Target (paired t-test, p < 0.05). Comparisons to the S8 
kinematic set were not explicitly drawn. All values are presented as mean with 95% CI
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When given at least two EMG channels per degree 
of freedom, the controller provides stable, possibly 
improving 3-DoF and 4-DoF control without retraining 
for up to 10 months. Past work indicates that strong VR 
controller performance carries over to functional ben-
efit [43] and that continuous controllers can provide 
additional functional gain [21] relative to classifiers. 
Consequently, the presented controller may provide an 
avenue for improving the benefit that patients receive 
from modern prostheses. Additionally the controller 
demonstrated stable, possibly improving, Time-To-
Target and Match Percentage metrics when trained on 
a one-movement-repetition training set provided suf-
ficient EMG channels. While this is presently hypoth-
esized to be of value only to skilled users, further 
examination is warranted.

High‑DoF control
This study demonstrated that linear interpolation, 
inspired by the synergy framework and using ciEMG 
electrode recordings, can provide 4-DoF simultane-
ous, continuous, intuitive, and proportional control 
in two subjects. The presented controller expands 

demonstrated continuous control beyond previously 
reported 2-DoF [12, 44] and 3-DoF [10, 30] cases. Fur-
thermore, the controller examines a method of pro-
portionality [29, 45] which only makes use of relevant 
EMG signals, although it does not quantify its effective-
ness. As ciEMG is more localized than surface EMG 
[46] (sEMG), this approach may be less fatiguing than 
the traditional proportionality implementation of scal-
ing velocity by the average global signal (e.g. Simon 
2011 [19]).

While the controller takes roughly ten seconds to 
match a target in 4-DoF, these times should be placed 
in the context of the subject’s kinematic performance of 
roughly five seconds per target. First, this long kinematic 
match time implies that there is likely a heavy visualiza-
tion component. Second, there appears to be a large prac-
tice component, as the best-performing S8 RU controller 
had a time-to-target of 6.3 ± 0.4 s/target (video in Addi-
tional File 7), compared to a kinematic time-to-target of 
5.3 ± 0.4 s/target (video in Additional File 3). It is unclear 
how the 4-DoF controller would perform in activities of 
daily living without further investigation. Additionally, 
examining the target-matching videos leads to an inter-
esting observation: “steady-state” activity is rare, and 

Fig. 5  Reduced training dataset performance. S6 (Red) and S8 (Blue) performance with a default ‘D’ 3-of-5 repetition controller and reduced 
‘R’ 1-of-5 repetition controller are shown. The S8 RU sets differ on whether the default case was run first (left) or the reduced case was run first 
(right), using different controllers evaluated 1 month post training. a, d No differences in Match Percentage were found (Fisher). b, c S8 3-DoF 
Time-to-Target and Path Efficiency improved with reduced repetitions (ANOVA, p < 0.05). e S6 Time-To-Target increased with the reduced set (paired 
t-test, p < 0.05). f Only one of two S8 RU sets indicated a significant (paired t-test) drop in Path Efficiency with a reduced training set. All values are 
presented as mean with 95% CI
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users start and stop frequently. The presented controller 
is built around the assumption of steady state EMG. We 
hypothesize that circumventing this assumption—such 
as by predicting steady-state EMG from transient EMG 
prior to interpolation—could improve performance.

Stability and improvement
Few studies have engaged chronically implanted EMG 
to evaluate controller stability without retraining. In 
particular, Catalan [9] demonstrated stable control over 
three months with a 3-DoF classifier, Dewald [10] dem-
onstrated stable control over three months with a 3-DoF 
regression, and Vu [47] demonstrated stable classifica-
tion in 1–2 DoF over a 300-day period. This study dem-
onstrates a controller capable of up to ten months of 
stable  3-DoF and up to nine months of stable, possibly 
improving, continuous 4-DoF control without retrain-
ing or at-home use through ciEMG recordings. This con-
trasts sharply with surface electrode controllers which 
need to be frequently retrained to maintain performance.

It is interesting to examine the changes in Subject S8′s 
RU 4D Time-to-Target over nine months. It appears that 
S8 becomes more consistent in matching targets despite 
months between controller evaluations (Table  3). This 
allows us to speculate on how the user’s default prosthesis 
controller impacts their use of the experimental control-
ler. In particular, if the user’s controller had a detrimental 
impact, we would expect early batches to perform worse 
than later batches as the user becomes more acclimated 
to the experimental controller. Such acclimation is some-
what observed in the Kinematic case. RU cases, however, 
do not demonstrate consistent trends.

Controller behavior and low training time
A major advantage of the proposed controller is its piece-
wise-linear model of user EMG. This allows structured 

and predictable outputs, contrasting with ‘black-box’ 
approaches, and eliminates a reliance on training volume. 
As a result, neither Match Percentage nor Time-To-Tar-
get deteriorated when trained on one ‘best case’ repeti-
tion of each movement when provided with a sufficient 
number of EMG channels.

Low training times are frequently included in literature 
as a desired characteristic of prosthetic hand controllers 
[14, 21, 48]. The controller proposed in this study can 
potentially be trained in as little as three minutes, open-
ing several directions for further research. First, rapid 
training times enable higher DoF controller development 
as even comprehensive high-DoF training data sets can 
be collected in just a few minutes. Second, small train-
ing times enable frequent, even daily, recalibrations and 
training set collections. In addition to simplifying train-
ing data collection in a take-home environment, this 
makes more complex studies on learning, EMG stability, 
and adaptive controllers, possible.

Although in practice such a controller will initially 
rely on a training set with multiple movement repeti-
tions, the ‘best’ data tested here represents a reasonable 
prediction of the performance of a skilled user, as EMG 
activity becomes more consistent with use. While there 
is little recent research on EMG consistency, there is a 
demonstrated decrease in the coefficient of variability 
over a four-hundred repetition task [49] and an observed 
elimination of unwanted neural activity with practice 
[50]. With time, therefore, retraining this controller will 
only require a single repetition of each movement and 
take the user little time or effort. Determining how much 
practice, if any, a user requires to provide EMG signals 
sufficiently consistent for controller use warrants further 
investigation.

Table 3  Mean time-to-target for S8 4D RU controllers per test batch

Values in the central 6 × 5 grid are mean Time-To-Target, with missed targets excluded. The rightmost column shows the standard deviation across batches. 
Evaluations 4/6/9 months post-training appear to have more consistent rates between batches than both 1-month post-training evaluations

*From Sect. 3.4

Time-to-Target Average (s)

Months
Post-training

Batch number Std.
Dev.1 2 3 4 5

1 Month* 6.6 11.6 8.4 9.5 12.5 2.4

1 Month 8.2 10.5 15.1 13.1 13.8 2.8

4 Months 7.0 7.7 8.0 9.6 10.3 1.4

6 Months 7.0 8.4 6.6 8.2 6.6 0.9

9 Months 7.9 6.8 10.1 8.5 8.7 1.2

Kinematic 7.3 6.5 5.7 5.7 6.1 0.6
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Relationship between number of EMG channels 
and controllable DoF
Beyond the primary study conclusions, our data also sug-
gests that the number of intuitively controllable DoF is 
not simply a function of the number of EMG channels. 
In (Table  2), only two of four evaluated 4-DoF control-
lers were deemed usable by either subject. The other two 
failed despite having a sufficient number of independent 
EMG channels. Additionally, a Monte-Carlo method was 
used to determine whether all movements were funda-
mentally reachable by subjects. 100,000 random veloc-
ity vectors were generated, and a corresponding EMG 
signal that would provide the requested velocity vector 
was found for every controller in Table 2. Hypothetically, 
every subject controller—except the under-trained S6 
RU controller—was capable of providing a velocity vec-
tor in an arbitrary direction. The number of intuitively 
controllable DoF therefore appears to depend on the 
number, relevancy, and discernibility of user signals. In 
this regard, approaches such as TMR [52] or RPNI [45] 
may be beneficial. For example, recording signals from a 
thumb muscle would likely improve intuitive control of 
the thumb.

Additional controller characteristics to be explored
Two aspects of the developed control algorithm provide 
additional, useful, customization options. First, the pre-
sented controller only implements a simple, unweighted 
interpolation where EMG patterns from known move-
ments are combined in a linear manner to determine 
user’s intended movement. Other algorithms can be 
tuned to weight single-class movements preferentially or 
to implement features such as stiffness [52] or ‘positional 
wells’ [53].

Second, the effort–velocity curve converts intended 
movement effort into hand speed. We implemented this 
in a physiologically inspired relation, but any mapping 
can be used. Useful variants could emphasize fine move-
ment control, stall hand speed when observing a stiffen-
ing co-contraction, or optimize hand acceleration.

As these customization steps are isolated from the con-
troller’s ciEMG and homogeneity premise, benefits such 
as chronic stability or low-training-data requirements 
should carry over while evaluating new ways of tailoring 
controllers to tasks or users.

Controller drawbacks
The controller has two primary drawbacks. First, the 
algorithm is not presently optimized and requires sub-
stantial computational resources during operation. These 

requirements increase combinatorially with more EMG 
channels and DoF. The calculation time is roughly 20 ms 
for a 4-DoF case on a modern (Intel i5-8250) proces-
sor. This calculation time is almost entirely devoted to 
a sequential search through simplices, whose number 
grows from 10,000 in a 4-DoF/8-EMG case to 200,000 
in a 5-DoF/10-EMG case. Algorithmic optimization is 
necessary prior to deployment on embedded systems in 
4 + -DoF or 10 + -EMG-Channel cases.

Second, the algorithm, as implemented, is likely only 
valid for use with implanted EMG. Linear interpolation 
assumes that ‘rest’ occurs when all EMG signals are near 
zero. Non-zero recordings during rest, which may be 
more prevalent with sEMG, would break this assump-
tion. At present, we have not evaluated the controller’s 
performance with sEMG but expect that noise-floor-
reduction techniques will be necessary to extend results 
to sEMG interfaces.

Study limitations
This study is a case series and its greatest limitation is the 
small number of subjects, although all possible subjects 
with the appropriate implanted hardware were involved 
in the study. This number of subjects parallels past stud-
ies with implanted control and sensory restoration sys-
tems [2, 9, 10, 54, 55]. While the number of subjects is 
low, the volume of amputee subject data, covering 25 
80-target evaluations, thoroughly examines subject per-
formance and is not low compared to most prosthetics 
controls studies.

Conclusions
The presented controller builds a linear model of user 
activity based on a synergy framework, reducing training 
time and implementing a synergy-based method of pro-
portionality that may be more compatible with ciEMG 
recordings.

When provided with a sufficient number of EMG 
channels, the controller allowed subjects to match 
most targets in 3-DoF and 4-DoF posture-matching VR 
tasks; the controller also demonstrated stable, possi-
bly improving, performance over 7–10  months without 
retraining, despite limited in-lab use. The controller also 
demonstrated stable Time-To-Target and Match Percent-
age when trained on minimal training data sets. Overall, 
the presented controller is an important step towards 
stable, High-DoF prosthesis control with short training 
times.
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