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Frequency‑dependent force direction 
elucidates neural control of balance
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Abstract 

Background:  Maintaining upright posture is an unstable task that requires sophisticated neuro-muscular control. 
Humans use foot–ground interaction forces, characterized by point of application, magnitude, and direction to 
manage body accelerations. When analyzing the directions of the ground reaction forces  of standing humans in 
the frequency domain, previous work found a consistent pattern in different frequency bands. To test whether this 
frequency-dependent behavior provided a distinctive signature of neural control or was a necessary consequence of 
biomechanics, this study simulated quiet standing and compared the results with human subject data.

Methods:  Aiming to develop the simplest competent and neuromechanically justifiable dynamic model that could 
account for the pattern observed across multiple subjects, we first explored the minimum number of degrees of 
freedom required for the model. Then, we applied a well-established optimal control method that was parameterized 
to maximize physiologically-relevant insight to stabilize the balancing model.

Results:  If a standing human was modeled as a single inverted pendulum, no controller could reproduce the 
experimentally observed pattern. The simplest competent model that approximated a standing human was a double 
inverted pendulum with torque-actuated ankle and hip joints. A range of controller parameters could stabilize this 
model and reproduce the general trend observed in experimental data; this result seems to indicate a biomechani-
cal constraint and not a consequence of control. However, details of the frequency-dependent pattern varied 
substantially across tested control parameter values. The set of parameters that best reproduced the human experi-
mental results suggests that the control strategy employed by human subjects to maintain quiet standing  was best 
described by minimal control effort with an emphasis on ankle torque.

Conclusions:  The findings suggest that the frequency-dependent pattern of ground reaction forces observed in 
quiet standing conveys quantitative information about human control strategies. This study’s method might be 
extended to investigate human neural control strategies in different contexts of balance, such as with an assistive 
device or in neurologically impaired subjects.
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Background
Controlling balance during standing and walking is a fun-
damental necessity for human mobility. Although main-
taining upright posture involves little overt movement, 

its inherently unstable nature poses an interesting senso-
rimotor control problem [1–4].

While many recent studies have investigated balance 
by applying perturbations to the individual [1, 5–7], it 
is also important to understand how humans maintain 
their balance without external perturbations, i.e., dur-
ing quiet standing. In particular, the center of pres-
sure and the fluctuations of the center of mass have 
been commonly used to evaluate balance performance 
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during quiet standing [8, 9]. However, studying the 
center of mass and/or the center of pressure trajectories 
alone is insufficient to describe the complex dynam-
ics and control of the multi-segmented human body. 
Insights can be gained by investigating how humans 
use the direction of their foot–ground interaction 
force, which is the outcome of a complex sensorimo-
tor control process that involves timed muscle activity, 
biomechanical constraints, and sensory feedback from 
multiple pathways. Importantly, the ground reaction 
forces directly contribute to the centroidal dynamics 
of the human body [10]. The orientation of the ground 
reaction force vector and where its line-of-action lies 
relative to the center of mass may give further insight 
into how human subjects control the translational 
motion of the center of mass and net angular motion of 
the body.

Recently, Gruben and colleagues suggested a new 
method to study the relation between the orientation of 
the ground reaction force vector and the center of pres-
sure in human subjects during quiet standing [11, 12]. 
Net ground reaction forces at different times, which have 
different orientations and points of application (centers 
of pressure), intersect at some point in space. The authors 
defined this point as the intersection point and examined 
its relation to the center of mass of the standing individ-
ual. Because the height of the intersection point relative 
to the center of mass determines the translational and 
angular components of centroidal accelerations, it pro-
vides a compact geometric representation that is useful 
for understanding the dynamics and control of human 
standing balance. When analyzing the force vectors in 
the frequency domain, this previous study [11] found that 
the vertical position of the intersection point exhibited 
a consistent pattern across subjects. With this observa-
tion, the authors suggested that the frequency-dependent 
intersection point characterizes the neural controller of 
human balance. However, the biomechanics of upright 
posture might account for some of the variation of inter-
section point height across different frequency bands. 
Therefore, this study aimed to elucidate the extent to 
which the frequency-dependent variation of the intersec-
tion point could be attributed to neural control strategies 
or to biomechanics.

To this end, the first objective was to develop the 
simplest competent and neuromechanically justifiable 
dynamic model that could account for the consistent pat-
tern observed across multiple subjects [11]. Second, we 
examined the hypothesis that the neural control strate-
gies in standing balance would economize control effort 
[6]. To test this hypothesis, we took advantage of the 
linear quadratic regulator (LQR) [13], a well-established 
optimal control method, that enabled a systematic search 

of physiologically-plausible controller parameters [2, 
14–16].

Methods
Human experiment
Experimental procedure
In the previous study [11], ten unimpaired, young par-
ticipants (24.2 ± 10.3 years) were asked to stand quietly 
while viewing a mark at head height 1 m away. Each par-
ticipant completed one 50  s trial standing on a 6-axis 
force-plate measuring at 1000 Hz. The analysis was con-
fined to the sagittal plane. The subjects’ average mass and 
height were 71 kg and 1.75 m, respectively.

Intersection point
The intersection point was defined as a point in space 
where the net ground reaction force vectors at adjacent 
time-steps intersect [11], as illustrated in Fig.  1. The 
intersection point is a geometric representation of the 
relation between the ground reaction force and the center 
of pressure. This point was originally identified with the 
goal to understand how humans maintain balance during 
walking [17, 18]; Gruben and colleagues were the first to 
apply it to understand the mechanics of standing balance 
[11].

Assuming subtle movements of the body and small 
variations in ground reaction force orientations, the ori-
entation of the ground reaction force ( θF ) can be approxi-
mated as

where Fx and Fz are the horizontal and vertical compo-
nents of the net ground reaction force, respectively.

(1)−
Fx

Fz
= tan θF ≈ θF ,

Fig. 1  a Net ground reaction force, F, made up of horizontal and 
vertical components, Fx and Fz , acts at the center of pressure, CoP, and 
has an orientation, θF . The center of mass, CoM, is also shown. b Two 
force vectors from two different time points, which are defined by 
their respective θF and CoP, intersect at the intersection point, IP
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The height of the intersection point (IP) of two forces at 
adjacent times ( F(t), F(t + δt) ) is

where CoP(t) is the center of pressure at time t.

Frequency‑dependence of the intersection point
Investigating the system response in the frequency 
domain often yields insight into the structure of a 
dynamic system. To parse the time series into frequency 
bands, a Hamming window with the length of the entire 
data set was first applied to both θF and CoP signals. θF 
and CoP signals were then bandpass-filtered (zero-lag, 
2nd-order Butterworth) and parsed into bands of 0.2 
Hz width centered on frequencies from 0.5 to 7.9 Hz (38 
nominally non-overlapping bands). Finally, the principal 
eigenvector of the best-fit covariance matrix of θF plotted 
against CoP (both signals detrended to have zero-mean) 
was extracted for each band. Its slope is equivalent to the 
inverse of the intersection point, as illustrated in Fig. 2.  
Assuming small variation between the forces,

the lower-order component of the intersection point 
height (IP) can be approximated as

and re-arranging (2) results in

IP(t) =
CoP(t)− CoP(t + δt)

θF (t)− θF (t + δt)
,

θF (t + δt) ≈ θF (t)+ δθF (t),

CoP(t + δt) ≈ CoP(t)+ δCoP(t),

(2)IP ≈
dCoP

dθF
,

Gruben and colleagues [11] found that the vertical 
position of the intersection point exhibited a consistent 
pattern across subjects: it was above the center of mass 
at low frequencies and decreased as frequency increased, 
reaching an asymptote below the center of mass at higher 
frequencies as shown in Fig. 4a in the  Results section.

Simulation
Single inverted pendulum model
We first investigated whether a single inverted pendu-
lum, which is a widely accepted model for human quiet 
standing [4], could reproduce the experimental observa-
tions. Theoretical analysis showed that the model could 
not adequately reproduce the experimental observation 
in [11], because the intersection point height of the single 
inverted pendulum was always above the center of mass 
(Appendix 1). Hence, a multi-degree-of-freedom model 
was required.

Double inverted pendulum model
The double inverted pendulum model that was used to 
simulate a multi-segmented human body is illustrated 
in Fig. 3. The lumped model parameters summarized in 
Table  1 used the anthropometric distribution of male 
subjects in the sagittal plane [19] based on the average 
height and weight of the subjects from [11]. Any mass 
and length below the ankle was neglected, as the simu-
lation assumed the ankle to be a pin joint. The center of 

(3)dθF =
1

IP
dCoP.

Fig. 2  Relation between θF and CoP for one simulation trial. The 
data were processed by filtering the CoP and θF signals using a 
2nd-order bandpass filter with a 0.2 Hz wide frequency band. The 
principal eigenvector of the covariance matrix of the filtered data was 
extracted. The intersection point (IP) was computed as the inverse of 
the angle of the principal eigenvector. Note that the time series of the 
data was approximated as an ellipse in this schematic illustration

Fig. 3  Double inverted pendulum model with angle ( qi ) and torque 
( τi ) conventions and parameter values for mass ( mi ), length ( li  ), center 
of mass ( lci ), and moment of inertia about the center of mass height 
( ji ) for each link i. The direction of gravity (g) is also defined
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mass positions were measured with respect to the ankle 
joint for link 1 and the hip joint for link 2. The moments 
of inertia were calculated about the center of mass of 
each link.

The equations of motion of the double inverted pen-
dulum were

where M(q) ∈ R
2×2 is the inertia matrix, C(q, q̇) ∈ R

2×2 
contains the Coriolis and centrifugal terms, G(q) ∈ R

2×1 
are gravitational torques, and τ = [τ1, τ2]

T ∈ R
2×1 is the 

joint torque vector (see Appendix 2 for full symbolic 
inertia, centrifugal, and gravitational matrices). General-
ized coordinates are q = [q1, q2]

T ∈ R
2×1 as defined in 

Fig. 3. These variables represent the sagittal plane angular 
displacements of the ankle and hip joints, respectively.

Defining the state vector as x = [qT , q̇T ]T  , (4) can be 
rewritten in state-determined form as

(4)M(q)q̈ + C(q, q̇)q̇ +G(q) = τ

The internal perturbations that cause persistent sway in 
quiet standing were simulated by additive noise

where τ ctl = [τctl,1, τctl,2]
T are the ankle and hip tor-

ques that stabilize the body. In this study, we assumed 
the noise w ∈ R

2×1 was white, mutually uncorrelated, 
and  that it followed a zero-mean Gaussian distribution 
with covariance matrix E{wwT } = diag{σ 2

1 , σ
2
2 } . The 

relative strength of the two noise sources was defined as 
σr = σ1/σ2 , where σ1 and σ2 are the noise at the ankle and 
hip, respectively.
Fx and Fz , the horizontal and vertical components of 

the ground reaction force, were computed as follows

where m = m1 +m2 is the total mass of the body, r̈CoM,x 
and r̈CoM,z are the horizontal and vertical components of 
the center of mass acceleration. The center of pressure 
was then computed as

Linear quadratic regulator
This study used a nonlinear model with a linear control-
ler. Hence, the nonlinear equations of motion (5) were 
first linearized about the upright balancing posture at 
rest ( x∗ = 0 and τ ∗ = 0 ) as follows

(5)ẋ =

[

q̇

−M(q)−1(C(q, q̇)q̇ +G(q))+ τ

]

.

(6)τ = τ ctl + w,

Fx = mr̈CoM,x, Fz = m(r̈CoM,z + g),

(7)CoP =
τ1

Fz
.

Table 1  Lumped model parameters

Symbol Parameter (units) Value

Link 1
Lower body

Link 2
Upper body

m Mass (kg) 26.30 42.88

l Length (m) 0.867 0.851

lc Center of mass height (m) 0.589 0.332

j Moment of inertia ( kgm2) 1.400 2.227

g Gravitational acceleration (m/s2) 9.81

Fig. 4  Comparison of the intersection point’s frequency-dependence from: a Human experimental data (reproduced from [11] with permission) 
and b Simulation data with best-fit parameters. c The mean of the best-fit simulation data overlaid on the median of the human data from [11]. 
Within the frequency band from 1.2 to 2.6 Hz for the human data, there was no significant difference (with 95% confidence) between the mean of 
the intersection point height and the center of mass height. This frequency band is marked by the shaded region. The high-frequency asymptote 
(3–8 Hz range) of the intersection point was 0.479± 0.028 and 0.468± 0.021 for the human and simulation data, respectively (with 95% confidence)



Page 5 of 12Shiozawa et al. J NeuroEngineering Rehabil          (2021) 18:145 	

where x̄ = x − x∗ , τ̄ = τ ctl − τ ∗ , and Alin and Blin are 
linearized state and input matrices, respectively (see 
Appendix 3 for the linearized state-space matrices).

As normal human standing is evidently stable in the 
upright position, the LQR method was chosen as it guar-
antees a stable closed-loop system1. The LQR is an opti-
mal linear state-feedback controller that minimizes the 
quadratic cost function

to determine control torques

where KLQR is the optimal control gain matrix found via 
the LQR procedure. The matrices Q and R in (9) weight 
the state and input deviations from zero.

We parameterized the input weighting matrix as

to facilitate exploration of two important features: the 
relative cost between state deviation and control effort, 
determined by the parameter α , and the relative magni-
tude of hip and ankle effort, determined by the parameter 
β.

When α is large, control effort is reduced to a minimum 
value required for stability. Thus, with this choice of α , 
the need to add joint torque limits to the model was elim-
inated. Additionally, with large α , the resulting closed-
loop system has a well-defined behavior (placing its poles 
at the mirror images of the unstable open-loop poles) 
that is independent of the state weighting matrix Q . To 
evaluate the working hypothesis that humans economize 
effort, the minimal-effort solution was of interest. Conse-
quently, the choice of the state weighting matrix was not 
critical, and Q = I4 , the identity matrix with dimension 
4, was chosen to equally penalize each state’s deviation 
from equilibrium.

When β > 1 , the ankle torque is penalized more heav-
ily than the hip, and vice versa when β < 1 . Since the 
LQR controller minimizes a quadratic cost function (9) 
to achieve stability, only the symmetric components of R 
affect the result. The diagonal values of R were selected 
such that the size of the matrix (i.e., the product of its 

(8)˙̄x = Alinx̄ + Blinτ̄ + Blinw,

(9)J =

∫ ∞

0
[x̄T (t)Qx̄(t)+ τ̄

T (t)Rτ̄ (t)]dt

(10)τ ctl = −KLQRx,

(11)R = α

[

β 0
0 1/β

]

,

eigenvalues) was always equal to 1 and only the compo-
nents’ ratio affected the results. This choice of parameters 
also allowed for conclusions to be drawn about the rela-
tive penalty on the ankle and hip joints.

Simulation protocol
The simulation was conducted using semi-implicit 
Euler integration. The initial condition was set to 
x0 = [0, 0, 0, 0]T . Replicating the experimental protocol 
of  [11], each simulation was run for 50 s at 1000 Hz. All 
simulations were conducted in MATLAB 2020a (Math-
works, Natick MA).

To observe the effect of altering the LQR param-
eters on the frequency-dependence of the intersection 
point and to find the simplest model that could repro-
duce the human data, various parameters were tested 
using the following procedure. First, the parameter that 
weights the relative cost of the control input, α , was set 
to a large value to ensure minimal control ( α > 104 ). 
This design choice effectively reduced the number of 
parameters to two ( β and σr ) as the essential intersection 
point frequency-dependence (above the center of mass 
at low frequencies, below at high frequencies) varied lit-
tle when α was sufficiently large. Then the noise ratio, 
σr , was adjusted to produce the best fit at high frequen-
cies while setting β = 1 . Lastly, β was varied to produce 
the best fit in the frequency range where the intersec-
tion point height was approximately equal to the center 
of mass height. At the same time, it was ensured that the 
asymptotic behavior and the fit at high frequencies were 
maintained.

40 trials were conducted for each tested parameter set 
to enable statistical analysis of the simulated dependence 
of the intersection point height on frequency.

Comparison of simulation and human experimental results
When determining the goodness of fit across different 
model parameter conditions, the average difference of 
the simulated data and the human subject data from [11] 
was computed over selected frequency bands by

where Human Datai is the median of the intersection 
point height as a fraction of the center of mass height 
reported by [11] at each frequency band; Simulation Datai 
is the average intersection point height as a fraction of 
the center of mass height across 40 trials of the simula-
tion data in a given frequency band; Nband is the num-
ber of frequency bands for which the difference in the 

Average difference

=

∑N
i=1 Human Datai − Simulation Datai

Nband
,

i = 1, 2, . . .Nband .

1  To ensure stability, the state-space matrices Alin and Blin must be a control-
lable pair, the Q matrix must be symmetric positive semi-definite, and the R 
matrix must be symmetric positive definite.
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data was computed. Because balance is characterized by 
only small motions, a constant center of mass height was 
assumed.

To identify the onset of the high-frequency asymp-
tote, the human data were fit to an exponential function. 
The best-fit decay constant was T ∼= 1 Hz. Assuming 
the curve reached its asymptote at frequency ∼= 3T  , 
the asymptote started at 3 Hz. Therefore, the difference 
between the simulated and experimental asymptote was 
evaluated at frequencies from 3 to 8 Hz ( Nband = 25 ). 
To evaluate the effect of different controller parameters 
on the frequency range in which the experimentally 
observed intersection point height crossed the center of 
mass height, the average difference between simulation 
and human data was evaluated at frequencies from 1.2 
to 2.6 Hz ( Nband = 7 ). This range encompassed the fre-
quencies in which the observed intersection point height 
was not statistically different from the center of mass 
height in  [11]. One-sample t-tests were used to evaluate 
the difference between the center of mass height and the 
simulated mean intersection point height. The 95% con-
fidence interval of the mean of the difference was com-
puted as well.

Results
Minimum required model complexity
Theoretical analysis showed that a single-degree-of-free-
dom inverted pendulum model could not reproduce the 
experimental observation in [11]. The intersection point 
height of a single inverted pendulum model was always 
above the center of mass for any selection of param-
eters (Appendix 1). Hence, we proceeded with a double 
inverted pendulum, i.e. with two degrees of freedom, to 
approximate the multi-segmented human body.

Best‑fit model parameter set
The simulated center of mass height did not deviate far 
from 0.97 m, the height of the center of mass when per-
fectly upright, justifying the assumption of small angular 
displacement. In what follows, the center of mass height 
was therefore assumed to be constant.

The simulated frequency-dependent intersection 
point response for the parameter set, α = 106 , β = 0.3 , 
σr = 0.9 , best matched the human subject data from [11] 
as shown in Fig. 4. Both simulations and human experi-
mental results show that the intersection point height 
crossed the center of mass height in similar frequency 
bands (1.2–2.6 Hz) and had similar asymptotes at higher 
frequencies. The difference compared to human data for 
this parameter set was 0.101± 0.040 in the 1.2–2.6 Hz 
range and 0.011± 0.019 in the 3–8 Hz range (both within 
the 95% confidence interval). While the average mass and 

height in our simulations were taken from [11] to afford 
best comparison with the human data in Fig.  4c, vary-
ing the mass and height parameters over physiologically 
plausible values did not significantly affect the results.

Varying model parameters
Varying the simulation parameters affected both the fre-
quency at which the intersection point crossed the height 
of the center of mass and the high-frequency asymptote. 
The effect of changing parameter values is presented in 
Fig. 5a–c. The differences between simulation and human 
data for certain parameter sets are shown in Fig. 5d, e.

Effect of α
As shown in Fig.  5a, when α , the weighting of con-
trol effort relative to state deviation, was increased, the 
intersection point crossed the center of mass at lower 
frequencies. For example, when α was varied from 10−4 
to 106 , the frequency at which the intersection point 
crossed over the center of mass moved from 3.9 to 1.5 
Hz. As expected from theory, when α was relatively large 
( α > 104 ), there was little effect of varying its value on 
the difference between human and simulation data for 
different model parameter sets, as shown in Fig. 5d, e.

Effect of β
As shown in Fig.  5b, when β was decreased, i.e. when 
hip control was penalized more than ankle control, the 
intersection point crossed the center of mass at higher 
frequencies. For example, when β was varied from 1 to 
0.3, the frequency at which the intersection point crossed 
over the center of mass moved from 1.1 to 1.5 Hz. In 
Fig. 5d, β = 0.2 was shown to be the parameter with the 
smallest difference (0.024) in the 1.2–2.6 Hz range when 
α = 106 . However, both the selection of β = 0.2 and 
β = 0.1 sacrificed the high-frequency fit, increasing the 
absolute value of the difference in that range by 0.102 and 
0.292, respectively, compared to β = 0.3 when α = 106 . 
As β deviated from β = 0.3 , the absolute value of the dif-
ference in the 1.2–2.6 Hz range increased by 0.181 when 
β = 1 and α = 106.

Effect of σr
Adjusting σr shifted the high frequency asymptote (3–8 
Hz) of the intersection point, as shown in Fig. 5c. Varia-
tion of the high-frequency asymptote of the intersection 
point height was predicted by the analysis presented in 
Appendix 4. Here, the two extremes, zero noise in the 
ankle ( σr = 0 ) and the hip ( σr = ∞ ), provided lower and 
upper bounds for the high frequency asymptote. When 
compared to the best-fit height of the intersection point 
at high frequencies, the asymptote was 55% higher when 
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σr = 2 (more noise in the ankle) and 30% lower when 
σr = 0.5 (more noise in the hip). In Fig.  5e, σr = 0.9 is 
shown to be the best-fit parameter with the smallest dif-
ference value, at −0.011 when α = 106 . As σr deviated 
from the best-fit value, the difference increased to 0.245 
when σr = 2 and to −0.154 when σr = 0.5 , when α = 106.

Discussion
This study analyzed a deliberately simplified model of 
human quiet standing with a stabilizing linear optimal 
controller to better understand the origin of the fre-
quency-dependent intersection point reported by Gru-
ben and colleagues [11].

The simplest competent model required two degrees of 
freedom (ankle and hip) with a stabilizing controller that 
used minimal control effort and more ankle torque than 
hip torque. We successfully identified a narrow range of 
parameters that provided not only a quantitative repro-
duction of experimental observations, but also qualitative 
insight.

Neural control or biomechanics?
Despite the biomechanical constraints that limit the 
admissible center of mass accelerations and the centers of 
pressure [14, 20], the ground reaction forces  that com-
ply with these constraints are infinite [17, 21]. Beyond the 
obvious fact that the musculo-skeletal system is inher-
ently unstable without a neural controller, we should 
not expect mechanics alone to determine the intersec-
tion point’s frequency dependence. When Gruben and 
colleagues [11] analyzed the frequency dependence of 
the intersection point, they observed a consistent trend 
across multiple subjects and suggested that this consist-
ency was the signature of a neural controller employed by 
humans during balance.

The results of our simulations replicated the frequency 
dependence of the intersection point reported for human 
standing in the sagittal plane—the intersection point was 
above the center of mass at low frequencies and below 
the center of mass at high frequencies, as shown in Fig. 4. 
To understand the general frequency-dependent trend of 
the intersection point, first consider an extreme case at 
very low frequencies where the two-degree-of-freedom 

Fig. 5  Effect of varying parameter values on the frequency-dependence of the intersection point. Each model parameter was varied with respect 
to the “best-fit” parameter set that closely resembled human subject data observed in [11] ( α = 10

6 , β = 0.3 , σr = 0.9 ). The height of the center 
of mass is indicated by a dashed line. The shaded region, based on human experiments, indicates the frequency band in which the mean of the 
intersection point height was not significantly different from the center of mass height in [11]. a The parameter α determined the cost of the overall 
magnitude of the control effort relative to state deviation from equilibrium. When varying α , the other parameters were set to β = 0.3 and σr = 0.9 . 
b The parameter β determined the relative cost of ankle and hip torque. When β > 1 , there was more penalty on ankle torque. When varying β , 
the other parameters were set to α = 10

6 and σr = 0.9 . c The parameter σr determined the relative strength of noise in the ankle and the hip. 
When σr > 1 , ankle noise was greater than hip noise. When varying σr , the other parameters were set to α = 10

6 and β = 0.3 . d The difference 
of the intersection point in the 1.2–2.6 Hz frequency range of the simulated data compared to the human subject data [11] with respect to β . 
The parameter σr was kept at 0.9. e The difference of the intersection point in the 3–8 Hz frequency range of the simulated data compared to the 
human subject data [11] with respect to σr . The parameter β was kept at 0.3. In both cases, the effect of varying α is also shown. The error bars 
indicate the 95% confidence interval of the mean of difference when α = 10

6
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pendulum behaves similar to a single rigid body: its inter-
section point would be above the center of mass, like that 
of the single inverted pendulum (Appendix 1). A double 
inverted pendulum can also be stabilized solely by hip 
torque, i.e. zero ankle torque. In the latter case, the sys-
tem would exhibit higher frequency behavior while main-
taining the intersection point height to be zero (from (7) 
and (2) with τ1 = 0 ). This indicates that the general trend 
for the intersection point to be above the center of mass 
at low frequencies and below at high frequencies may be 
a consequence of biomechanics, i.e. a double inverted 
pendulum stabilized about upright posture.

However, biomechanics cannot account for the spe-
cific details of the frequency variation of the intersection 
point height. Somewhere between the low-frequency 
and high-frequency regimes, the intersection point must 
cross from above to below the center of mass height; this 
particular crossing point is not specified by biomechan-
ics. Similarly, biomechanics does not dictate the asymp-
tote to which the intersection point height converges at 
high frequencies. In fact, both the intersection point’s 
asymptote and the frequency at which the intersection 
point height crossed that of the center of mass varied 
substantially across the tested parameter values. It was 
only a small set of model parameters that could replicate 
human behavior. Therefore, we conclude that the details 
of the profile of intersection point height with frequency 
reflect a neural control strategy used by humans during 
quiet stance.

Physiologically‑plausible best‑fit parameters
The main contribution of this work is to deploy a delib-
erately-simplified mathematical analysis to elucidate how 
experimental observations of the frequency-dependence 
of the intersection point may inform the neural control of 
balance. To conduct this quantitative analysis, the model 
parameters were systematically varied such that the sim-
ulated response of the  intersection point’s frequency-
dependence  closely replicated human data. To facilitate 
analysis, we took advantage of the LQR procedure and its 
well-known properties.

Selecting α = 106 yielded the best-fit result compared 
to human data, suggesting that a double inverted pen-
dulum model with minimal control effort can success-
fully account for the frequency-dependent intersection 
point  observed in humans. Though it is widely assumed 
that humans generally minimize effort, supporting evi-
dence during quiet standing has been sparse. Our results 
show that the observed variation of intersection point 
height with frequency implies that humans minimize 
control effort rather than reduce state deviation during 
quiet standing. This is consistent with the conclusion of 

a previous study reporting that the nervous system does 
not exert more control effort than necessary to stabilize 
upright balance [6].

Long transmission delays in the neural system pose a 
risk to stability of the balance controller. To account for 
this, the continuous feedback loop gain must be effec-
tively zero at high frequencies regardless of variations 
in other model parameters. However, muscle mechani-
cal impedance is not limited in this way; it can respond 
essentially instantaneously. Behavior in the high fre-
quency range is therefore not likely to depend on neural 
feedback (defined by α and β ), but instead on neuromus-
cular impedance and noise (defined by σr ). Hence, the 
noise ratio, σr , was adjusted to fit the high-frequency 
range before fitting the low-frequency range with β.

Altering the relative noise magnitude in the ankle and 
the hip torques ( σr ) shifted the high-frequency asymp-
tote of the intersection point height. The simulation 
result most similar to human experimental data had a 
0.9:1 ankle-to-hip noise ratio.

The β value that best described human data in [11] was 
0.3 that penalized hip control effort more than ankle con-
trol effort. That is, the system is more likely to use the 
ankle to maintain upright posture than the  hip. This is 
consistent with previous findings that humans primar-
ily use the “ankle strategy” during quiet standing [14, 
22–24].

Single vs. multi‑joint model
The observed trend that the intersection point var-
ied with frequency in humans requires multi-segment 
mechanics (Appendix 1). Although the single inverted 
pendulum model has been widely used to model quiet 
human standing [1, 4, 26–29], our finding that a single-
segment model cannot adequately describe quiet stand-
ing is also consistent with recent literature [6, 30–33].

Why no more than two degrees of freedom? It is 
patently obvious that the standing human body has 
many more degrees of freedom. However, although add-
ing a knee joint [34] or multiple segments of the spine 
might more accurately replicate human biomechan-
ics, it is unclear whether this would improve the insight 
to be gleaned from experimental observations. In fact, 
as shown in Appendix 4, the two-segment model yields 
a high-frequency asymptote for the intersection point 
height that must lie between zero (corresponding to zero 
noise at the ankle) and below the center of mass height 
(corresponding to zero noise at the hip). These two 
extremes bracket the experimental observations reported 
in [11]. Thus, the two-segment model used in this study 
was the simplest that could competently reproduce the 
experimental results observed in [11].
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Intersection point: a target variable of control 
or an emergent consequence?
In this study, the feedback signal was the state error (joint 
angles and velocities) rather than the intersection point 
height. Even so, the control model was able to replicate 
the frequency dependence of the intersection point found 
in humans. Hence, it appears that the intersection point 
may be an emergent consequence of stabilization rather 
than a variable explicitly regulated by the controller. Con-
sistent with this hypothesis, a previous study suggested 
that the force direction pattern observed in human walk-
ing might be an emergent property, rather than a target 
variable of control [35]. However, further experimenta-
tion would be required to test this hypothesis.

Limitations
The simulations conducted in this study assumed sim-
ple mechanics. The joint torques in the model are net 
joint torques that summarize the contributions of vari-
ous elements, from passive muscle properties to com-
plex neural control. Known features of neuromuscular 
physiology such as muscle mechanical impedance, neural 
transmission delay, or sensory noise were omitted. While 
these features are unquestionably present, our goal was 
to identify the simplest model competent to reproduce 
experimental observations. Despite the lack of muscle- 
and nerve-level detail, our simulations were able to artic-
ulate subtle differences between control parameters that 
influence the frequency-dependence of the intersection 
point. Nevertheless, including those neurophysiological 
features might yield further insight; that is deferred to 
future work.

This study employed a linear full-state feedback con-
troller with a constant gain matrix (proportional feed-
back of angle and angular velocity) even though the 
central nervous system comprises many nonlinear neural 
elements. This decision was motivated by the observa-
tion that the body generates only small motions about 
the upright posture, justifying the use of a linearized 
model to obtain feedback controller gains. This observa-
tion also justified the choice of additive noise, as higher-
order terms that characterize nonlinear noise processes 
are negligible. We therefore modeled the noise as white. 
However, some studies have indicated that biologi-
cal noise may be better described by ‘pink’ or Brownian 
noise [25]. Since the low-pass filter property of inertial 
mechanics suppresses high-frequency components of 
the spectrum, this noise model proved to be a convenient 
and viable option.

Finally, the model employed in this study assumed a 
perfect state estimator. Future studies might assess the 
effect of including sensory information into the motor 
controller by employing other control architectures, for 

instance, using an adaptive [5] or optimal state estimator 
[14] instead of perfect full-state measurements.

Another important point to highlight is that we do not 
presume that the central nervous system actually imple-
ments the linear regulator used in our model. The LQR 
design procedure was simply a tool to generate stabilizing 
controllers while simultaneously analyzing the influence 
of factors like the cost of control on balance performance.

Conclusion
This study showed that a double inverted pendulum 
stabilized by a linear minimal-effort controller could 
account for the ground reaction force pattern observed 
in human quiet standing. Numerical simulations also 
informed the contribution of neural control and biome-
chanics in generating the pattern observed in human 
data, i.e. the frequency-dependence of the intersection 
point. The results suggest that the intersection point con-
veys quantitative information about human balance con-
trol strategies.

This study introduced a method to select optimal con-
trol and noise parameters that best reproduced human 
data. This method might be extended to study human 
neural control strategies in different contexts, e.g., bal-
ance in the frontal plane, balance on a beam, balance with 
and without assistive devices, or in other populations 
such as aged or neurologically impaired subjects.

Appendix 1: Intersection point of the single 
inverted pendulum
The intersection point below the center of mass at high 
frequencies observed in human data cannot be repro-
duced by a single inverted pendulum model. Consider a 
single inverted pendulum with mass m, center of mass 
position from the pivot lc , moment of inertia about pivot 
j′ , gravitational acceleration g, and actuated by ankle 
torque τ . The equation of motion is

where q is the angular displacement of the ankle joint 
with respect to the upright equilibrium posture, τctl is the 
control torque, and w is the additive actuation noise. For 
small motions typical of quiet standing, linearization of 
(12) is well justified:

As introduced in (3), the intersection point is defined in 
terms of the orientation of the force, θF , and the center of 
pressure, CoP:

(12)j′q̈ −mglc sin q = τ = τctl + w,

j′q̈ −mglcq = τ .
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Taking the Laplace transform:

where s is a complex variable, Q(s), �F (s) , and COP(s) are 
the Laplace transforms of q, θF , and CoP, respectively. 
Denote H(s) = Q(s)/W (s) , the transfer function from 
input noise to output motion, where W(s) is the Laplace 
transform of w. To investigate the intersection point 
at high frequency, consider s = i� where i2 = −1 and 
� → ∞ . As the first term of COP(s) dominates, �F (s) 
and COP(s) have the same phase. Then, the variation of 
two output variables will be linear at high frequencies 
and the intersection point can be determined from the 
ratio of magnitudes of the two outputs:

As � → ∞,

Note that the centroidal moment of inertia is 
j = j′ −mc2 . Therefore, the intersection point height 
must be greater than the center of mass height. The sin-
gle inverted pendulum model cannot explain the inter-
section point behavior observed in human studies.

Appendix 2: Nonlinear model equations
The equations of motion of the double inverted pendu-
lum are expressed in (4). Note that the choice of gen-
eralized coordinates, q1 , q2 , are consistent with the 
generalized forces (torques) that are applied. The fol-
lowing details each component of the matrices in terms 
of the variables summarized in Table 1. j′1 and j′2 denote 
moments of inertia taken about ankle and hip joints, 
respectively. lc1 is the distance from the ankle joint to 
the center of mass of link 1, and lc2 is the distance from 
the hip joint to the center of mass of link 2. cos (qi) and 
sin (qi) are replaced with ci and si , respectively. Setting 
θ2 = q1 + q2 , cos (θ2) and sin (θ2) are replaced with cθ2 
and sθ2 , respectively.

θF = −
Fx

Fz
≈

mcq̈

mg
=

lc

g
q̈,

CoP =
τ

Fz
≈

τ

mg
=

j′

mg
q̈ − lcq.

�F (s) =
lc

g
s2Q(s),

COP(s) =

(

j′

mg
s2 − lc

)

Q(s),

IP(�) =
|COP(i�)|

|�F (i�)|
=

j′

mg�
2 + lc

lc
g �

2
=

j′�2 +mglc

mlc�2
.

IP(�) →
j′

mlc
=

j +ml2c
ml2c

= lc +
j

mlc
> lc.

The ground reaction forces are computed from the 
motion of the center of mass, rCoM(q) ∈ R

2×1 . The accel-
eration of the center of mass was computed as

JCoM ∈ R
2×2 is the Jacobian of the center of mass with 

respect to the joint angles q and x = [q, q̇]T is the state 
vector.

The Jacobian matrix and its derivative are given as 
follows:

and

where

and M1 =
m1

m1+m2
 and M2 =

m2
m1+m2

.

Appendix 3: Linearized state‑space matrices
Linearizing the equations of motion about the stable 
upright position, we are left with (8). The state-space 
matrices are

M(q) =

[

j′1 + j′2 +m2(l
2
1 + 2l1lc2c2) j′2 +m2l1lc2c2

j′2 +m2l1lc2c2 j′2

]

C(q, q̇) =m2l1lc2s2

[

−2q̇2 − q̇2
q̇1 0

]

G(q) =− g

[

m1lc1s1 +m2(l1s1 + lc2sθ2)
m2lc2sθ2

]

(13)r̈CoM = [r̈CoM,x, r̈CoM,z]
T =

[

J̇CoM JCoM
]

ẋ.

JCoM = −
[

JCoM,1 JCoM,2

]

J̇CoM =

[

J̇CoM,(1,1) J̇CoM,(1,2)

J̇CoM,(2,1) J̇CoM,(2,2)

]

,

JCoM,1 =

[

M1lc1c1 +M2(l1c1 + lc2cθ2)
M1lc1s1 +M2(l1s1 + lc2sθ2)

]

,

JCoM,2 =

[

M2lc2cθ2
M2lc2sθ2

]

,

J̇CoM,(1,1) = M1lc1q̇1s1 +M2(l1q̇1s1 + lc2θ̇2sθ2),

J̇CoM,(1,2) = M2lc2θ̇2sθ2 ,

J̇CoM,(2,1) = −M1lc1q̇1c1 −M2(l1q̇1c1 + lc2θ̇2cθ2),

J̇CoM,(2,2) = −M2lc2θ̇2cθ2 ,

Alin =

[

0 I

M−1 ∂G
∂q

0

]

x=x∗,τ=τ
∗

Blin =

[

0

M−1B

]

x=x∗,τ=τ
∗

,
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where

and B = I2.

Appendix 4: Intersection point of the linearized 
double inverted pendulum
Noting (1) and (7), consider two outputs y = [y1, y2]

T : 

From (13), 

Then, linearized output equations can be obtained as

where C1 = Jy1AlinandD1 = Jy1Blin , evaluated at 
(x, τ ) = (x∗, τ ∗) , and C2 = 0andD2 = [1, 0] . With con-
troller τ = −Kx + w as in (6) and (10), the closed-loop 
linear system can be constructed as

The multi-input, multi-output (MIMO) transfer function 
can be obtained

where Y(s) and W(s) are the Laplace transforms of y and 
w , respectively. The intersection point at each frequency 
can be obtained by the procedure outlined in the  Meth-
ods section, as the inverse of the slope of the principal 
eigenvector. If y1(t) and y2(t) are harmonic, this proce-
dure is equivalent to finding the slope of the major axis of 
the ellipsoid that the two signals form.

Assuming two harmonic signals yi(t) with magnitude νi 
and phase φi at frequency �,

an implicit formula for the ellipsoid can be written in 
quadratic form,

∂G

∂q

∣

∣

∣

∣

x=x∗
= −g

[

m1lc1 +m2(l1 + lc2) m2lc2
m2lc2 m2lc2

]

y1 = −Fx = −mr̈CoM,x, y2 = τ1.

y1 = −m[1, 0]r̈CoM

= −m[1, 0][J̇CoM , JCoM]ẋ

� Jy1 ẋ.

y = Cx +Dτ =

[

C1

C2

]

x +

[

D1

D2

]

τ ,

(14)







ẋ = (Alin − BlinK)x + Blinw = Aclx + Blinw
y1 = (C1 −D1K)x +D1w = Ccl,1x +D1w
y2 = (C2 −D2K)x +D2w = Ccl,2x +D2w.

Y(s) = H(s)W(s), H(s) =

[

H11(s) H12(s)
H21(s) H22(s)

]

y1(t) = ν1 sin(�t + φ1), y2(t) = ν2 sin(�t + φ2),

where φ = φ1 − φ2 . The eigenvector corresponding to 
the smaller eigenvalue is the major axis and its slope is 
the inverse of the intersection point as in Fig. 2.

Consider two extreme cases where  ankle noise is 
zero ( w1 = 0 and σr = 0 ) and hip noise is zero ( w2 = 0 
and σr = ∞ ). For example, when hip noise is zero, sub-
stituting s = i�,

and

The intersection point height can be calculated using this 
method at different frequencies as shown in Fig. 6. Since 
we are examining a linearized model, non-zero ankle and 
hip noise responses would be some combination of these 
two extreme responses.

Abbreviations
LQR: Linear quadratic regulator; CoP: Center of pressure; IP: Intersection point; 
CoM: Center of mass.

Acknowledgements
We would like to thank Professor Kreg Gruben for helpful discussion.

Authors’ contributions
KS performed simulation and data analysis and drafted the manuscript. 
JL developed simulations and performed mathematical analysis of the 

sin2 φ = [y2, y1]





1
ν22

−
cosφ
ν1ν2

−
cosφ
ν1ν2

1
ν21





�

y1
y2

�

y1

w1
(i�) = H11(i�),

y2

w1
(i�) = H21(i�)

ν1 = |H11(i�)|,φ1 = ∠H11(i�),

ν2 = |H21(i�)|,φ2 = ∠H21(i�).

Fig. 6  Height of the intersection point of the linearized double 
inverted pendulum model with two extreme σr values: σr = 0 (hip 
noise only) and σr = ∞ (ankle noise only)



Page 12 of 12Shiozawa et al. J NeuroEngineering Rehabil          (2021) 18:145 

intersection point. MR contributed to the frequency analysis of the intersec-
tion point. JL, MR, DS, and NH contributed to data and statistical analyses. KS 
and JL generated figures. All authors edited the final manuscript. All authors 
read and approved the final manuscript.

Funding
This work was supported in part by NSF-CRCNS 1724135, awarded to Neville 
Hogan and NSF-CRCNS-1723998, awarded to Dagmar Sternad. Jongwoo Lee 
was supported by a Samsung Scholarship.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Mechanical Engineering, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, USA. 2 Department of Neurology, Tor Vergata 
Polyclinic and Laboratory of Neuromotor Physiology, Santa Lucia Foundation, 
Rome, Italy. 3 Department of Biology, Northeastern University, Boston, MA 
02115, USA. 4 Department of Electrical and Computer Engineering, Northeast-
ern University, Boston, MA 02115, USA. 5 Department of Physics, Northeastern 
University, Boston, MA 02115, USA. 6 Department of Brain and Cognitive Sci-
ences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 

Received: 16 November 2020   Accepted: 28 June 2021

References
	1.	 Peterka RJ. Sensorimotor integration in human postural control. J Neuro-

physiol. 2002;88(3):1097–118.
	2.	 Horak FB. Postural orientation and equilibrium: what do we need to know 

about neural control of balance to prevent falls? Age Ageing. 2006;35 
Suppl 2:ii7–ii11.

	3.	 Allen JL, Ting LH. Why is neuromechanical modeling of balance and 
locomotion so hard? In: Prilutsky BI, Edwards DH, editors. Neuromechani-
cal modeling of posture and locomotion. New York: Springer; 2016. p. 
197–223.

	4.	 Olsson F, Halvorsen K, Aberg AC. Neuromuscular controller models for 
quantifying standing balance in older people: A systematic review. IEEE 
Rev Biomed Eng. 2021.

	5.	 van der Kooij H, Jacobs R, Koopman B, van der Helm F. An adaptive 
model of sensory integration in a dynamic environment applied to 
human stance control. Biol Cybern. 2001;84(2):103–15.

	6.	 Kiemel T, Zhang Y, Jeka JJ. Identification of neural feedback for upright 
stance in humans: stabilization rather than sway minimization. J Neurosci. 
2011;31(42):15144–53.

	7.	 Goodworth AD, Peterka RJ. Identifying mechanisms of stance control: a 
single stimulus multiple output model-fit approach. J Neurosci Methods. 
2018;296:44–56.

	8.	 Collins JJ, De Luca CJ. Open-loop and closed-loop control of posture: a 
random-walk analysis of center-of-pressure trajectories. Exp Brain Res. 
1993;95(2):308–18

	9.	 Moon J, Pathak P, Kim S, Roh S, Roh C, Shim Y, Ahn J. Shoes with active 
insoles mitigate declines in balance after fatigue. Sci Rep. 2020;10:1951.

	10.	 Orin DE, Goswami A, Lee SH. Centroidal dynamics of a humanoid robot. 
Auton Robot. 2013;35(2):161–76.

	11.	 Boehm WL, Nichols KM, Gruben KG. Frequency-dependent contribu-
tions of sagittal-plane foot force to upright human standing. J Biomech. 
2019;83:305–9.

	12.	 Yamagata M, Gruben K, Falaki A, Ochs WL, Latash ML. Biomechanics of 
vertical posture and control with referent joint configurations. J Motor 
Behav. 2020;53:72–82.

	13.	 Sontag ED. Mathematical control theory. New York: Springer; 1998.
	14.	 Kuo AD. An optimal control model for analyzing human postural balance. 

IEEE Trans Biomed Eng. 1995;42(1):87–101.
	15.	 Todorov E, Jordan MI. Optimal feedback control as a theory of motor 

coordination. Nat Neurosci. 2002;5:1226–35.
	16.	 Todorov E. Optimality principles in sensorimotor control. Nat Neurosci. 

2004;7:907–15.
	17.	 Gruben KG, Boehm WL. Force direction pattern stabilizes sagittal plane 

mechanics of human walking. Hum Mov Sci. 2012;31(3):649–59.
	18.	 Maus HM, Lipfert SW, Gross M, Rummel J, Seyfarth A. Upright human 

gait did not provide a major mechanical challenge for our ancestors. Nat 
Commun. 2010;1:70.

	19.	 de Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia param-
eters. J Biomech. 1996;29(9):1223–30.

	20.	 Kuo AD, Zajac FE. Human standing posture: multi-joint movement strate-
gies based on biomechanical constraints. Prog Brain Res. 1993;97:349–58.

	21.	 Duarte M, Sternad D. Complexity of human postural control in 
young and older adults during prolonged standing. Exp Brain Res. 
2008;191(3):265–76.

	22.	 Horak FB, Nashner LM. Central programming of postural movements: 
adaptation to altered support-surface configurations. J Neurophysiol. 
1986;55(6):1369–81.

	23.	 Nashner LM, McCollum G. The organization of human postural move-
ments: a formal basis and experimental synthesis. Behav Brain Sci. 
1985;8(1):135–50.

	24.	 Runge CF, Shupert CL, Horak FB, Zajac FE. Ankle and hip postural strate-
gies defined by joint torques. Gait Posture. 1999;10(2):161–70.

	25.	 van der Kooij H, Peterka RJ. Non-linear stimulus-response behavior of the 
human stance control system is predicted by optimization of a system 
with sensory and motor noise. J Comput Neurosci. 2011;30(3):759–78.

	26.	 Morasso P, Cherif A, Zenzeri J. Quiet standing: the Single Inverted Pendu-
lum model is not so bad after all. PLoS One. 2019;14(3):e0213870.

	27.	 Morasso PG, Schieppati M. Can muscle stiffness alone stabilize upright 
standing? J Neurophysiol. 1999;82(3):1622–6.

	28.	 Winter DA, Patla AE, Rietdyk S, Ishac MG. Ankle muscle stiffness 
in the control of balance during quiet standing. J Neurophysiol. 
2001;85(6):2630–3.

	29.	 Kiemel T, Oie KS, Jeka JJ. Multisensory fusion and the stochastic structure 
of postural sway. Biol Cybern. 2002;87(4):262–77.

	30.	 Rozendaal LA, van Soest AJ. Stabilization of a multi-segment model of 
bipedal standing by local joint control overestimates the required ankle 
stiffness. Gait Posture. 2008;28(3):525–7.

	31.	 Günther M, Grimmer S, Siebert T, Blickhan R. All leg joints con-
tribute to quiet human stance: a mechanical analysis. J Biomech. 
2009;42(16):2739–46.

	32.	 Pinter IJ, van Swigchem R, van Soest AJ, Rozendaal LA. The dynamics of 
postural sway cannot be captured using a one-segment inverted pen-
dulum model: a PCA on segment rotations during unperturbed stance. J 
Neurophysiol. 2008;100(6):3197–208.

	33.	 Sasagawa S, Shinya M, Nakazawa K. Interjoint dynamic interaction during 
constrained human quiet standing examined by induced acceleration 
analysis. J Neurophysiol. 2014;111(2):313–22.

	34.	 Yamamoto A, Sasagawa S, Oba N, Nakazawa K. Behavioral effect of knee 
joint motion on body’s center of mass during human quiet standing. Gait 
Posture. 2015;41(1):291–4.

	35.	 Müller R, Rode C, Aminiaghdam S, Vielemeyer J, Blickhan R. Force direc-
tion patterns promote whole body stability even in hip-flexed walking, 
but not upper body stability in human upright walking. Proc R Soc A 
Math Phys Eng Sci. 2017;473(2207):20170404.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Frequency-dependent force direction elucidates neural control of balance
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Human experiment
	Experimental procedure
	Intersection point
	Frequency-dependence of the intersection point

	Simulation
	Single inverted pendulum model
	Double inverted pendulum model
	Linear quadratic regulator
	Simulation protocol

	Comparison of simulation and human experimental results

	Results
	Minimum required model complexity
	Best-fit model parameter set
	Varying model parameters
	Effect of 
	Effect of 
	Effect of 


	Discussion
	Neural control or biomechanics?
	Physiologically-plausible best-fit parameters
	Single vs. multi-joint model
	Intersection point: a target variable of control or an emergent consequence?
	Limitations

	Conclusion
	Acknowledgements
	References


