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Abstract 

Background: Persistent postural-perceptual dizziness (PPPD) is a condition characterized by chronic subjective dizzi-
ness and exacerbated by visual stimuli or upright movement. Typical balance tests do not replicate the environments 
known to increase symptoms in people with PPPD—crowded places with moving objects. Using a virtual reality 
system, we quantified dynamic balance in people with PPPD and healthy controls in diverse visual conditions.

Methods: Twenty-two individuals with PPPD and 29 controls performed a square-shaped fast walking task (Four-
Square Step Test Virtual Reality—FSST-VR) using a head-mounted-display (HTC Vive) under 3 visual conditions (empty 
train platform; people moving; people and trains moving). Head kinematics was used to measure task duration, move-
ment smoothness and anterior–posterior (AP) and medio-lateral (ML) ranges of movement (ROM). Heart rate (HR) was 
monitored using a chest-band. Participants also completed a functional mobility test (Timed-Up-and-Go; TUG) and 
questionnaires measuring anxiety (State-Trait Anxiety Inventory; STAI), balance confidence (Activities-Specific Bal-
ance Confidence; ABC), perceived disability (Dizziness Handicap Inventory) and simulator sickness (Simulator Sickness 
Questionnaire). Main effects of visual load and group and associations between performance, functional and self-
reported outcomes were examined.

Results: State anxiety and simulator sickness did not increase following testing. AP-ROM and HR increased with high 
visual load in both groups (p < 0.05). There were no significant between-group differences in head kinematics. In the 
high visual load conditions, high trait anxiety and longer TUG duration  were moderately associated with reduced 
AP and ML-ROM in the PPPD group  and  low ABC and  high perceived disability were associated with reduced 
AP-ROM (|r| =  0.47 to 0.53; p < 0.05). In contrast, in controls high STAI-trait, low ABC and longer TUG duration were 
associated with increased AP-ROM (|r| = 0.38 to 0.46; p < 0.05) and longer TUG duration was associated with increased 
ML-ROM (r = 0.53, p < 0.01).

Conclusions: FSST-VR may shed light on movement strategies in PPPD beyond task duration. While no main effect 
of group was observed, the distinct associations with self-reported and functional outcomes, identified using spatial 
head kinematics, suggest that some people with PPPD reduce head degrees of freedom when performing a dynamic 
balance task. This supports a potential link between spatial perception and PPPD symptomatology.
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Introduction
Persistent-postural perceptual dizziness (PPPD) is a 
condition characterized by chronic vestibular symp-
toms [1]. These symptoms may include subjective diz-
ziness, instability or both, which persist over 3 months. 
PPPD is the most common vestibular diagnosis, esti-
mated at 15%–20% of people with complaints of ves-
tibular symptoms [2], and is associated with increased 
levels of anxiety [3]. People with PPPD often seek rec-
ognition for their complaints [4], yet, with physical and 
laboratory tests typically remaining normal, the mecha-
nism underlying the symptomatology of this condition 
remains unclear. A recent study showed that people 
with PPPD demonstrate impaired spatial navigation 
capabilities when performing a navigation task while 
sitting and manipulating a joystick in virtual reality [5]. 
Spatial disorientation is known to be related to balance 
disorders [6] yet its implications to functional com-
plaints and balance performance in individuals with 
PPPD is unknown.

Individuals with PPPD typically experience exacerba-
tion of their symptoms during upright self-motion [2, 
3, 7] and/or during exposure to complex full-field vis-
ual stimuli [2]. The mechanism of this is thought to be 
related to poor sensory integration in individuals with 
PPPD, namely increased reliance on vision for balance 
[2, 8, 9]. Increased visual reliance in PPPD has been 
shown to be associated with balance performance [11, 
12] and likelihood to develop chronic symptoms [13]. 
In addition, in studies evaluating postural control in 
conditions which share features with the newly-defined 
PPPD, such as visual vertigo [14] or phobic postural 
vertigo [15], moving visual stimuli or deprivation of 
visual input generated increased postural sway, altered 
head and trunk kinematics or reduced gait speed. These 
findings suggest that assessing balance impairments 
and spatial disorientation in individuals with PPPD 
needs to be done in the presence of complex full-field 
visual stimuli. Nevertheless, typical balance tests do 
not replicate the complex visual environments encoun-
tered in everyday life. Furthermore, functional mobil-
ity [16] and psychological traits like anxiety [17] are 
known to relate to dynamic balance performance in 
different populations. Anxiety can interfere with visuo-
motor control of gait, and it has been shown that anx-
ious older adults rely more on vision for individual step 
control [18]. It is possible that in people with PPPD, 
factors such as anxiety may further impair dynamic bal-
ance performance. Indeed, in a recent model of visual 

control of posture, Bronstein [10] demonstrated how 
both reliance on vision and psychological variables (e.g. 
anxiety) can affect postural motor responses by altering 
the central processes which effectively mediate visual-
vestibular sensory weighting.

The four-square step test (FSST) [19, 20] is a test of 
dynamic balance originally developed for older adults. 
The FSST measures time for completion of a rapid 
sequential square-shaped stepping task clockwise and 
counterclockwise while avoiding stepping canes (or 
marks [21]) placed on the ground (Fig. 1).

The rapid stepping task requires changes in direction, 
and challenges motor planning and coordination more 
than straight-line walking. Over the years, the FSST has 
been validated as a functional test of balance for various 
clinical populations such as people with Parkinson’s dis-
ease, stroke or vestibular disorders [22]. In people with 
vestibular disorders, a cutoff of 12  s or longer suggests 
increased fall risk [19]. The FSST is conducted in a well-
lit room with no visual distractions. In addition, because 
the outcome of the FSST is duration of performance in 
seconds, the clinical FSST does not provide any informa-
tion on movement strategy and quality of performance 
beyond speed. In this work, we transferred the existing 
FSST [19, 20] into a virtual environment (FSST-VR). Vir-
tual reality (VR) is increasingly used for studying balance 
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Fig. 1 The traditional four-square step test sequence: a participant 
is asked to walk as fast as possible clockwise (broken arrows) and 
counterclockwise (dotted arrows) over four walking canes arranged 
in a cross-shaped form, while looking forward. The participant should 
step through using both feet, as the starting and ending point are 
similar (square 1)



Page 3 of 12Aharoni et al. J NeuroEngineering Rehabil           (2021) 18:55  

in individuals with dizziness and balance impairments 
[23–26]. In the current study, we used a head-mounted 
display (HMD) that projects semi-realistic immersive vis-
ual experiences (HTC Vive; [27]) and was shown to be a 
valid and reliable tool for measuring postural tasks [28]. 
We chose to develop the FSST-VR to quantify dynamic 
balance for several reasons. First, it allowed us to com-
pare performance of people with PPPD and controls on 
the FSST under different conditions of salient, mild visual 
load, such that they may encounter in their daily living. 
In addition to the ability to simulate a rich environment 
with moving visual stimuli which may be experienced in 
everyday life, the FSST-VR requires participants to move 
within this complex environment. Finally, HMDs accu-
rately track head kinematics and can therefore go beyond 
duration of performance to shed light on movement 
strategy and spatial orientation during movement [29, 
30]. Taken together, findings regarding head kinematics 
in complex salient visual environments could have major 
clinical implications, due to the portability, ease of use 
and cost of the HMD setup.

Objectives
The current study goal was to quantify dynamic balance 
performance in individuals with PPPD under various 
levels of visual load. Specifically, the aims of the cur-
rent study were: (1) to evaluate the feasibility of using 
the FSST-VR in individuals with PPPD and healthy indi-
viduals, both in terms of potential adverse events such as 
increased state anxiety or cybersickness and in compar-
ing performance duration with the traditional FSST (2) to 
assess spatiotemporal kinematic parameters of FSST-VR 
in people with PPPD compared to healthy individuals 
under different visual load conditions, and (3) to evaluate 
the association between self-reported measures, func-
tional mobility tests and dynamic balance performance of 
people with PPPD and controls during the FSST-VR.

Methods
This work is a part of a multi-site research project con-
ducted at New York University and University of Haifa. 
Data collection occurred in both sites. Preliminary 
results from this work were previously presented [31].

Participants
Participants with PPPD over the age of 18 were recruited 
via physicians, physical therapists, university advertis-
ing and social networks, and frequency-matched for age 
and gender with healthy participants. Participants in the 
PPPD group were diagnosed according to the ICD-11/
Bárány Society diagnostic criteria [2] as confirmed via a 
phone interview. Participants reported feelings of move-
ment, dizziness, unsteadiness or light-headedness over a 

period of > 3  months, exacerbated by movement and/or 
busy visual environments. Previously conducted exami-
nations included bloodwork, cardiac testing, brain and 
inner ear imaging and additional negative tests of hear-
ing, vision, touch and vestibular function (for details see 
[32]). Exclusion criteria for both groups were: a history 
of drug/alcohol abuse; active neuro-otologic disorders 
other than PPPD; new medication use or recent change 
in dosage less than one month prior to participation; 
pregnancy; neurological conditions affecting balance; 
musculoskeletal pain affecting gait or standing; impaired 
cognition; peripheral neuropathy and uncorrected visual 
impairments.

Procedure
A detailed description of the procedure was previously 
published [31]. Participants were asked to fill question-
naires regarding state and trait anxiety (State-Trait Anxi-
ety Inventory; STAI [33]), perceived disability due to 
dizziness (Dizziness Handicap Inventory, DHI [34]) and 
balance confidence (Activities-specific Balance Confi-
dence scale; ABC [35]) and perform functional mobil-
ity tests including the Timed-Up and Go test  (TUG 
[36]) and the traditional FSST using its original instruc-
tions [20]. Participants were asked to perform the FSST 
within the virtual environment (VE, a subway platform), 
under one of 3 visual conditions (Fig. 2): Simple (empty 
platform), Complex (people moving in anteroposterior 
direction), Complex + (same as complex with trains pass-
ing by). The FSST-VR did not include physical canes, but 
rather a virtual cross drawn on the floor in the VE [21]. 
Participants were verbally instructed as follows: "As in the 
FSST performed earlier, try and complete the sequence 
as fast as possible, stepping over the virtual lines and 
looking straight ahead". Looking down during the trial 
(lowering the head) resulted in repeating the trial.

The FSST-VR task was repeated 3 times for each con-
dition. The Simple condition was always introduced 
first—a 60–120  s practice trial followed by a recording 
of 3 repetitions of the FSST-VR, and the Complex condi-
tions followed in a randomized order. Participants wore 
on their chests a heart rate monitor (H10, Polar, Finland) 
synchronized with a mobile phone. The Simulator Sick-
ness Questionnaire (SSQ) and the STAI-state were com-
pleted prior to the FSST-VR and immediately afterwards. 
This task was part of larger VR protocol where all par-
ticipants performed the FSST-VR at the end. SSQ values 
reported here reflect scores immediately before and after 
the FSST-VR.

Head position was recorded using the HTC Vive and 
spatiotemporal head kinematics were extracted using 
custom-written MatLab code (version R2018a, Math-
works, Natick, MA). The head’s tangential velocity profile 
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was calculated filtered using a dual-pass low-pass Butter-
worth filter (20  Hz cutoff). Performance duration (time 
to complete FSST-VR) was calculated based on onset and 
offset times determined automatically as the first and last 
moment when the tangential velocity profile exceeded 
10% of peak velocity. In addition, as a control measure, an 
investigator timed the task duration using a stopwatch. 
Smoothness of movement was defined by the number 
of peaks in the tangential velocity profile per repetition. 
Since more peaks represent a jerkier movement, for 
maximal smoothness the FSST-VR should consist of 8 
peaks—one for each step. Spatial outcomes from the 
FSST-VR included AP and ML ranges of movement of 
the head (AP-ROM, ML-ROM). Heart rate was extracted 
from the mobile phone app and averaged for each trial.

Statistical analysis
Sample size was determined a-priori. In order to detect 
a small effect size (d = 0.25) with α = 0.05 and 95% power 
(for a within-between interaction repeated-measures 
analysis of variance), a total of 54 people was required. 
Normality of all demographic and study variables were 
tested using Kolmogorov–Smirnov test and the choice 

of tests was done accordingly. Changes in state anxiety 
and simulator sickness pre-post testing were evaluated 
using Wilcoxon signed-rank test. Performance dura-
tion differences between the FSST-VR and the tradi-
tional FSST and between manual and automatic timing 
within and between groups were evaluated using paired 
and unpaired sample t-tests, and agreement between 
them was measured using intraclass correlation coef-
ficients (ICC(2,1), single measures). The main effects of 
group and visual load were examined using a Repeated 
Measures Analysis of Variance for normally distributed 
variables, and Friedman’s test, Mann–Whitney U and 
Wilcoxon signed-rank tests for non-normally distrib-
uted variables. Spearman’s rank correlation coefficient 
was used for determining the association between self-
reported measures, functional mobility tests and FSST-
VR performance outcomes. All statistics were calculated 
using SPSS (version 20, IBM, Armonk, NY).

Results
General
Fifty-two people participated, among them 29 controls 
and 23 people with PPPD. One participant was excluded 

Visual load

a

b

Fig. 2 FSST-VR visual conditions: a Left: An individual wearing the head mounted display while performing the FSST-VR. Right: the respective virtual 
environment viewed via the HMD. b Varying visual loads, from simple (left): empty subway platform, to complex (center): people moving in the AP 
direction; to Complex + (right): additional trains moving around the platform
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from the PPPD group following outlier analysis. HR data 
for one control participant was missing in one condi-
tion due to technical reasons. Participant characteristics 
are described in Table  1. Participants reported mean 

symptom duration of 5.6 ± 7.8 years (range 0.4 to 30). In 
16 participants, the symptoms appeared suddenly and in 
2 participants the symptoms appeared gradually. Precipi-
tating events to symptom onset were varied, and included 
stress (N = 5), panic attack (N = 3), a flu (N = 3), an epi-
sode of BPPV (N = 2), a bumpy flight/bus ride (N = 3), 
giving birth (N = 2) and an episode of alcohol consump-
tion (N = 1). Event was unknown in 4 participants. People 
with PPPD had lower functional mobility  (t(49) = − 3.77, 
p < 0.01), lower balance confidence (Z = − 5.72, p < 0.01), 
more disability due to dizziness (Z = − 6.72, p < 0.01) and 
more trait anxiety  (t(49) = − 5.61, p < 0.01) than controls.

Feasibility of FSST-VR: No participants had any adverse 
effects during or following exposure to the virtual envi-
ronment. As shown in Table 2, state anxiety (STAI-state) 
and simulator sickness (SSQ) levels immediately after 
exposure to the FSST-VR did not increase significantly in 
either group.

In both groups, longer durations were demonstrated 
for the FSST-VR in the simple environment compared 
with the traditional FSST with no VR (PPPD:  t(21) = 21.03, 
p < 0.01; Controls:  t(28) = 29.18, p < 0.01; Tables  1 and 3) 
with no between-group differences. Agreement between 
FSST-VR and traditional FSST was r = 0.69 (PPPD: 
r = 0.84, 95% CI 0.66–0.93; Controls: r = 0.53, 95% CI 
0.20–0.75). When comparing the traditional FSST dura-
tion with the manual timing of the FSST-VR, no differ-
ences were noted between VR and non-VR versions, and 
agreement between them was r = 0.84 (PPPD: r = 0.9, 
95% CI 0.77–0.96; Controls: r = 0.79, 95% CI 0.60–0.90) 

Table 1 Demographic, self-reported measures and functional 
testing scores

Values in the table are mean and (standard deviation) for normally distributed 
variables, and median and [interquartile range] for non-normally distributed 
variables.

STAI-trait Trait score on the State-Trait Anxiety Inventory, ABC Activities-specific 
Balance Confidence scale, DHI/HDHI  Dizziness Handicap Inventory/Hebrew 
Dizziness Handicap Inventory, TUG  Timed-Up and Go test, FSST  Four Square 
Step Test. Statistically significant differences between groups are noted with ** 
(p < 0.01)

Outcomes Group

Controls
(n = 29)

PPPD
(n = 22)

Demographic measures

 Gender (male/female) 11/18 12/10

 Age (years) 30 [15.3] 32 [12.8]

 Height (cm) 170 [13] 170.5 [18]

 Weight (kg) 69.57 (14.86) 69.90 (14.58)

Self-reported measures

 STAI-trait (20–80) 35.83 (7.48) 51.36 (12.20)**

 ABC (0–100) 98.13 [4.99] 76.3 [26.24]**

 DHI (0–100) 0 54.60 (18.5)**

Functional testing scores

 TUG (s) 7.27 (1.43) 8.79 (1.40)**

 FSST (s) 5.64 (1.23) 6.27 (1.21)

Table 2 Anxiety and simulator sickness levels before and after FSST-VR

Values in the table are median and [Interquartile Range]. STAI state = the State-Trait Anxiety Inventory—state; SSQ = Simulator Sickness Questionnaire

Controls (n = 29) PPPD (n = 22)

Before After Median difference Before After Median difference

STAI state score (20–80) 30 [12] 32 [12] 1 [9.25] 41 [14] 41.5 [15] 0.5 [7.25]

SSQ score (0–48) 2 [6] 2 [5] 0 [2.5] 8 [8] 12 [6] 1 [8.25]

Table 3 Head kinematics and HR during performance of FSST-VR

Values in the table are mean and (standard deviation) for normally-distributed variables, and median and [interquartile range] for non-normally-distributed variables. 
ML-ROM = Mediolateral range of motion; AP-ROM = Anteroposterior range of motion, HR heart rate

Kinematic outcomes Simple environment Complex environment Complex + environment

Controls
(n = 29)

PPPD
(n = 22)

Controls
(n = 29)

PPPD
(n = 22)

Controls
(n = 29)

PPPD
(n = 22)

Duration (s) 7.48 [7.10] 7.46 [2.06] 7.15 [1.25] 7.45 [1.55] 7.23 [1.74] 7.39 [1.68]

Number of peaks (N) 10.66 [2.75] 11 [3.42] 10.33 [2.33] 11 [1.25] 10.33 [2.33] 10.83 [2.58]

ML-ROM (m) 0.28 [0.08] 0.30 [0.06] 0.28 [0.05] 0.31 [0.08] 0.29 [0.08] 0.31 [0.05]

AP-ROM (m) 0.34 (0.07) 0.36 (0.06) 0.37 (0.09) 0.37 (0.79) 0.37 (0.09) 0.37 (0.79)

HR (bpm) 92.15 (17.93) 97.46 (10.93) 95.68 (18.77) 100.94 (11.64) 96.79 (20.10) 101.71 (11.34)
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such that this difference can be attributed to the onset/
offset detection algorithm’s sensitivity.

Main effect of visual load and group
Kinematic parameters of FSST-VR in different conditions 
of visual load are listed in Table 3 and results of the ANO-
VAa are depicted in Fig. 3. AP-ROM increased with visual 
load in both groups  (F(2,98) = 3.77, p = 0.03, PES = 0.07). 
Visual load was also associated with increased HR, with 
no difference between groups  (F(2,96) = 13.37, p < 0.001, 
PES = 0.33). However, duration, smoothness or ML-
ROM did not change with visual load in either group. 
There were no between-group differences in head kine-
matics or HR in all visual environments. Given the lack of 
differences between the more complex visual conditions, 
for all subsequent analyses conditions of visual load were 
pooled into low (simple) and high (average of Complex 
and Complex +).

Association of self‑reported measures and functional 
mobility tests with performance of FSST‑VR
An example of spatial trajectories for 2 representative 
participants with PPPD is provided in Fig. 4. The pattern 
demonstrated in panel A is of decreased ROM in both AP 
and ML directions for a participant with high trait anxi-
ety, high perceived disability and low balance confidence. 
When examining the relationships between spatiotem-
poral variables and self-reported and functional mobility 
outcomes in both groups, two distinct patterns emerged. 
In the PPPD group self-reported factors such as high trait 
anxiety (STAI-trait), reduced balance confidence (ABC), 
and an increased sense of disability due to dizziness 
(DHI) were associated with reduced ML-ROM  (Fig.  5). 
A similar association emerged for functional mobility, 
where reduced functional mobility (high TUG score) 
was associated with reduced ML-ROM; trait anxiety and 
functional mobility were associated with reduced AP-
ROM as well (Table 4). These relationships were specific 
to the high visual load conditions. In contrast, among 

Fig. 3 Results of Analysis of Variance (ANOVA) for kinematic variables and heart-rate across groups (red = PPPD, blue = Control) and conditions 
(Simple = empty platform, Complex = busy platform, and Complex +  = busy platform with trains). Error bars denote 95% confidence intervals
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controls increased anxiety, reduced balance confidence 
and reduced functional mobility, were associated with 
an increase in AP-ROM. Functional mobility was further 
associated with increased ML-ROM in controls. These 
relationships were, again, specific to the high visual load 
conditions. HR was only positively associated with trait 
anxiety in controls, and increased movement smoothness 
was associated with better balance confidence and func-
tional mobility in controls. Importantly, no relationships 

were identified between any factor and movement dura-
tion in either group.

Discussion
This work aimed to establish a virtual-reality balance 
assessment for people with PPPD. To date, no tailored VE 
was designed for balance assessment or intervention in 
this population [37]. Given the prevalence of this condi-
tion and its impact on quality of life, this is an important 
first step in the design of such environments. Our para-
digm, of which preliminary results were published [31], 
was found to be feasible. First, we did not observe major 
changes in state anxiety, simulator sickness or heart rate. 
Second, between-group comparison of stopwatch perfor-
mance and automatic measurement of movement dura-
tion from the headset showed similar results. Note that 
the automatic detection of movement onset and offset 
generated a constant bias in terms of movement dura-
tion. This suggests that head kinematics may be used in 
order to detect movement duration of FSST within vir-
tual environments, but these 2 types of measurements 
(stopwatch and head kinematics) should not be directly 
compared. Performance duration of FSST-VR, like 
the traditional overground FSST, was similar between 
groups. While we did not identify between-group dif-
ferences in performance of the FSST-VR task, we found 
moderate associations between self-reported and func-
tional mobility outcomes with head kinematics during 
performance of the FSST-VR that were opposite between 
people with PPPD and controls specifically at the ‘high’ 
visual load environments.

The VEs in this study were designed to evaluate 
dynamic balance performance in individuals with PPPD 
under conditions of visual load similar to those which 
may be encountered in daily life. It should be noted that 
exacerbating symptoms was not the objective of the cur-
rent work. Symptoms of people with PPPD may be exac-
erbated by continued, rather than one-time exposure to 
visual stimuli [2]. Thus, it is possible that repeating the 
protocol over an extended period would have caused 
more symptoms in people with PPPD. We devised 3 lev-
els of visual load which were meant to simulate real-life 
conditions by modifying AP visual movement within 
the VE (avatars and/or trains) and the task included self-
motion. However, we found no main effect of group on 
any spatiotemporal variable in the FSST-VR, and the 
main effect of visual load was similar between groups—
in both groups AP-ROM increased with visual load. In 
addition, no significant differences were found in move-
ment duration between the visual conditions. In the cur-
rent study, as in that of others [7, 3] participants with 
PPPD had higher trait anxiety, increased disability due 
to dizziness, lower functional mobility and lower balance 

a
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Fig. 4 Three representative traces of head movement for two people 
with PPPD during performance of FSST-VR. Traces are aligned to a 
common starting point, marked by a black dot. a P02: STAI trait = 50, 
DHI = 84, ABC = 62.5. b P07: STAI trait = 25, DHI = 18, ABC = 88.8
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Table 4 Associations of self-reported and functional outcomes with FSST-VR performance

Values in the table are Spearman’s rank correlation coefficients and significance. * = p < 0.05, ** = 0 < 0.01.

Low = Simple visual environment; High = pooled Complex and Complex + visual environments; AP ROM = Anteroposterior forward–backward stepping; ML ROM = 
Mediolateral side-stepping; HR = heart rate; STAI-trait = the State-Trait Anxiety Inventory—trait; ABC = Activities-specific Balance Confidence scale; DHI = Dizziness 
Handicap Inventory/Hebrew Dizziness Handicap Inventory; TUG = Timed-Up and Go test; TMT-B = Trail making Test part B FSST = Four Square Step Test. Outcomes 
with no significant relationship with all variables were excluded from the table. These are, for both groups: Movement duration (low and high) and Number of peaks 
(high)

Self-reported/functional 
outcomes

Spatiotemporal head kinematic outcomes

Number of peaks 
low (N)

AP ROM low (m) AP ROM high (m) ML ROM high (m) HR low (bpm)

PPPD

 STAI-trait − 0.08 − 0.11 − 0.47* − 0.48* 0.04

 ABC − 0.18 0.26 0.37 0.53* − 0.34

 TUG 0.39 − 0.21 − 0.52* − 0.49* 0.01

 DHI − 0.03 − 0.29 − 0.31 − 0.51* 0.25

Controls

 STAI-trait − 0.2 0.34 0.38* 0.32 0.4*
 ABC 0.45** − 0.29 − 0.4* − 0.22 − 0.18

 TUG − 0.50** 0.39* 0.46* 0.53** 0.02
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11.0010.009.008.007.006.00

.50

.40

.30

.20

.10

STAI-trait
706050403020

M
L 

ra
ng

e 
of

 m
ot

io
n 

(m
) .40

.30

.20

.10

ABC
100806040

.50

.40

.30

.20

.10

.50

.40

.30

.20

.10

DHI
100806040200

M
L 

ra
ng

e 
of

 m
ot

io
n 

(m
)

M
L 

ra
ng

e 
of

 m
ot

io
n 

(m
)

M
L 

ra
ng

e 
of

 m
ot

io
n 

(m
)

r=-0.48

r=0.53

r=-0.51

r=-0.49

Fig. 5 Correlations between self-reported and functional outcomes and mediolateral range of motion (m) in people with PPPD during 
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confidence compared with controls (Table  1). However, 
we did not observe between-group differences in FSST 
performance either overground or in VR. This may be 
because of the nature of balance performance in PPPD, 
which seems to lie along the spectrum of healthy variabil-
ity in motor performance within the general population. 
Indeed, a recent study found symptoms of PPPD to be 
more prevalent in the general population than previously 
thought (with 50% of healthy participants scoring above 
the  25th percentile when examined using a self-reported 
measure of visual symptoms associated with PPPD [38]). 
The current work extends these findings to suggest that 
people with PPPD may not differ from controls when 
dynamic balance performance is examined. This similar-
ity suggests that people with PPPD may have effectively 
compensated for their limitations when performing this 
complex balance task. This compensation may be easier 
when the task requirement is to perform the movement 
as fast as possible, as was the case here. Indeed, previous 
work suggests that people with phobic postural vertigo, a 
precursor to PPPD, walk slower than controls when asked 
to walk at slow and at comfortable speeds, but at simi-
lar speed to controls when asked to walk fast [15]. These 
authors concluded that when requested to move fast, 
gait control may be shifted to a more automatic mode, 
requiring less integration of visual-vestibular input and 
enabling improved performance. This may be the case 
also for people with PPPD in the current work. It is pos-
sible that the requirement to walk fast in the FSST (over-
ground or in VR) underlies the absence of between group 
differences regardless of the visual input. It is also pos-
sible that people with PPPD were able to direct attention 
away from the visual distractors due to the complexity of 
the motor task. Future work should examine variants of 
this task with different levels of moving visual stimuli and 
at different movement speeds. With and without an addi-
tional concurrent cognitive task [39] These future direc-
tions are relevant for the design of VEs for the assessment 
of balance control in people with PPPD.

Despite the lack of between-group differences, this 
study demonstrated a consistent moderate association 
between self-reported and functional mobility outcomes 
and head kinematics during performance of the FSST-
VR, that was different between people with PPPD and 
controls. Specifically, within the PPPD group increased 
trait anxiety, perceived disability, reduced balance confi-
dence and reduced functional mobility were associated 
with smaller range of motion in AP and ML directions. 
These relationships may suggest that people with PPPD 
who are more anxious and less confident limit movement 
in the VR, i.e. adopt a “high risk” stiffening movement 
strategy [17]. In contrast, among controls increased anxi-
ety, decreased balance confidence and reduced functional 

mobility were associated with the opposite tendency—
that of increased range of motion within the VE. These 
inverse relationships may underlie the variability and lack 
of between-group differences in the current study. Still, 
the FSST-VR and specifically the spatial measure of head 
ROM, were able to discern subtle alterations in task per-
formance within both groups. These relationships sug-
gest that potentially, a more fine-grained assessment of 
movement characteristics in people with PPPD, i.e. dif-
ferentiation according to self-reported and functional 
characteristics, is required in order to reveal the origin 
of between-subject variability in symptomatology and 
performance of dynamic balance tasks. A recent study 
[5] suggests that a possible mechanism for PPPD symp-
tomatology is an impairment in spatial navigation in the 
absence of reliable visual cues. Brain imaging studies 
identified decreased activity [40] and functional connec-
tivity [41] XXXof the precuneus, an area associated with 
spatial processing, in people with PPPD. Results from the 
current study, which examined self-motion under com-
plex visual load conditions (but with limited visual cues 
for self-motion), suggest that specific characteristics of 
PPPD are associated with limited ROM. Thus, the spatial 
aspect, rather than the temporal aspect of performance 
of this dynamic balance task, may be affected by PPPD.

The relationships identified between head kinemat-
ics, self-reported measures and functional mobility 
outcomes were specific to the high conditions of visual 
load. Previous work has shown that when performing a 
static balance task people with phobic postural vertigo 
(a precursor to PPPD as recently defined) demonstrate 
increased postural sway when the postural task is eas-
ier, but not when postural demands increase [42]. The 
increased postural demand may result in increased effort 
to stabilize. Our finding that people with PPPD who were 
more symptomatic moved less only in the high load con-
ditions, suggests that the increased visual load, although 
not significantly disturbing performance for people in the 
PPPD group, may have been difficult enough to expose 
the role of specific self-reported and functional charac-
teristics in people with PPPD. This finding needs to be 
examined in light of Bronstein’s model of visuo-postural 
control of balance [10]. According to this model, the 
effect of individual characteristics such as trait anxiety 
on postural control may be navigated via their impact 
on upregulation of visual cues (in lieu of vestibular and 
proprioceptive cues). This may explain the appearance 
of these relationships specifically in the high load visual 
conditions in the current work.

A particularly interesting relationship identified in our 
sample of people with PPPD is the negative relation-
ship between trait anxiety and spatial ROM during the 
FSST-VR in high visual load. The FSST-VR is a complex 
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balance task, requiring increased awareness of body loca-
tion and orientation, as well as planning complex direc-
tional changes. It has been shown that when facing an 
anxiety-inducing postural threat, high attention to self-
movement predicts subjective perception of instability 
in healthy older individuals under normal visual condi-
tions [43]. It may be that people with PPPD and high trait 
anxiety, when faced with high visual loads, are worried 
of losing their balance, therefore freeze degrees of free-
dom and as a result limit spatial ROM during the task. 
This could be attributed to interoceptive avoidance [44] 
which is also the basis for a cognitive-behavioral model 
explaining PPPD [45]. Alternatively, it may be that peo-
ple with PPPD and anxiety limit head range of motion 
only in order to stabilize the head in a top-to-bottom 
frame of reference [46]. Since kinematics of the feet was 
not measured in the current work, we are unable to dis-
cern between these possibilities. In any case, this strategy 
of limitation of movement paradoxically simplified the 
transitions required for efficient temporal performance of 
the task, as demonstrated in this study. A possible mech-
anism which can explain our finding of reduced self-
motion in busy environments among people with PPPD 
and high trait anxiety was demonstrated in a recent study 
by Passamonti et al. [47]. In their study, functional brain 
connectivity was evaluated under conditions of very high 
visual load (virtual rollercoaster ride). Their work demon-
strated that in people with PPPD, neuroticism was asso-
ciated with more activation in the inferior frontal gyrus, 
and higher connectivity between this area and occipital 
regions [46]. These relationships, which were not identi-
fied in controls, may translate to increased attention to 
visual motion stimuli in busy environments and to lim-
ited self-motion, as demonstrated here. Further work is 
required, however, to evaluate the cognitive and sensory 
mechanisms underlying self-motion of people with PPPD 
within virtual environments.

The FSST, which was adapted here to a virtual envi-
ronment, was originally designed to evaluate fall risk in 
older adults [20] and was validated for use with various 
clinical populations [22] including people with vestibular 
disorders [19]. In this work, we added outcome meas-
ures of spatiotemporal head kinematics, specifically head 
ROM in different movement directions, using a relatively 
inexpensive HMD (HTC Vive) which we have recently 
demonstrated to provide valid and reliable information 
of head kinematics in postural tasks [28]. Indeed, head 
movement ROM but not movement time were associ-
ated with functional characteristics in both groups in this 
study. This provided important information on dynamic 
balance which was missing from the overground version 

of the test. In recent years, a proliferation of use of wear-
able sensors is demonstrated in various fields of reha-
bilitation [48]. Our results highlight the importance of 
expanding the scope of kinematic outcomes from clini-
cal tests when integrating them with novel technology 
[49, 50], as well as the feasibility of merging virtual reality 
applications with advanced motion sensing technology 
[48].

Some limitations to this study should be acknowl-
edged. First, following the instructions of the overground 
FSST, the VR task instructions did not involve any refer-
ence to range of motion (only to performance speed and 
gaze). Indeed, decreased head ROM could have resulted 
in faster movement—but this was not the case here as 
movement time did not vary with personal characteris-
tics, either self-reported or measured, in either group. 
An additional limitation involves the measure of ROM 
derived from head kinematics, which may not accurately 
represent stepping kinematics when markers are attached 
to the feet. Additional work will examine the relation-
ships between head movement and stepping parameters 
during performance of the FSST-VR, specifically among 
people with PPPD, in order to ascertain the origin of 
decreased head ROM in the more severely affected par-
ticipants. It is important to note that this work may have 
been underpowered to detect correlations between func-
tional and kinematic characteristics for each group sepa-
rately. While this will need to be replicated in future work 
with larger samples, note that the relationships identified 
were consistent in directions for the different measures 
within each group. The cross-sectional design of this 
work precluded the ability to determine causal relation-
ships between the different self-reported and functional 
mobility outcomes and head kinematics. Indeed, while 
highly anxious individuals are more prone to develop 
PPPD [13], the fact that multiple factors were associ-
ated with FSST-VR performance raises the question of 
whether it is a condition-specific association or rather 
an effect associated with anxiety per se, as it is known 
that people with anxiety disorders have impairments in 
postural control [51]. Finally, the protocol was not fully 
randomized, rather the simplest condition was always 
introduced first. This was done due to our concern that 
due to the challenge in the FSST task, introducing it in 
VR could be overwhelming and provoking, particularly 
for people with PPPD. We wished to minimize these 
adverse effects and maximize patients’ comfort, and 
therefore opted out of full randomization and chose to 
introduce the simplest condition first. The current feasi-
bility results indicate that in future studies, full randomi-
zation may be possible.
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Conclusions
The current work demonstrates that performance of 
an FSST task in VR is feasible for people with PPPD. 
Overall, people with PPPD performed the FSST-VR in 
a manner similar to controls. However, the opposite 
relationships identified between self-reported and func-
tional characteristics with head kinematics in people 
with PPPD vs. controls under “high” visual load sug-
gest that a more detailed investigation of dynamic bal-
ance characteristics in people with PPPD is warranted. 
These results further support the inclusion of spati-
otemporal head kinematics as outcomes for dynamic 
balance tasks, in addition to existing clinical outcomes 
(e.g. duration). Results from this work will support the 
development of immersive virtual environments for 
assessment and treatment of people with PPPD.
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