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Abstract 

Background:  Falls are a leading cause of accidental deaths and injuries worldwide. The risk of falling is especially 
high for individuals suffering from balance impairments. Retrospective surveys and studies of simulated falling in lab 
conditions are frequently used and are informative, but prospective information about real-life falls remains sparse. 
Such data are essential to address fall risks and develop fall detection and alert systems. Here we present the results 
of a prospective study investigating a proof-of-concept, smartphone-based, online system for fall detection and 
notification.

Methods:  The system uses the smartphone’s accelerometer and gyroscope to monitor the participants’ motion, and 
falls are detected using a regularized logistic regression. Data on falls and near-fall events (i.e., stumbles) is stored in 
a cloud server and fall-related variables are logged onto a web portal developed for data exploration, including the 
event time and weather, fall probability, and the faller’s location and activity before the fall.

Results:  In total, 23 individuals with an elevated risk of falling carried the phones for 2070 days in which the model 
classified 14,904,000 events. The system detected 27 of the 37 falls that occurred (sensitivity = 73.0 %) and resulted 
in one false alarm every 46 days (specificity > 99.9 %, precision = 37.5 %). 42.2 % of the events falsely classified as falls 
were validated as stumbles.

Conclusions:  The system’s performance shows the potential of using smartphones for fall detection and notifica-
tion in real-life. Apart from functioning as a practical fall monitoring instrument, this system may serve as a valuable 
research tool, enable future studies to scale their ability to capture fall-related data, and help researchers and clinicians 
to investigate real-falls.
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Introduction
Falls are the second leading cause of accidental death 
worldwide, annually resulting in 646,000 mortalities and 
37.3  million injuries that are severe enough to require 
medical attention [1]. Falls also constitute an economic 
burden, resulting in annual medical costs of approxi-
mately $50  billion in the US alone [2]. The risk of fall-
ing is especially high in populations that suffer from 
balance impairments such as older adults, amputees, or 
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individuals with neurological disorders [3–6]. In many 
cases, fallers remain physically inactive for long peri-
ods, which can result in other secondary complications 
[7–10]. Fallers often develop a fear of falling which can 
lead to limited functional mobility resulting in sedentary 
lifestyles, depression, institutionalization, and indirectly 
contribute to elevated mortality [11]. The ability to detect 
and report a fall in real-time might also help to reduce 
the response time of EMS providers.

A well-developed fall detection system would provide 
increased understanding of falls in real life and their 
causes. The majority of falls occur without clinical super-
vision. In multiple cases, fewer than 20 % of falls were 
documented by medical professionals [12, 13], which 
limits our understanding of what precipitated these falls. 
Additionally, collecting data from fall events directly 
reduces the need for retrospective studies which are 
biased by a limited recall of subjects, even in the case that 
interviews are conducted frequently [14]. Finally, a sys-
tem providing real-time monitoring of falls and near-falls 
could lead to emergency alerts for immediate medical 
attention, as well as provide data for post-hoc systematic 
analysis to develop improved, personalized fall preven-
tion strategies. Improving and evaluating fall detection 
models is thus an important topic for research.

To develop and validate a fall detection model requires 
an extensive database, including recordings of many 
real-life falls and fall-like events. Real-life falls are rare 
events, and approximately 1400 recording days may 
be required to capture just one fall even in individuals 
with an elevated risk of falling [15, 16]. Given the infre-
quency of real-life falls during unstructured recording 
periods, most fall detection studies tend to use simulated 
falls performed in laboratory settings [17–20]. However, 
there are characteristics of real-life falls that are not pre-
sent in lab-acquired falls, which could impact the qual-
ity of detection methods [21]. Recently, a consortium of 
research collaborators has assembled a set of real-world 
falls by collecting acquired fall data (FARSEEING consor-
tium [22]), and several studies have used this repository 
to develop and validate fall detection models [15, 23]. 
However, many of these follow-up studies are limited by 
the type of data collected, which presents difficulties for 
the proper validation on unique populations. Developing 
better methods of producing diverse, high quality real-
life falls and near-falls data could thus be of very high 
importance.

An often overlooked but critical aspect of validat-
ing fall detection models with a limited set of data is 
an appropriate choice of negative test cases (i.e., non-
fall events). Many studies contrast fall detection with 
standard activities of daily living (ADLs) [23–26]. 
However, this can lead to inflated accuracies that do 

not generalize well. Alternatives include sets of natural 
behaviors that have a high probability of being incor-
rectly identified as falls, such as the high-impact non-
fall events [27]. These non-fall or fall-like incidents, 
such as stumbles, can contain information which is 
valuable for clinical evaluation of fall probability, [28]. 
By recording high-impact, non-fall events, a more chal-
lenging retrospective analyses can be performed on 
future developed models.

Only a small number of prospective studies deployed 
fall detection systems into the community and validated 
their performance in real-time [29]. The majority of sys-
tems that tested their fall detection systems in real life 
have used inertial sensors, commonly accelerometers 
with or without gyroscopes, for detecting the falls [30–
36]. However, all of these systems currently require the 
use of dedicated sensors which are externally attached to 
the users’ bodies. Using these sensors required technical 
intervention and assistance to attach or remove the sen-
sors [30], charge or replace the sensor [33], or download 
the data [31], making the process less feasible and non-
user-friendly. Additionally, these fall systems are only 
effective when the device is being utilized and incorpo-
rated into the user’s daily life. Therefore, there is a need 
for a fall detection system that uses sensors embedded in 
an everyday accessory that the participants already use in 
their daily living, such as their smartphone [23, 37–39]. 
While smartphone devices have been explored in the pre-
viously published prospective studies, a major drawback 
is that all of them except one [35] were offline and could 
not send a real-time fall notification. Therefore, there is a 
need for an online system which is capable of sending a 
timely alert of a fall to a researcher, relevant caregiver, or 
emergency medical services. However, variability in fall-
detection performance may occur across different hard-
ware models, operating systems and device usage levels. 
Although device-specific performance was not explored 
in the current study (the device model and operating 
system version were kept fixed), it remains an impor-
tant consideration before implementing this approach on 
user’s personal devices.

Machine learning algorithms are increasingly used in 
the development of fall detection models [17], yet cur-
rently all fall-detection machine-learning studies but one 
[30] are retrospective. Development and validation of 
machine learning models in retrospective introduces a 
risk of overfitting (leakage), where algorithms are effec-
tively using their developers’ knowledge of the test set. 
This may result in systems with lower-than-expected per-
formance on new datasets. Testing the performance of 
machine learning models in prospective studies is crucial 
in order to understand their true ability to detect real-life 
falls.
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Here we present a prospective study investigating the 
performance of a smartphone-based, online, real-life fall 
detection system. The system developed in this study 
includes a machine-learning classifier for detecting falls 
based on the smartphone’s accelerometer and gyroscope 
data. The system also includes an activity recognition 
model, a location tracker, a web portal for data explora-
tion, and a real-time online notification system, which 
generates a timely notification of the fall and the faller 
status.

Materials and methods
Study design
We developed a smartphone-based system for real-time 
fall detection and alert generation. The system’s perfor-
mance was investigated in a prospective study for 23 
individuals with varied diagnoses and conditions, leading 
to an elevated risk of falling. All the participants signed 
informed consent before study participation, which was 
approved by the Northwestern University institutional 
review board (NUIRB, IL, USA). All the study procedures 
were carried out in accordance with the standards listed 
in the Declaration of Helsinki 1964.

All consented participants in this study underwent 
screening for eligibility criteria. Participants who met the 
following criteria were enrolled: (1) Experienced at least 
one fall in the six months before the study; (2) Ability to 
follow instructions and give written consent. Exclusion 
criteria included: (1) Visual or cognitive deficits (Mini-
Mental State Examination score < 17) that interfere with 
operating a smartphone; (2) individuals who are pregnant 
or planning to be pregnant.

During their enrollment visit, we collected the par-
ticipant’s medical history as well as the scores of the 
modified falls efficacy scale (MFES) which measures the 
participant’s confidence in performing ADLs without 
falling [40] and the World Health Organization’s Qual-
ity of life brief version (WHOQoL-Bref ) which measures 
the participant’s quality of life in four domains: physical 
health, psychological, social relationships, and environ-
ment [41].

Each participant was given a Samsung Galaxy S5 
smartphone running on Android 6.0.1 with a pre-
installed sensor data collection app, called Purple Robot, 
and the custom fall-detection module enabled [42, 43]. 
Purple Robot is an Android application developed for 
modular collection and processing of data streams avail-
able on a smartphone device. It allows for collection and 
processing of hardware data signals, as well as customiz-
able notifications based on the processed signal outputs. 
A custom fall-detection module, implementing a model 
developed as part of prior work, was developed for use in 
this study. Nationwide unlimited talk/text data plan was 

enabled on these phones. Participants were provided with 
a brief functional overview of the Purple Robot app and 
its key features on the smartphone. Participants received 
a charger and a waist pouch if they chose to carry the 
phone around their waist. They were instructed to carry 
the smartphone during their awake hours for a continu-
ous period of 90 days. No lifestyle alterations were sug-
gested, and participants were advised to carry out their 
day-to-day activities as usual. All participants were resi-
dents of the Greater Chicago Area, which includes the 
city and its suburbs, yet they were free to travel with the 
smartphone within the borders of the United States.

During the 90-day trial, on every occasion when the 
system detected a fall, it generated a notification on the 
participant’s smartphone and sent a text message to a 
member of the research team. Participants or designated 
caregivers were contacted by a member of the research 
team in the same or next business day after receiving a 
fall notification to verify the fall and gather informa-
tion on their wellbeing. During this follow up call, the 
research member would also collect a narrative descrip-
tion of the participants’ activity at the time of the alert, 
including what triggered the fall and how long the par-
ticipants remained on the ground after the fall (if applica-
ble). Further, the participants were instructed to call the 
research team in any case they experience a fall but were 
not contacted by the team during the next business day. 
Additionally, a member of the research team initiated 
periodic check-in calls every 20 days and asked for any 
falls that occurred and were not reported.

Status of the deployed phones (battery level, data plan 
usage) was monitored by the research team using the web 
portal. Participants were contacted by a research team 
member in case of no activity on the phone for three con-
secutive days.

At the end of the 90-day trial, the participants were 
invited to a final visit in which they returned the smart-
phone and were asked to provide feedback during a semi 
structured interview on the experience of using the fall 
detection app. During this visit, the participants were 
once more questioned regarding any fall event that was 
not detected during their study participation.

Fall detection model
We developed a hybrid model for the detection of real-
life falls. The model includes a first-stage screening accel-
eration threshold and a second-stage machine learning 
classifier (see Fig. 1). The acceleration threshold screen-
ing reduces the computational burden by decreasing 
the number of events that had to be processed by the 
machine learning classifier.

This model was developed and validated using data 
from simulated falls and daily tasks performed in a 
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Fig. 1  The fall detection system, including input data, fall detection model, system’s output, web portal, and future applications
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laboratory setting by 17 participants [44]. The par-
ticipants included seven individuals with transfemoral 
amputation and ten healthy young adults with no ele-
vated fall risk. While simulating the falls, participants 
carried a Samsung S5 smartphone that recorded accel-
erometer and gyroscope data from the built-in hardware 
sensors using the Purple Robot application. During the 
simulated falls recording, a researcher used a second 
phone to log and label the timestamps of the events.

The recordings were then split into 5-second data 
windows, similar to the window sizes in previous stud-
ies [45–47]. In order to provide many different examples 
of falls occurring in different portions of the 5-second 
windows (i.e., beginning, middle, end of the window), 
for each fall event we created ten windows, each a ran-
domly-selected 5-second range including the fall-impact. 
The fall-impact was identified as the maximum accelera-
tion magnitude occurring within 2.5  s of the fall-times-
tamp labeled during data collection. The smartphone 
application has a limited ability to sample the acceler-
ometer and gyroscope signal at a consistent rate, due to 
resource demands from other applications on the device. 
To account for sampling rate inconsistencies, the accel-
erometer and gyroscope signals within each five-second 
window were interpolated to 250 samples at intervals of 
20 ms, corresponding to 50 Hz frequency. To avoid gen-
erating signal artifacts through the interpolation process, 
we discarded windows including less than 200 samples 
or having a gap between consecutive samples larger than 
200 ms. No filtering was applied to the data. This proce-
dure resulted in a total of 8452 five-second data windows 

(7874 corresponding to falls and 578 corresponding to 
non-falls), which were used to train to the fall detection 
model.

The first stage of the fall detection model was the 
acceleration threshold screening. The threshold value 
was determined by assessing the maximum accelera-
tion amplitudes of simulated falls versus non-falls. We 
found that all simulated fall events had peak acceleration 

magnitudes larger than 2 g, while 83.9 % of non-fall win-
dows had peak acceleration below this value. Thus, we 
selected 2  g as the threshold value to ensure maximum 
sensitivity to falls while screening out the majority of 
non-falls events. High sensitivity is desirable for a first-
step data screening, so as to not incorrectly remove true 
fall events before the final model stage.

The second stage of the fall detection model included 
a machine learning classifier. The classifier was trained 
only with data windows (both fall and non-falls) that 
included a peak acceleration above 2  g (i.e., passed the 
first-stage screening). For each of these data windows, 
a set of 40 features were computed (20 for the acceler-
ometer and 20 for the gyroscope signals; Table 1). These 
features were used as inputs to a logistic regression 
model, which output a posterior probability (0–1) of a 
fall given the sensor data. In the final implementation on 
the mobile phone, this was binarized to a value of 0 for a 
non-fall activity and 1 for a fall after application of detec-
tion threshold, which was the 5th percentile of posterior 
fall probabilities across all simulated falls in the training 
set. To remove redundant features and avoid overfitting, 
a regularization procedure was applied using Elasticnet 
with parameters α = 0.6 and λ = 0.015 which were found 
through a cross-validation hyperparameter tuning [48]. 
These hyperparameters were selected based on a param-
eter grid-search performed on leave-one-participant-
out cross-validation folds. The hyperparameter tuning 
revealed consistent performance within each fold with 
respect to the grid-search range used. The hyperparam-
eter values for the final model noted above were chosen 

because they representative of the center of the search 
space. The performance of this system was estimated 
using a leave-one-participant-out cross-validation, which 
resulted in an average area under the receiver operating 
characteristics (AUROC) of 0.995 (95-percent confidence 
interval (CI): 0.992–0.995). The decision threshold for 
the deployment model was set to 0.908, which is the fifth 
percentile fall probability among all simulated falls. This 

Table 1  The features that were computed for each 5-seconds clip of the accelerometer and gyroscope data

Feature name mean Number of features

Median 1

Standard deviation 1

Skewness 1

Kurtosis 1

IQR and derivative of IQR 2

Minimum and derivative of minimum 2

Maximum and derivative of maximum 2

Maximum, minimum, and IQR on each axis (x, y, z) 9
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corresponds to an estimated sensitivity of 0.95 based on 
our simulated falls data. Applying the selected thresh-
old resulted in the following average performance met-
rics: accuracy of 0.959 (CI 0.940–0.977), the sensitivity 
of 0.954 (CI 0.930–0.977), and specificity of 0.984 (CI 
0.972–0.995). Training and analysis of the logistic regres-
sion model were performed in MATLAB 2017a. In this 
study we evaluated the model performance by meas-
uring its precision (i.e., the fraction of true falls out of 
the detected falls), recall (the fraction of falls that were 
detected out of the falls that occurred), and F1-score (i.e., 
the harmonic mean of precision and recall).

Web portal and smartphone app
If the estimated fall probability value exceeded 0.908, the 
Purple Robot app generated two alerts: (1) A message 
appeared on the faller’s phone screen; (2) a text message 
sent to the phone of a member of the research team. In 
addition, the Google activity recognition application pro-
gram interface (API) (30) was applied every 60 s to assess 
the type of activity being performed by the user in the 
preceding 60-s interval. To reduce the amount of data to 
be transmitted and to conserve battery life, records for 
the sensor signals, fall probabilities, and activity recog-
nition data were only transmitted if they were included 
within 15  min of an estimated fall probability greater 
than 0.5. Regardless of the event fall probability, addi-
tional data recorded by the system included the Global 
Position System (GPS) coordinates and phone battery 
life, which was transmitted to the cloud server every 60 
and 30 s, respectively. The Purple Robot application and 
custom fall detection model were programed in Java and 
compiled using Android Studio version 2.3.

In addition to the mobile application, a web portal 
was developed to allow the exploration of the collected 
data. The web portal enables the filtering of potential fall 
events by its probability. For each potential fall event (i.e., 
5 s intervals with fall probability > 0.5) the portal presents 
the following details: (1) the fall date and time, based in 
the phone log; (2) the falling probability, based on the 
estimation of the fall-detection model; (3) the fall loca-
tion, based on the GPS coordinates at the time of the fall; 
(4) the faller movement speed prior to the fall, based on 
average change in location over the five minutes before 
the fall; (5) the weather condition (i.e., sky conditions 
such as clear, cloudy, rainy) at the time and place of the 
fall, obtained from Weather Underground (https://​www.​
wunde​rgrou​nd.​com), with the closest reported data point 
in both time and location and; (6) the faller’s activity at 
the time of the fall, based on the Google Activity Recog-
nition API [49, 50], with the most likely activity and con-
fidence level reported. The web portal includes additional 
fields of the type of fall (e.g., tripping forward, slipping 

backward), and fall confirmation, which was not imple-
mented in the current study. The web portal was imple-
mented using Django, which is an open-source Python 
framework for coding web services [51].

Results
Concept and prototype
Our system uses the built-in hardware accelerometer and 
gyroscope sensors within a smartphone to monitor the 
user’s movements as they carry the phone throughout 
their day-to-day activities and detects when the user is 
falling (Fig.  1). All information regarding the fall (prob-
ability, location, activity recognition, weather) is assem-
bled in a searchable web portal (Fig. 2), where researchers 
and clinicians can retrieve information about the fall 
characteristics and the faller status.

Falls analysis—clinical data
We performed a prospective study in order to test the 
fall detection and response system for real-life falls in 23 
individuals diagnosed as high risk of falling. The partici-
pant group included individuals who experienced lower-
extremity amputation (n = 11), spinal cord injury (SCI; 
n = 5), stroke (n = 2), traumatic brain injury (TBI; n = 2), 
anti-SRP (Signal Recognition Particle) mediated polymy-
ositis (SRP; n = 1), and Poliomyelitis (polio; n = 2). In this 
study, we defined a fall as “an unexpected event in which 
the participants comes to rest on the ground, floor, or 
lower-level’’ [52] and a stumble as “an event defined as a 
loss of balance regained before striking the ground” [28].

The demographic characteristics of the study’s partic-
ipants are presented in Table  2. In total, each of the 23 
participants (14 males) carried the phone for 90 days. 
The participants’ age ranged between 22 and 70 years, 
their height between 152 and 188  cm, and their weight 
between 51 and 142.9  kg. 32 % of the participants were 
obese (body mass index (BMI) > 30).

During their 90-day trial, 13 participants (57 %) experi-
enced at least one fall, and nine participants (39 %) expe-
rienced at least one stumble. These rates include both 
falls detected by our system and reported by the users. 
The monthly rate of falls and stumbles for each diag-
nosis group is presented in Fig. 3. This analysis demon-
strates the potential of using the fall detection system as 
a potential tool to investigate the prevalence of falls and 
stumbles among different populations. The sample size of 
some of these groups was relatively small (see beginning 
of this clinical data section) and insufficient for perform-
ing population specific clinical inferences at this time.

An analysis of the activity before the fall, as reported by 
the faller, is presented in Fig. 4. The results suggest that 
the leading causes for falling were impact with another 
object, which preceded 32 % of the falls (including foot 

https://www.wunderground.com
https://www.wunderground.com
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caught on the floor, dog jumping on participant, and 
bumping into object), and changing the faller’s center of 
mass, which preceded 33 % of the falls (including lean-
ing forward, getting up from a chair, carrying an object 
and going up/down the stairs). However, 35 % of the falls 
were reported to occur due to a sudden unexplained loss 
of balance. A faller’s report may be biased, especially as 

the time between the fall and the time to report increases 
[14]. Therefore, our fall detection system records a clas-
sification of the faller’s activity in the 60 s before the fall, 
currently based on Google’s activity recognition API. For 
the 27 true-falls that were detected by the phone, the 
system predicted the following activities before the falls: 
faller was standing still (26 % of the falls); tilting, where 

Fig. 2  An example of the web portal data summary for a single study participant. Potential fall events are filtered by probability of being a fall, 
locations of events are visualized in the map, and metadata surrounding the event are displayed. The highlighted event presents the data of a real 
fall that was detected by the system

Table 2  Demographic characteristics of the participants

Characteristic Mean SD

Age (y) 48 13.7

Height (cm) 171.2 8.9

Weight (kg) 82.2 21.1

BMI (kg/m2) 28.1 7

Time since diagnosis (yrs.) 15 12

MFES
                       Enrollment visit

8 1.6

                       Termination visit 8.2 1.5

WHOQOL (0-100)

                       Physical health 68 18.5

                       Psychological 76.3 16.8

                       Social relationships 68.1 24.4

                       Environment 76.1 17.4
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the angle relative to gravity changed significantly (41 %); 
on foot (11 %); bicycle (4 %); or unknown (18 %). Partici-
pants most often reported walking (49 %) or standing 
(30 %), including while reaching for an object or doing 
chores, at the time of a fall. Falling while in transition 
between two postures (e.g., sitting, standing, kneeling) 
was also reported (16 %). Much of the walking activity 
of participants was collected in the vague “tilting” cate-
gory, though standing was generally correctly identified. 
Specific activities misclassified as “tilting” or “unknown” 
include everyday activities like getting out of a vehicle, 

carrying objects, reaching for household items, stairs 
assent/descent, shoe getting caught on carpet, knee buck-
ling (prosthesis user) and getting up from wheelchair.

Our fall detection system records the weather condi-
tion at the time of the fall using Weather Underground. 
Such weather information can help to estimate the faller 
condition (e.g., during rainy or snowy days, a faller might 
require more assistance after a fall). Further, such data 
can help clinicians and researchers to understand the fall 
causation better. During the 2070 recording days, during 
32.3 % of the total recording time the weather was clear, 
yet only 7 % of the falls occurred during clear weather. 
57.6 % of the time the weather was cloudy yet 85 % of the 
falls occurred during cloudy weather. 4.2 % of the time 
the weather was rainy and 4 % of the falls occurred during 
rainy weather. 3.4 % of the time the weather was snowy 
and 4 % of the falls occurred during snowy weather. Since 
the system does not indicate if a fall was performed 
indoor or outdoor, the weather feature has only lim-
ited ability to contribute to the understanding of the fall 
activity.

Fall detection model performance
An overview of the fall detection model’s performance 
metrics is presented in Table 3. During the 2070 days in 
which the system recorded participant’s activities, the 
phones analyzed 14,904,000 events (i.e., five seconds 
intervals of sensor signals). The participants reported 
37 real falls, 27 of which were detected by the system 
(sensitivity = 73.0 %). Of the 10 falls not detected, six 
(60.0 %) did not exceed the 2  g acceleration threshold, 
either because the phone was not being carried at the 
time (confirmed for one case) or because the acceleration 

Fig. 3  Average monthly rate of falls and stumbles for each condition. 
TBI  traumatic brain injury, SRP  anti SRP mediated polymyositis, 
SCI  spinal cord injury, Polio poliomyelitis

Fig. 4  The activities performed before the fall, as reported by the 
faller

Table 3  Model performance metrics

*n = 13, only participants who experienced at least one fall, were included; 
**n = 16, only participants whose phone classified at least one event as a fall, 
were included

Metric Across all 
participants

Average (SD) per 
participant

Volume of recorded data (days) 2070 90 (0)

Sample size (5 s clips) 14,904,000 648,000 (0)

# Falls confirmed by participants 37 1.6 (2.25)

# Stumbles confirmed by partici-
pants

31 1.3 (2.55)

# Falls-related events detected by 
the phone

72 3.3 (3.72)

True positives (correctly classified 
falls)

27 1.2 (2.1)

True negatives (correctly classified 
non-falls)

14,903,928 647999.6 (0.89)

False positives (wrongly classified 
non-falls)

45 1.95 (2.65)

False negatives (wrongly classified 
falls)

10 0.43 (0.84)

Daily false alarm rate 0.5 0.02 (0.03)

Accuracy 99.9997 % 99.9996 % 
(0.0004 %)

Sensitivity 73 % 68 % (39 %)*

Specificity 99.9998 % 99.9997 % 
(0.0004 %)

Precision 37.5 % 41 % (41 %)**

F1-score 0.495 0.51 (0.33)*
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impact measured at the phone was low. The remaining 
four false negatives (40.0 %) exceeded the 2  g threshold 
but did not generate a high enough posterior probability 
from the logistic regression model to trigger an alert. In 
three of these four cases, participants reported falling to 
one knee rather than to a lying or sitting position; in the 
fourth case the participant was already kneeling at the 
time of the fall.

The system resulted in one false alarm per 46 days of 
use (Specificity > 99.9 %), falsely classifying a total of 45 
additional events as falls (precision = 37.5 %). Out of 
these 45 events, 19 were confirmed by the participants to 
be stumbles, which are a risk factor for increased likeli-
hood of falls and might result in injury [28]. Therefore, 
63.9 % of all detections represented a fall or fall-like event, 
rather than a misclassification of an unrelated activity. 
Of the remaining 26 false positive events, 16 (62 %) were 
caused by the phone falling from unknown heights, two 
(8 %) involved transitions between sitting and standing 
positions, and one (4 %) occurred while in a vehicle. The 
remaining false positives (27 %) could not be attributed 
to a particular cause based on the participant interviews. 
When considering both precision and recall (sensitivity), 
our fall detection system resulted in overall performance 
(F1-score) of 0.495.

Only 45 samples out of the 14,904,000 that were 
assessed by the model failed to process (failure 
rate < 0.01 %). All failures but one were triggered by insuf-
ficient samples from the accelerometer, with the one 
remaining case having a sufficient number of samples 
but a time-lapse > 200ms without samples. The average 
battery life for the phones while actively running the fall 
detection system was 12.2  h (SD 5.0), meaning that the 
battery life was most likely not a restricting factor for col-
lecting the data and detecting falls during regular daily 
activities.

Discussion
We present a prospective study testing real-life falls 
detection using a smartphone-based online system. Our 
system detected 73.0 % of reported real-life falls with a 
relatively low false alarm rate (1 per 46 days of system 
use). This study shows the potential to use a smartphone-
based system for detection of real-life falls in real-time. 
Due to the ubiquitous nature of smartphones, an app-
based fall detection system would require no additional 
cost and very limited inconvenience (i.e., battery life, 
installation) for many users. In addition, our system uti-
lizes the connectivity of the smartphone platform to 
enable timely notification of falls to a caregiver or emer-
gency medical services. Reducing the time between a 
fall occurring and help arriving can help mitigate the 
impacts of falls ranging from head injuries, fractures, 

muscle damage, pneumonia, pressure sores, dehydration, 
hypothermia, and psychological consequences includ-
ing increased fear of falling and related social isolation 
[7–11].

One challenge in developing a fall detection model 
with real-life falls data is the difficulty of recording real-
life falls due to the rareness of these events [15, 16, 29]. 
An extensive collection of real-life falls is needed in order 
to develop detection models that perform well in prac-
tice. To collect such data and properly assess potential 
fall-detection models on new populations, a system capa-
ble of autonomously collecting, processing and filtering 
incoming data from many participants is essential. The 
system presented in this study can be readily adapted for 
use by a large number of individuals simply by a down-
load into their smartphones—no additional hardware is 
needed. This system could serve as a research tool and 
scale the ability of future studies to capture data related 
to real-life falls.

Our system can periodically connect to a cloud server 
and update the parameters of its classification model. 
As a result, it can continuously learn from new data of 
real falls and improve the ability to detect future falls, 
though this was not explored in the current study and 
no model updates were made. The ability to continually 
learn and update the model may be especially useful, 
given the absence of a significant real-life falls data-
base to be used for training the model. In the current 
study, the model resulted in different performances 
(i.e., sensitivity, precision, F1-score) for different diag-
nosis groups and different individuals (see clinical data 
section in the results for sample sizes for each group). 
While it should be noted that the sample size of some 
of the groups was relatively small, the performance 
difference may suggest the need to create a personal-
ized, fall detection model to each user based on his/
her individual-specific sensor data and fall recordings. 
Our system’s ability to continuously learn and update 
its detection model enables creating such personalized 
models.

This study is the first prospective study that shows the 
ability to detect real-life falls in real time using a smart-
phone-based system. Nevertheless, it can be compared 
to previous prospective studies [30–36] which developed 
real-life fall systems using dedicated accelerometer sen-
sors (Fig. 5). Only three systems [30, 31, 36] resulted in 
higher sensitivity (80.0-83.3 %) than our system (73.0 %). 
However, the precision scores in these studies (0.2–
22.2 %) were lower than our system (37.5 %). Only one 
study [32], which employs accelerometers and optical 
sensors in a constrained home environment, resulted in 
higher precision than our system (50 %). However, the 
sensitivity of that system (22.2 %) was much lower than 
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our system (73.0 %). Therefore, when considering both 
sensitivity (recall) and precision, using the F1-score, our 
fall detection system resulted in the highest performance 
(0.495). Even so, a direct comparison between the cur-
rent study, which covered multiple causes of increased 
fall risk, and these previous works, which focused specifi-
cally on fall detection in the elderly, is only relative given 
the differences in sample populations. Despite our study 
focusing on a broad, rehabilitation-focused participant 
population, we find performance consistent with, and in 
places exceeding, prior studies focused on falls in elderly 
individuals. This does not guarantee the same perfor-
mance when focusing only on elderly individuals, though.

Also, in comparison to previous prospective studies 
[30–36], the current study includes the largest number of 
recorded days (2070), and the largest number of events 
which were analyzed by the model (14,904,000). One of 
the desirable feature of our approach is scalability for 
large scale deployments to remotely and automatically 
upload the data from the phone to the cloud server as 
opposed to being manually downloaded from the sensors 
by a research staff member [31]. In addition, participants 
in the current study did not need to wear any special sen-
sors and were not restricted to a constrained environ-
ment or any lifestyle adjustments to use this fall detection 
system. Though this study was still limited in terms of 
total number of participants compared to other large 
studies of fall detection [22], our approach has promise 
for future large-scale and long-term monitoring of at-risk 
populations.

Fall detection models can be divided into two groups 
based on their model approach: (1) a threshold-based 
model; (2) a machine learning model [18]. To our 

knowledge, out of prospective studies that used acceler-
ometer data for detecting real falls, only the current study 
and Aziz et al. [30] used a machine learning approach (the 
current model is a mixed threshold and machine learning 
approach), while the rest [31–36] used a threshold-based 
approach. A comparison between the two groups reveals 
that on average, the machine learning model (including 
the current study) resulted in higher sensitivity (76.5 % 
vs. 61.7 %), precision (29.9 % vs. 19.9 %), and overall per-
formance using the F1-score (0.421 vs. 0.204) than the 
threshold-based models. When comparing the machine 
learning models, our model was based on logistic regres-
sion, while the model of Aziz et  al. [30] was based on 
an SVM (support vector machine) classifier. While the 
model of Aziz et al. resulted in higher sensitivity (80.0 % 
vs. 73.0 %), our model resulted in higher precision (37.5 % 
vs. 22.2 %) and higher overall performance using the 
F1-score (0.495 vs. 0.348). The tradeoff between preci-
sion and recall might lead to preferring one model over 
the other. In the case of fall detection higher recall (i.e., 
detecting more falls) might be more valuable than higher 
precision (i.e., detecting only falls). However, the optimal 
balance between the two should be investigated in future 
studies. In summary, the two prospective machine-learn-
ing classifier models performed comparably, and gener-
ally superior to the threshold-based strategies.

The increase in computational power available in 
recent years enabled several recent studies to apply 
deep learning method in fall detection models [23, 24, 
53]. Yet, deep learning models tend to outperform other 
machine learning approaches in cases where large data-
sets are available. Fall detection datasets are relatively 
small (i.e., including only tens/hundreds of falls) which 

Fig. 5  Comparison of real-life fall model performance metrics: A Sensitivity and precision; B F1-score
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may be more suitable for a different machine learn-
ing model such as the regularized logistic regression 
applied in the current study. Further, while it is feasible 
to apply deep learning applications on a smartphone 
[54], continuously running such models (as required in 
a real-time fall detection system) might result in expen-
sive computational cost [55]. The above reasons may 
partly explain why several smartphone-based applica-
tions in the field of translational medicine, including 
the current study, used less demanding machine learn-
ing methods [37–39].

Limitations
The current study includes several limitations as follows. 
Since our system is smartphone-based, it is only relevant 
for individuals who have smartphones and are interested 
in carrying them. Further, the system will only be effec-
tive for the period in which the fallers carry the phone 
with them. Other phone-related variables such as hard-
ware constraints impacting signal quality, battery life 
could influence the practicality of the proposed system. 
Battery capacity and performance could limit our poten-
tial to extend monitoring time beyond 12 h each day. Our 
smartphone-based system requires a minimum of 2G 
signal in order to send alert notifications and preferably 
4G-LTE for exporting sensor data. Therefore, falls that 
will occur in locations without cellular reception will not 
be centrally detected for notification in real-time. Never-
theless, once the phone regains signal, the data is sent to 
the cloud server, and the fall is classified accordingly. The 
system does not indicate if a fall occurred indoor or out-
door which limits the ability to investigate the fall activity 
(e.g., the effect of the weather on the fall).

Conclusions
In summary, we present a proof-of-concept fall detec-
tion system that can be implemented in a commodity 
smartphone to detect real-life falls and issue a timely 
notification to a caregiver or emergency medical ser-
vices. The ubiquity of smartphones may increase the 
accessibility of a large global population to use this fall 
detection system. The system’s ability to automatically 
detect a fall in real-time, locate the faller, and send a 
notification could be critical for fallers that experience 
severe injury or remain unconscious, unable to call for 
help. The fall-related data stored by the system and 
available in the web portal may provide unique insights 
to be used by future studies to advance research on fall 
prevention, detection, and treatment.
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