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Abstract 

Background: Freezing of gait (FOG) is a walking disturbance in advanced stage Parkinson’s disease (PD) that has 
been associated with increased fall risk and decreased quality of life. Freezing episodes can be mitigated or prevented 
with external intervention such as visual or auditory cues, activated by FOG prediction and detection systems. While 
most research on FOG detection and prediction has been based on inertial measurement unit (IMU) and accelerom-
eter data, plantar-pressure data may capture subtle weight shifts unique to FOG episodes. Different machine learn-
ing algorithms have been used for FOG detection and prediction; however, long short-term memory (LSTM) deep 
learning methods hold an advantage when dealing with time-series data, such as sensor data. This research aimed 
to determine if LSTM can be used to detect and predict FOG from plantar pressure data alone, specifically for use in a 
real-time wearable system.

Methods: Plantar pressure data were collected from pressure-sensing insole sensors worn by 11 participants with PD 
as they walked a predefined freeze-provoking path. FOG instances were labelled, 16 features were extracted, and the 
dataset was balanced and normalized (z-score). The resulting datasets were classified using long short-term memory 
neural-network models. Separate models were trained for detection and prediction. For prediction models, data 
before FOG were included in the target class. Leave-one-freezer-out cross validation was used for model evaluation. In 
addition, the models were tested on all non-freezer data to determine model specificity.

Results: The best FOG detection model had 82.1% (SD 6.2%) mean sensitivity and 89.5% (SD 3.6%) mean specificity 
for one-freezer-held-out cross validation. Specificity improved to 93.3% (SD 4.0%) when ignoring inactive state data 
(standing) and analyzing the model only on active states (turning and walking). The model correctly detected 95% of 
freeze episodes. The best FOG prediction method achieved 72.5% (SD 13.6%) mean sensitivity and 81.2% (SD 6.8%) 
mean specificity for one-freezer-held-out cross validation.

Conclusions: Based on FOG data collected in a laboratory, the results suggest that plantar pressure data can be used 
for FOG detection and prediction. However, further research is required to improve FOG prediction performance, 
including training with a larger sample of people who experience FOG.
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Background
Freezing of gait (FOG) is a gait disorder seen in some 
individuals in the early stage of Parkinson’s disease (PD) 
and in up to 60% of people in the more advanced stages 
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of the disease [1–5]. FOG is characterized by the inability 
to step effectively and move forward despite the inten-
tion to do so. FOG has been shown to cause falls [5], even 
when the FOG episode is brief (less than 10 s) [6]. Even in 
non-fallers, repeated freeze episodes can negatively affect 
overall mobility, level of activity, and thus their independ-
ence and quality of life [7–10]. Therefore, reducing FOG 
occurrence can greatly improve independence and qual-
ity of life.

Cueing can alleviate FOG by providing an external 
stimulus, such as light or sound, that facilitates gait ini-
tiation and continuation [11]. However, continuous cue-
ing may be distracting when a person is not walking, 
and can lead to cue dependency [12] and induce fatigue 
[13].  Furthermore, cueing with a pre-set rhythm that is 
not matched to the person’s specific gait at each instant 
may induce FOG [14]. It is therefore preferred to use an 
intelligent cueing approach [15] that could activate a cue 
upon freeze detection (in order to end the freeze and 
reduce freeze duration), or ideally, predict a freeze before 
onset and activate pre-emptive cueing (to prevent the 
freeze from occurring). Development of freeze detection 
and prediction methods are therefore important for an 
intelligent cueing system designed to reduce freeze dura-
tion and occurrence.

Most FOG detection research has used accelerometer 
or inertial measurement unit (IMU) sensors [16–22] at 
the ankle, knee, and waist. Plantar pressure has been used 
in rehabilitation strategies [23–26], fall-risk prediction 
[27] and classification [28] in older adults, and classifying 
gait as PD or healthy control [29]. Only recently, plantar 
pressure data has been used together with accelerometer 
data for FOG detection [30], and in our recent research 
for early FOG detection and prediction (together with 
IMU data [31, 32] and alone [32, 33]). Plantar pressure 
data was useful in detecting FOG and the transition from 
normal walking into a freeze. Since an integrated shoe-
based plantar-pressure system may be less obtrusive 
and easier to wear than accelerometer and IMU sensors 
placed on various parts of the body, a FOG detection 
and prediction system based on plantar-pressure-sensing 
insoles could permit greater user compliance than a sys-
tem that uses accelerometer or IMU sensors on multiple 
body parts. There is therefore a need to determine the 
effectiveness of FOG detection and prediction methods 
based on plantar-pressure sensors alone.

Many machine-learning algorithms have been used for 
classifying FOG [16, 19, 20, 34]. Random forests (in both 
participant dependant [16] and independent models [20]) 
and Support Vector Machines (SVM) [19, 34] have per-
formed well in FOG classification. However, Recurrent 
Neural Networks (RNN) have the potential to achieve 
better performance due to the way time-series data are 

handled. RNN are artificial neural networks that can 
model sequence data (including time-series data from 
wearable sensors), taking a sequence as input, and out-
putting a sequence. Long short-term memory (LSTM) 
units were introduced to solve the vanishing gradients 
problem in RNN, and thus allow RNN to learn from 
longer sequences [35]. When trained with acceleration 
data, a LSTM network reported 83.38% (SD 10%) FOG 
detection accuracy [17]. To improve the existing FOG 
detection models, efforts have been made to detect FOG 
earlier (i.e., predict the FOG episode before it occurs) 
using FOG indicators found in gait parameters preceding 
a freeze episode [36]. These gait parameters showed that 
gait can deteriorate as the person progresses into a freeze. 
This period of gait deterioration preceding a freeze is 
often referred to as Pre-FOG and has been used for FOG 
prediction using various methods [37–39].  Recently, 
LSTM networks have also been used for FOG predic-
tion. In [40], a 2-layer LSTM network was used for a 
2-class model with Pre-FOG and FOG classes together 
in the target class. The LSTM network achieved 87.54% 
accuracy for 1 s Pre-FOG duration, 85.54% accuracy for 
3 s Pre-FOG duration, and 79.47% accuracy for 5 s Pre-
FOG duration, all using acceleration signals [40]. How-
ever, with an imbalanced dataset, the study gave a biased 
analysis since only accuracy was reported [40]. In the 
case of an imbalanced dataset, metrics such as sensitivity 
and specificity should be used instead of accuracy since 
many true negatives can increase accuracy regardless of 
the model’s ability to produce true positives.

The existing research has established a foundation for 
FOG detection and prediction;  however, several limita-
tions need to be addressed. For instance, most research 
has focused on participant dependent models [16, 17, 38, 
40, 41]. Since these models were not validated on unseen 
participant data, applicability to a new person with PD is 
limited. Furthermore, participant dependent models give 
biased results due to a correlation between training and 
validation samples. This limitation has been  acknowl-
edged, but not completely mitigated [16, 41]. Some FOG 
detection [18, 21] and FOG prediction [42] models have 
been validated on a set of held-out participants; however, 
model performance standard deviation across different 
held out  participants  was  not reported.  Another limita-
tion, specific to deep learning models, is a large batch size 
(e.g., 128 [43] or 1000 [40]) that can lead to poor generali-
zation. A batch size of 1 has been recommended to mini-
mize generalization error [44], the drawback being that 
with a batch size of 1, the network will take more time to 
converge to the global optimum.

A FOG detection model should require minimal pre-
processing (including signal filtering)  without any man-
ual steps, to reduce freeze detection  latency and permit 
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the model to be run in real-time on a wearable microcon-
troller. The model should also require minimal computer 
memory. However, most research used noise filtering [20, 
39, 42], manual steps [20], preprocessing such as combin-
ing windows in the spectral domain [18, 21], or computa-
tionally intensive feature extraction [19, 34] before FOG 
detection or prediction, and only one study has focused 
on finding and reducing freeze detection latency [16].

Plantar-pressure-sensing insoles could be used to 
make integrated shoe-based FOG detection and predic-
tion systems that could permit greater user compliance 
than accelerometer or IMU based systems that require 
multiple sensors on various body locations. For this rea-
son, this research investigated the effectiveness of FOG 
detection and prediction methods based on plantar pres-
sure sensors. The ability to utilize time series data makes 
RNN, and especially LSTM networks, well suited to FOG 
detection and prediction. The aim of this research was to 
demonstrate the effectiveness of LSTM models for FOG 
detection and prediction while maintaining generalizabil-
ity by using leave one participant out (LOPO) cross vali-
dation and model training with a batch size of 1.

Methods
Participants and inclusion criteria
A convenience sample of 11 male participants was 
recruited from the Ottawa-Outaouais community, with 
mean age 72.7  years (SD 5.5), height 1.77  m (SD 0.04), 
weight 79.6 kg (SD 10.5), and 10.5 years (SD 4.8) since PD 
diagnosis. Eligibility criteria were: PD with FOG at least 
once a week, able to walk 25 m unassisted (without a cane 
or walking aid) and no lower limb injury or other comor-
bidity that impaired ability to walk. In addition, partici-
pants must not have undergone deep brain stimulation 

therapy. Participants visited the lab for a single data col-
lection session while on their normal antiparkinsonian 
medication dosage and schedule. Data collection was 
typically scheduled in the hours prior to the participant’s 
next dose so that the medication would be wearing off 
during testing and FOG would be more likely to occur. 
After providing written informed consent, all partici-
pants took part in a clinical assessment which included 
the New Freezing of Gait questionnaire, a self-reported 
fall history questionnaire, and the Motor Examination 
section from the Unified Parkinson’s Disease Rating Scale 
(UPDRS III). Participants also completed an informa-
tion form that included disease history and medication 
schedule.

Plantar pressure measurement
Plantar pressure data were recorded during multiple 
walking trials at 100  Hz using FScan pressure sensing 
insoles (Tekscan, Boston, MA; Fig. 1). FScan insoles are 
thin (< 1 mm) plastic film sheets with 3.9 pressure sens-
ing cells per  cm2 (25 cells per  in2). The insoles were equil-
ibrated before participant arrival by applying uniform 
pressure to the entire sensor and adjusting the sensor 
constants to produce a uniform output [45]. Equilibra-
tion was performed at 138  kPa, 276  kPa, and 414  kPa. 
A sample plantar-pressure data frame from both feet is 
shown in Fig. 1c.

Test protocol
Prior to data collection, participants were weighed, and 
the plantar pressure sensors were trimmed and fitted 
into their shoes. A step calibration was performed (i.e., 
standing on one leg and then quickly transferring weight 
to the other foot, to calibrate sensors to body weight). 

Fig. 1 F-Scan system: a single plantar pressure insole sensor, b sensors worn in shoes, and c plantar pressure sample frame (kPa); dark blue indicates 
zero pressure
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Participants were asked to walk a pre-defined path 
(approximately 25  m) that involved navigating multiple 
cones (requiring two 90° and two 180° turns); walking 
as far as possible into a narrow, dead-end hallway (2.1 m 
tall, 1.2  m wide, 2.5  m long); turning 180°; and walking 
back to the starting position (Fig.  2). Participants were 
asked to stop once in a place of their choice in the area 
delimited by the cones (voluntarily stop) while walk-
ing back to the starting position. Participants were also 
required to stop in front of the chair at the end of each 
test trial (prescribed stop).

Walking trials were recorded using a smartphone cam-
era so that freezing instances could be labeled following 
data collection. For each walking trial, participants stood 
up from a sitting position and performed a single foot 
stomp before starting to walk. The stomp was later used 
to synchronize plantar pressure data and video. Partici-
pants completed up to 30 trials. The first five were base-
line trials, where participants completed the walking path 
without any additional tasks, after which, additional tasks 
were added if the participant did not freeze (Fig. 3). These 
tasks were verbal (continuously speaking as many words 
as possible beginning with a specific letter) and motor 
(holding a plastic tray with both hands, with objects 
on the tray), performed individually or simultaneously. 
Different difficulty levels were used when performing 
the motor task, for example, starting with three small 
wooden blocks on the tray and adding additional blocks 
as needed, to increase difficulty. Alternatively, the blocks 
were replaced with an empty paper coffee cup or sealed 
water bottle, or the participant was asked to carry the 
tray with only one hand.

Data preprocessing
Plantar pressure data were labeled as FOG and non-
freeze (Non-FOG), using a custom-made MAT-
LAB R2019b application (MathWorks, MA, USA). 
During data collection, authors SP and JN identified FOG 

occurrences. In post processing, SP identified the onset 
and termination of FOG episodes from the video record-
ing to a resolution of 30  Hz. In case of uncertainty, the 
second rater was consulted. The beginning of a freeze 
was defined as “the instant the stepping foot fails to leave 
the ground despite the clear intention to step”. The end 
of the freeze was defined as “the instant the stepping 
foot begins or resumes an effective step”. For example, 
a step was considered effective at the instant the heel 
lifted from the ground, provided that it was followed 
by a smooth toe off with the entire foot lifting from the 

Fig. 2 Walking Path

Fig. 3 PD participant turning in a narrow hallway while holding a 
tray with a cup. Assistant follows for safety
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ground and advancing into the next step without loss of 
balance. The labels were applied to the plantar pressure 
data using linear interpolation to the closest timestamp, 
such that each individual datapoint had a label. Sub-
sequently, for the FOG prediction analysis, some data 
preceding each freeze were labeled as Pre-FOG. At each 
instant in time (i.e., each datapoint), the plantar pressure 
data (Fig. 1c) consisted of two 60 × 21 matrices of pres-
sure values, one for each foot. Each walking trial was kept 
as a unique time series wherein each datapoint had a dis-
tinct timestamp and label. This preserved the time series 
information that would be lost if data from any two trials 
were concatenated or mixed. Plantar pressure data from 
the left and right foot were kept separate.

A set of 16 features were extracted from the plantar 
pressure data:

• Centre of pressure coordinates (mm): Centre of pres-
sure (COP)  coordinates were converted  to distance 
from the origin by multiplying the cell position by the 
distance between two cells (5.08  mm).  COP coor-
dinates in x (medial/lateral) and y (anterior/poste-
rior) directions for both feet were calculated at each 
timestamp.

• Centre of pressure velocity (cm/s): COP velocity was 
calculated by dividing the COP coordinates differ-
ence between two consecutive samples by the time 
difference between the samples (0.01 s). COP velocity 
was calculated for both x and y axes for both feet.

• Centre of pressure acceleration (cm/s2):  COP accel-
eration was calculated by dividing the COP velocity 
difference between two consecutive samples by the 
time difference between samples. COP acceleration 
was calculated for both x and y axes for both feet at 
each timestamp.

• Total ground reaction force (kPa): Total Ground 
Reaction Force (GRF) was obtained by adding pres-
sure from all pressure cells of the plantar pressure 
sensor. Total GRF was determined for both feet at 
each timestamp.

• Fraction of total ground reaction force (unit-
less): Fraction of total GRF is the ratio of GRF from 
one foot divided by the total GRF for both feet. Frac-
tion of total GRF was calculated for both feet at each 
timestamp.

COP coordinates, COP velocity, and COP acceleration 
were calculated for both x and y axes for both feet. Total 
GRF and fraction of total GRF were calculated for both 
feet. The features were calculated at each timestamp and 
were used for FOG detection and prediction.

Each time a model was trained, each participant was 
assigned to either the training or the testing set (i.e., for 

any given participant, the participant data were either 
entirely in the training set, or entirely in the validation 
set).

Data balancing for detection models
Since FOG events occur much less frequently than regu-
lar walking steps, the dataset was imbalanced, with most 
walking trials consisting mostly of Non-FOG data (walk-
ing data without a FOG episode). A custom data balanc-
ing approach was designed to account for this imbalance, 
creating one training instance for each FOG episode in 
the training dataset. A training instance was defined as 
a single FOG episode with some Non-FOG data before 
and after the freeze. If possible, the ratio of FOG to Non-
FOG data in each training instance was 1:1. The amount 
of Non-FOG data taken before and after the FOG epi-
sode each corresponded to half the duration of the FOG 
episode. If there was not enough Non-FOG data on one 
side of a FOG episode (e.g., if the FOG episode occurred 
at the beginning or end of a trial), then additional Non-
FOG data was taken on the other side of the freeze such 
that the total amount of Non-FOG data was equal to the 
amount of FOG data in the training instance. However, 
in a few cases, there were not enough Non-FOG data 
points before and after a FOG event (this happened when 
multiple FOG episodes occurred close to each other). 
In such cases, the FOG episode along with the available 
Non-FOG data between freezes was extracted. Therefore, 
most training instances had equal numbers of FOG and 
Non-FOG datapoints. A few slightly imbalanced train-
ing instances had more FOG datapoints than Non-FOG 
(when multiple FOG occurred in rapid succession). Data 
between FOG episodes could be included after the FOG 
in one classification instance or before the FOG in a dif-
ferent classification instance, and if necessary, the same 
Non-FOG data could be used for both cases. For the 
test set, no balancing was performed since the model 
is intended to be used in real-time situations where the 
input data would be imbalanced.

LSTM model
For FOG detection, LSTM networks were setup using 
a multiple-input (multiple datapoint) multiple-output 
(multiple datapoint) architecture in which all datapoints 
were used as model inputs and each datapoint in the test 
instances was classified by the model. Each LSTM layer 
returned the full sequence to the model’s next layer. This 
allowed the model to classify each timestamp as belong-
ing to the FOG or Non-FOG class. LSTM layers used a 
hyperbolic tangent (tanh) activation function, followed 
by a time-distributed fully connected layer (i.e., output at 
each time step passes through the fully connected layer) 
with 2 units and Softmax activation. Models were trained 
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with the Adam optimizer, using 0.9 decay rate for the first 
and 0.999 decay rate for the second moment estimates, 
and a cross entropy loss function.

Most deep learning frameworks (e.g., TensorFlow) 
require that all sequences in the same batch have the 
same length  for vectorization.  Vectorization treats net-
work weights and inputs as vectors, allowing vector 
multiplication rather than repetitive element-wise mul-
tiplications.  Sequences of different lengths can be han-
dled by using a batch size of 1. For evaluation, the total 
number of correct and incorrect classifications (one clas-
sification per datapoint) in the validation set (i.e., a held-
out participant’s data) were used to calculate the model’s 
specificity and sensitivity. The model precision and F1 
score (harmonic mean of sensitivity and precision) were 
also calculated.

Hyperparameter tuning
Several network architectures and learning rate combina-
tions were tried while using the Adam optimizer, cross 

entropy loss function, and a batch size of 1 (Table 1). All 
models had a time-distributed fully connected layer with 
2 neurons and a Softmax activation after the LSTM lay-
ers. For this stage of model development, the training and 
test sets were fixed, Participant 2 was used as the held-
out test set and all other freezers were used for training.

An initial 2-layer LSTM network was trained with 16, 
32,  or 64 units in both layers  for 30 epochs with a 0.01 
constant  learning rate. The network worked best using 
16 units  in each layer. The 2-layer LSTM network’s per-
formance did not improve beyond 30 epochs. Thus, in all 
subsequent experiments, the network was trained only 
until 30 epochs.  Then, networks with 16 units in  each 
layer,  were trained using 1, 2, 3, 4, or 5 LSTM  layers. 
Networks with 1, 4, or 5 LSTM layers performed poorly. 
Networks with 2 or 3 LSTM layers performed best. It 
was thought that the 3 layer-LSTM network may outper-
form the 2-layer network if model complexity were fur-
ther increased by using more units per layer; therefore, 
the number of units was varied for the 3-layer network. 
For the 3 LSTM layer model, 32 units in each layer per-
formed better than 16 units in each layer. Only networks 
with 2 LSTM layers  (each with 16 units) and 3 LSTM 
layers (each with 32 units)  were  used for subsequent 
experiments. A schematic representation of the hyperpa-
rameter tuning of the LSTM model is shown in Fig. 4.

Different learning rates were explored for the 2 and 
3-layer LSTM network; 0.1, 0.01, 0.001, and 0.0001 con-
stant learning rates.  Learning rate decay with 0.5 decay 
rate (0.005 initial learning rate) and 0.75 decay rate (0.001 
initial learning rate) were used (Fig.  4). A learning rate 

Table 1 LSTM Network configurations

Hyperparameter Values tested

Number of LSTM layers 1, 2, 3, 4, 5

Number of units in each LSTM layer 16, 32, 64

Constant learning rate 0.1, 0.01, 0.001, 0.0001

Learning rate decay with a decay rate
(decay rate, initial learning rate)

(0.5, 0.005), (0.75, 0.001)

Learning rate decreases in discrete steps
(initial learning rate)

Decreases to half every 
5 epochs (0.01)

Fig. 4 Hyperparameter tuning of the LSTM network architecture
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schedule where learning rate was reduced to half  every 
5 epochs, after starting from a 0.01 initial learning rate, 
outperformed all other learning  rate schedules. The 
best performing models were used for FOG detection 
(Table 2).

Cross validation
The best performing models (Table  2) were trained and 
evaluated with cross validation after z-score normaliza-
tion as follows:

• One-freezer-held-out cross validation: The model 
was trained on data from all but one participant who 
froze during trials and was validated on the held out 
participant. This was repeated for each freezer, such 
that each freezer was in the validation set once.

• All-non-freezers-held-out validation: The model was 
trained on data from all participants who froze and 
was validated on all participants who did not freeze 
during the trials. This facilitated false positive assess-
ment in situations where participants did not freeze.

The mean and standard deviation of each feature 
were calculated on the entire training set and then used 
for normalizing each corresponding feature in both the 
training and validation sets. Each feature was normalized 
using z-score normalization by subtracting the feature 
value by the feature’s mean and dividing by the feature’s 
standard deviation. Each time a new participant was held 
out, the z-score normalization was re-done using the 
mean and SD of the current training set. Z-score nor-
malization is useful for removing outliers and bringing all 
features to a similar scale.

FOG detection latency
FOG detection latency is the time difference between 
freeze onset and the detection of the freeze by the model. 
A freeze episode was detected correctly if the model 
classified a freeze during the true freeze period (period 

between the freeze onset and end of the freeze episode). 
If multiple freeze classifications existed within the true 
freeze period, the earliest classification was used to cal-
culate freeze detection latency.

FOG prediction
For FOG  prediction, the LSTM model architecture that 
was best for FOG detection, and the same validation 
approaches (one-freezer-held-out, all-non-freezers-
held-out) were utilized. The primary difference between 
the detection and prediction models was the dataset 
labeling. FOG prediction is usually a  three-class  classi-
fication problem, with the classes being FOG, Pre-FOG 
(data immediately prior to a freeze), and Non-FOG. FOG 
prediction has also been done as a binary classification 
[40], where data just before a freeze episode (Pre-FOG) 
and the freeze episodes were in the target class (i.e., class 
that the model aims to detect) and the remaining Non-
FOG data were in the non-target class. The same binary 
classification setup was used for FOG prediction in this 
research. The data length before a freeze (Pre-FOG dura-
tion)  depended on the corresponding freeze episode’s 
length. A 2 s Pre-FOG duration was chosen for all freeze 
episodes that were 2 s or longer, and a Pre-FOG duration 
equal to the corresponding freeze episode length was 
chosen for all freeze episodes shorter than 2 s.

The same 16 features for FOG detection were used for 
FOG prediction. Data were split into training and valida-
tion sets by participant (i.e., all data from a participant 
were either in the training or validation set). To balance 
the training dataset, the procedure used for FOG detec-
tion was also used for FOG prediction, except that the 
target class for prediction had both Pre-FOG and FOG 
data. Therefore, when determining Non-FOG data to 
include in each training instance, the combined duration 
of the Pre-FOG and FOG data was matched by the dura-
tion of the Non-FOG data, when possible.

Results
A total of 241  min of walking data were collected, dur-
ing which seven participants froze (Table  3). This data 
included 362 freeze episodes, with most (221) freeze epi-
sodes corresponding to Participant 7. Following data bal-
ancing, much of the Non-FOG data were removed, which 
reduced the final size of the input dataset (Table 4).

FOG detection
The  2-layer LSTM model (detailed in Table  2) achieved 
82.1% mean sensitivity (SD 6.2%) and 89.5% mean speci-
ficity (SD 3.6%) in one-freezer-held-out cross validation 
(Table  5). The model achieved 81.6% specificity in all-
non-freezer-held-out validation (i.e., tested only on par-
ticipants who did not freeze: Participants 4, 5, 10, 11). 

Table 2 Best performing LSTM network configurations for FOG 
detection

Network or training parameter Values / Options

LSTM layers (units in each LSTM layer) 2 layers (16 units) and 3 layers 
(32 units)

Initial learning rate 0.01

Learning rate decay Decreases to half, every 5 epochs

Optimizer Adam optimizer

Loss function Cross entropy loss function

Batch size 1

Training epochs 30
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The 3-layer LSTM model achieved a slightly improved 
mean sensitivity (83.4%, SD 6.7%) but a slightly lower 
mean specificity (87.4%, SD 5.4%) than the 2-layer LSTM 
model in one-freezer-held-out cross validation (Table 6). 
In all-non-freezer-held-out validation, the 3-layer model 
improved the specificity to 87.7%. The 2-layer model 
achieved 25.3% (SD 18.6%) precision and 0.35 (SD 0.20) 

F1 score. Similarly, the 3-layer model achieved 23.2% (SD 
18.8%) precision and 0.32 (SD 0.20) F1 score. The low val-
ues of precision and F1 may be attributed, in part, to the 
data imbalance in the test set.

Overall, the 2-layer and 3-layer models had similar per-
formance, with a slight trade-off of lower specificity for 
higher sensitivity for the 3-layer model. However, the 
2-layer model is much simpler, having fewer layers and 
fewer units per layer, and is therefore the better option 
for a wearable system. The simpler model is less prone 
to overfitting and has the additional advantage of lower 
computational cost.

FOG detection latency
With the 2-layer LSTM model (16 units) in one-freezer-
held-out cross validation, 95% (343 of 361) of freeze 
episodes were detected correctly (Table 7). The FOG epi-
sodes that were not detected were from Participant 7 (17 
undetected episodes, of 221 total) and Participants 6 and 
8 (one undetected episode). The model achieved a maxi-
mum 0.1  s (SD 0.32  s) average freeze detection latency, 
which occurred for Participant 7. A negative freeze 
detection latency means that, on average, freeze episodes 
were detected before the freeze started. Therefore, FOG 
episodes were detected on average before onset for Par-
ticipants 1, 6, 8 and 9. FOG episodes were detected on 
average after the freeze had begun for Participants 2, 3 
and 7.

False positive classification and undetected freeze 
episodes
Of all false positives, 35.13% occurred during walking, 
27.91% turning, and 34.74% standing. The remaining 
2.22% of the false positives were during periods of unde-
fined gait. Undefined refers to the beginning and end of a 
trial when no specific activity was being performed. For 
the false negatives, 58.67% of misclassifications occurred 
during turning and 46.12% occurred during walking.

Table 3 Freeze episode count and duration for each participant

Participant Most 
affected 
side

Number 
of FOG 
episodes

Mean (SD) 
FOG duration 
(s)

Total FOG 
duration (s)

1 Right 49 0.69 (0.26) 34.05

2 Left 35 2.64 (1.61) 92.35

3 Left 14 1.06 (0.53) 14.88

4 Left 0 – –

5 Right 0 – –

6 Left 10 4.23 (3.80) 42.29

7 Right 221 1.52 (1.48) 336.20

8 Right 24 1.51 (1.05) 36.16

9 Left 9 0.75 (0.35) 6.74

10 Left 0 – –

11 Right 0 – –

Table 4 FOG detection model training data provided by each 
participant following data balancing

Participant Number 
of training 
instances

Number of 
datapoints in Non-
FOG class

Number of 
datapoints in 
FOG class

1 49 3432 3454

2 35 9253 9270

3 14 1492 1502

6 10 4235 4240

7 221 30,246 37,132

8 24 3381 3886

9 9 680 683

Table 5 FOG Detection: One-freezer-held-out cross validation for the 2-layer LSTM model (16 units per LSTM layer)

Participant held out FOG data Non-FOG data Sensitivity (%) Specificity (%) Precision (%) F1 score

1 3454 82,943 83.0 92.5 31.6 0.46

2 9270 110,130 77.2 90.3 40.0 0.53

3 1502 142,157 72.5 92.8 9.6 0.17

6 4240 191,309 85.9 90.2 16.3 0.27

7 33,841 159,787 77.4 89.5 61.0 0.68

8 3640 101,415 86.2 81.2 14.1 0.24

9 683 141,373 92.2 89.8 4.2 0.08

Mean (SD) 82.1 ± 6.2 89.5 ± 3.6 25.3 ± 18.6 0.35 ± 0.20
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Of all data labeled as standing, 65.3% were false posi-
tives. The percentages of false positives for walking 
(3.72%) and turning (7.09%) were much smaller. Almost 
no standing data were included in the final train-
ing set due to the data setup method (i.e., only freeze 

episodes and data before and after the freeze episodes 
were included in the training set). An activity recogni-
tion algorithm (not developed or implemented in this 
research) could be used as a first step of FOG detection 
to determine if the person is standing or walking prior 
to FOG classification. Since most of the standing data 
were misclassified as freeze (65.3% of standing data 
were false positive), an activity recognition algorithm 
could be applied to remove standing data, and the FOG 
detection algorithm would then only have to detect 
freezes during walking and turning, thereby reducing 
the number of false positives. To simulate this method, 
the 2-layer LSTM model was also evaluated on only 
active states (turning and walking) and excluding stand-
ing. In one-freezer-held-out cross validation for the 
2-layer LSTM model, the mean specificity increased by 
3.8%, from 89.5% (SD 3.6%) to 93.3% (SD 4.0%), when 
classifying active states only, compared to classifying 
both active and inactive states, while the sensitivity 
decreased negligibly by 0.5% (Table  8). For all-non-
freezer-held-out validation, specificity increased from 
81.6% to 88.4% (6.8% increase).

Table 6 FOG Detection: One-freezer-held-out cross validation for the 3-layer LSTM model (32 units per LSTM layer)

Participant held out FOG data Non-FOG data Sensitivity (%) Specificity (%) Precision (%) F1 score

1 3454 82,943 83.6 86.3 20.2 0.33

2 9270 110,130 83.5 90.1 41.5 0.55

3 1502 142,157 71.7 92.0 8.6 0.15

6 4240 191,309 86.9 90.7 17.2 0.29

7 33,841 159,787 77.1 89.2 60.1 0.68

8 3640 101,415 87.6 74.7 11.1 0.20

9 683 141,373 93.6 88.6 3.8 0.07

Mean (SD) 83.4 ± 6.7 87.4 ± 5.4 23.2 ± 18.8 0.32 ± 0.20

Table 7 FOG detection latency (average and standard deviation) 
in one-freezer-held-out cross validation with the 2-layer LSTM 
model. A negative freeze detection latency means that the freeze 
was detected before the true freeze onset

Participant 
held out

Freezes 
correctly 
detected

Freezes not 
detected

Average FOG 
detection 
latency (s)

1 49 0 − 0.23 ± 0.55

2 35 0 0.02 ± 0.17

3 14 0 0.08 ± 0.25

6 9 1 − 0.04 ± 0.36

7 204 17 0.10 ± 0.32

8 23 1 − 0.55 ± 0.85

9 9 0 − 0.47 ± 0.74

Total 343 18

Table 8 FOG Detection: One-freezer-held-out cross validation using the 2-layer LSTM model on only active states and on both active 
and inactive states

Active states include walking and turning but exclude standing

Participant held out Only active states Both active and inactive states

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

1 79.2 95.8 83.0 92.5

2 77.2 96.8 77.2 90.3

3 72.5 93.6 72.5 92.8

6 85.9 94.8 85.9 90.2

7 77.9 92.3 77.4 89.5

8 86.2 84.2 86.2 81.2

9 92.2 95.4 92.2 89.8

Mean ± SD 81.6 ± 6.3 93.3 ± 4.0 82.1 ± 6.2 89.5 ± 3.6
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Percentage of time frozen
FOG detection models have been evaluated using the 
percentage of time frozen during a walking trial to com-
pare the model classifications to the ground truth labels 
[46], and to compare labels from different labelers [47].

The percentage of time frozen was calculated for each 
session in the test set using all datapoints, whether FOG 
was correctly or incorrectly classified. The confusion 
matrix for each fold of the one-freezer-held-out cross 
validation was used to calculate the percentage of time 
frozen as follows:

where TP is true positive, TN is true negative, FP is false 
positive, and FN is false negative. Percentage of time 
frozen results for the 2-layer FOG detection model are 
presented in Table  9. For the all-non-freezer-held-out 
testing, the model percent time frozen was 18.4%.

The model overestimated the percent time frozen. 
Since, percentage of time frozen is a generalized measure 

Model percent time frozen =
TP + FP

(TP + TN + FP + FN )

True percent time frozen =
TP + FN

(TP + TN + FP + FN )

across an entire walking trial and does not indicate 
whether the classifications and true labels coincide, 
this measure does not relate to model viability in a cue-
ing system. In a cueing system application, only the first 
datapoint(s) of a freeze needs to be correctly classified 
to appropriately deliver the cue. This research therefore 
used detection latency, together with common evaluation 
metrics such as sensitivity and specificity.

FOG prediction
The best mean sensitivity and specificity were obtained 
after 4 training epochs for the 2-layer LSTM model and 
after 3 training epochs for the 3-layer LSTM model. 
The 2-layer LTSM model achieved 79.9% mean sensitiv-
ity (SD 10.3%) and 76.3% mean specificity (SD 9.0%) in 
one-freezer-held-out cross validation (Table  10). The 
same model achieved a higher mean specificity of 84.6% 
for all-non-freezer-held-out validation. For the 3-layer 
LSTM model, mean sensitivity 72.5% (SD 13.6%) was 
lower than for the 2-layer model, and mean specific-
ity 81.2% (SD 6.8%) was higher (Table  11). However, 
the 3-layer model mean specificity for participants who 
did not freeze decreased to 69.5%. The FOG prediction 
model performance suggests that there may be patterns 
in the plantar pressure data indicative of upcoming FOG. 

Table 9 Percentage of time frozen in one-freezer-held-out cross validation with the 2-layer LSTM model for FOG detection

Participant held out True positive True negative False positive False negative Model time 
frozen (%)

True time 
frozen 
(%)

1 2868 76,729 6214 586 10.5 4.0

2 7154 99,394 10,736 2116 15.0 7.8

3 1089 131,869 10,288 413 7.9 1.0

6 3642 172,641 18,668 598 11.4 2.2

7 26,201 143,062 16,725 7640 22.2 17.5

8 3137 82,302 19,113 503 21.2 3.5

9 630 126,898 14,475 53 10.6 0.5

Mean ± SD 14.1 ± 5.2 5.2 ± 5.5

Table 10 FOG Prediction: One-freezer-held-out cross validation with the 2-layer LSTM model after 4 training epochs

Participant held out Sensitivity (%) Specificity (%) Precision (%) F1 score

1 82.5 60.2 15.3 0.26

2 62.7 83.9 36.0 0.46

3 68.1 71.8 4.8 0.09

6 78.8 88.6 18.4 0.30

7 84.1 71.6 54.6 0.66

8 90.8 74.4 17.7 0.30

9 92.6 83.4 5.2 0.10

Mean ± SD 79.9 ± 10.3 76.3 ± 9.0 21.7 ± 16.5 0.31 ± 0.19
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The 2-layer model achieved 21.7% (SD 16.5%) precision 
and 0.31 (SD 0.19) F1 score. The 3-layer model achieved 
25.5% (SD 19.4%) precision and 0.33 (SD 0.20) F1 score. 
Similar to FOG detection, the low values of precision and 
F1 can be attributed, in part, to the data imbalance in 
the test set. For example, for Participant P01, the 2-layer 
detection model correctly classified 2,868 of 3,454 FOG 
datapoints and correctly classified 76,729 of 82,943 Non-
FOG datapoints, resulting in 83% sensitivity and 92.5% 
specificity. The model produced 2868 true positives and 
6214 false positives. Thus, even though the model cor-
rectly identified 83% of the FOG datapoints and the false 
positives accounted for only 7.5% of the total Non-FOG 
datapoints, the precision was poor (31.6%) because of the 
high number of Non-FOG datapoints compared to FOG 
datapoints. In contrast, the 2-layer detection model pro-
duced a much higher precision for Participant P07 (61%) 
despite lower sensitivity (77.45) and specificity (89.5%). 
For Participant P07, 77.4% of the FOG datapoints were 
correctly classified, and 10.5% of the Non-FOG data-
points were misclassified.

Most frequent freezer
One participant (P07) accounted for the majority of the 
FOG episodes in the dataset. To explore the generaliz-
ability of the model without Participant P07, the FOG 

detection model training and testing were re-run without 
Participant P07. The results are presented in Tables  12 
and 13.

For FOG detection, the mean sensitivity for partici-
pants who froze (except P07) decreased when P07’s data 
were excluded (Tables  12 and 13). The decrease in sen-
sitivity for most participants can be attributed to the 
decrease in available training instances in the absence of 
P07’s data. The model performed well when P07’s data 
were removed and included, which suggests that the 
model is likely not overtrained from P07’s data. Since 
more data for training typically improves model general-
izability and helps prevent overfitting, data from all par-
ticipants were included in this research.

Discussion
FOG detection
The new method for FOG detection using plantar pres-
sure data detected 95% of freeze episodes. The proposed 
LSTM model used participant-independent LOPO cross 
validation, which ensured good generalizability com-
pared to the LSTM network for FOG detection used in 
[17], which was not validated on data from an unseen 
participant (i.e., a participant whose data was not used 
for training). More data from people with PD who 

Table 11 FOG Prediction: One-freezer-held-out cross validation with the 3-layer LSTM model after 3 training epochs

Participant held out Sensitivity (%) Specificity (%) Precision (%) F1 score

1 67.4 90.3 37.6 0.48

2 52.8 88.6 40.2 0.46

3 57.6 75.2 4.6 0.09

6 80.4 86.3 16.0 0.27

7 72.9 80.2 59.9 0.66

8 81.0 76.7 17.4 0.29

9 95.4 71.2 3.1 0.06

Mean ± SD 72.5 ± 13.6 81.2 ± 6.8 25.5 ± 19.4 0.33 ± 0.20

Table 12 FOG detection: One-freezer-held-out cross validation for the 2-layer LSTM model with and without most frequent freezer

With P07’s data in training set Without P07’s data in training set

Held out participant Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

1 83.0 92.5 42.2 93.8

2 77.2 90.3 82.3 90.0

3 72.5 92.8 61.1 95.0

6 85.9 90.2 63.5 94.4

8 86.2 81.2 81.4 85.8

9 92.2 89.8 92.4 87.4

Mean ± SD 82.8 ± 6.4 89.5 ± 3.9 70.5 ± 16.7 91.1 ± 3.6
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experience FOG may further improve the generalizability 
of the proposed method.

The 2-layer LSTM FOG detection model can be viably 
used in a real-time system since only 16 plantar-pressure 
features were used after z-score  normalization,  without 
signal filtering. The 2-layer LSTM model needs 51  KB 
computer memory and can be stored on a microcon-
troller. Compared to SVM models [19, 34] and a 1D 
CNN model [21], the new 2-layer LSTM model needs 
less computer memory (Table  14). The  2-layer  LSTM 
model  achieved shorter freeze detection latency than 
a C4.5 decision tree with 1  s windows [16]. The deci-
sion tree had 0.235  s (SD 0.175  s) mean freeze detec-
tion latency compared to the new 2-layer LSTM model’s 
0.1 s (SD 0.3 s) maximum freeze detection latency.

Compared to the SVM model in [19], which achieved 
84.49% sensitivity and 85.83% specificity on 15 partici-
pants in LOPO cross validation, the  new  2-layer  LSTM 
model in this research produced slightly better specific-
ity (89.5% (SD 3.6%)) but slightly worse sensitivity (82.1% 
(SD 6.2%)). The SVM model in [19] used 28 features from 
1.6  s windows of IMU data after low pass filtering and 
required 1.6 MB of computer memory compared to the 
LSTM model’s 16 plantar-pressure features calculated 
without signal filtering. SVM model standard deviations 
were not reported in [19]; however, the sample size of 
15 PD participants who froze was larger than the sample 
size of the new LSTM model, which included 7 PD par-
ticipants who froze.

When classifying only active states, the  new 
2-layer LSTM model achieved better sensitivity (81.6% 
(SD 6.3%)) and specificity (93.3% (SD 4.0%)) than 
the  4-layer  1D CNN model in [43], which achieved 
74.43% (SD 9.79%) sensitivity and 90.59% (SD 6.4%) 
specificity on only active states, (i.e., after remov-
ing standing segments) in LOPO cross validation on 
8 participants. The  4-layer  1D CNN was trained with 
a batch size of 128 and may have poorer generalization 
compared to the new 2-layer LSTM model, which uses 
a batch size of 1. The 4-layer 1D CNN in [43] required 
accelerometers on the participant’s ankle, knee, and 
hip, which may be more obtrusive compared to the use 
of in-shoe plantar-pressure insoles. While the plantar-
pressure insoles used in this research have wires and 
cuffs that could be considered obtrusive, wireless plan-
tar-pressure measurement technology is available [48] 
that would eliminate this issue.

A 4-layer  1D CNN model that used 9-channel IMU 
data from 21 participants achieved better sensitivity 
(91.9%) and similar specificity (89.5%) on 4 held out 
participants [21] than the new 2-layer LSTM model. 
However, the 1D CNN model required 145  KB com-
puter memory. The 1D CNN model used a batch size 
of 16, which may lead to slightly poorer  generaliza-
tion  compared to the  2-layer  LSTM model. The 1D 
CNN model combined information from 2 consecu-
tive  2.56  s windows in the frequency domain before 
classification, which increased computational cost.

A 2-layer 1D CNN FOG detection model achieved 
slightly better sensitivity (83%) and lower specificity 
(88%) in a LOPO cross validation using acceleration 
data from a wrist mounted IMU [49], than the new 
2-layer LSTM model in this paper. The CNN model 
used windows-based classification of data from 11 par-
ticipants (184 FOG episodes) who froze, compared to 
our data from 7 participants (361 FOG episodes) who 
froze. The CNN model had a higher 0.25 s freeze detec-
tion latency (since 0.25 s windows were used) compared 

Table 13 FOG detection: One-freezer-held-out cross validation for the 3-layer LSTM model with and without most frequent freezer

With P07’s data in training set Without P07’s data in training set

Held out participant Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

1 83.6 86.3 71.3 93.1

2 83.5 90.1 63.8 91.4

3 71.7 92.0 60.1 94.3

6 86.9 90.7 78.1 92.8

8 87.6 74.7 88.2 79.5

9 93.6 88.6 99.7 86.8

Mean ± SD 84.5 ± 6.6 87.1 ± 5.8 76.9 ± 13.7 89.7 ± 5.1

Table 14 Computer memory requirement of different models

Model Computer memory 
requirement (KB)

SVM [34] 1600

SVM [19] 1490

1D CNN [21] 145

New 2-layer LSTM 51
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to the 2-layer LSTM model’s maximum 0.1 s (SD 0.32 s) 
average freeze detection latency.

The k-means clustering algorithm in [50] achieved 
a better sensitivity (92.4%) and specificity (94.9%) in a 
LOPO cross validation setting than the new LSTM model 
in this research. Entropy was extracted from 1  s sliding 
windows (with 0.5  s overlap) of raw acceleration data 
from 10 PD participants. However, in a k-means cluster-
ing algorithm, outliers should be removed in advance. 
Further research on a larger dataset is required to vali-
date the utility of unsupervised learning algorithms (i.e., 
learning algorithms which use unlabelled data), such as 
k-means clustering, for FOG detection.

FOG prediction
The new 3-layer LSTM model for FOG prediction using 
features extracted from plantar pressure data achieved 
good specificity; however, improvement in sensitiv-
ity is desired. The new 3-layer LSTM model, with 72.5% 
mean sensitivity (SD 13.6%) and 81.2% mean specificity 
(SD 6.8%) performed similarly to a multilayer perceptron 
neural network trained to predict FOG using electroen-
cephalogram (EEG) data [39]. The multilayer perceptron 
neural network achieved 73.19% mean sensitivity and 
80.16% mean specificity in classifying data between 5 and 
1 s before freeze onset for five held out participants using 
wavelet energy [39].  A backpropagation neural network 
using EEG signals from 16 participants predicted FOG 
with 85.56% sensitivity and 80.25% specificity on five 
held-out participants [42]. This result had better sensi-
tivity and similar specificity compared to the new 3-layer 
LSTM prediction model. Since EEG signal artifacts were 
removed with visual inspection and the signal needed to 
be filtered [42], the noise and complex pre-processing 
make the EEG approach challenging for use in a wearable 
system, in which computational power is limited.

Most FOG prediction models in the literature have 
used all participant’s data in both training and test 
sets. For example, in [40] a 2-layer LSTM network was 
trained using half of the data from each participant and 
was tested on the other half. While the model achieved 
87.54% accuracy in FOG prediction with 1  s Pre-FOG 
duration and 85.54% accuracy with 2  s Pre-FOG dura-
tion [40], the results cannot be generalized on new par-
ticipants because all participant’s data were used in both 
training and validation sets. Furthermore, the 2-layer 
LSTM network in [40] will likely lead to poor generaliza-
tion, since it was trained using a large batch size of 1000 
compared to the new 3-layer LSTM model’s batch size 
of 1.

A FOG prediction model achieved a higher 84.1% 
sensitivity and 85.9% specificity for FOG prediction in 
LOPO cross validation with 2 s Pre-FOG length [51] than 

the new 3-layer LSTM model. The model used angular 
velocity signals from 11 PD participants equipped with 
IMU sensors placed on the shins. However, with use of 
complex preprocessing steps, such as step segmentation 
and features extracted in both the time and frequency 
domains, this approach would be more challenging 
to implement in real time than the new 3-layer LSTM 
model.

The FOG detection and prediction models developed 
in this research used very little computer memory and 
therefore may be suitable for real-life systems that use 
wearable microprocessors with limited computational 
resources. Since the plantar-pressure insole sensors used 
in this research are meant to be single use, a different 
insole sensor would be required for a real-life wearable 
system. The current models were developed using data 
from seven participants who froze; further study with 
larger datasets is planned.

Conclusion
For FOG detection, a 2-layer LSTM model achieved 
results comparable to existing literature. This research 
showed that an LSTM model with features extracted 
from plantar pressure data can be used for FOG detec-
tion. The research also showed that FOG detection 
models could move away from the window-based 
approach, which could save critical time in real-time 
implementation without compromising freeze detection 
performance.

For FOG detection, most inactive-state data (standing) 
were misclassified by the model. When classifying only 
active states, the new LSTM model specificity increased 
by 3.8% while the sensitivity was hardly affected. Cou-
pling FOG detection with an activity recognition system 
could decrease false positives, while correctly detected 
FOG would remain unaffected.

For FOG prediction, the new 3-layer LSTM model 
achieved greater specificity (81.2%, SD 6.8%) but lower 
sensitivity (72.5%, SD 13.6%) than most person-inde-
pendent models in the literature. However, the new 
LSTM model in this research was more generalizable 
since the results were obtained in a participant-held-
out cross-validation setting, compared to the literature, 
where models were frequently validated on held out par-
ticipants without cross validation. The new LSTM mod-
els used plantar pressure data without any signal filtering, 
which reduces the complexity of the model and could 
save valuable time in a real-time system.

Future work
To improve the precision, the number of false positives 
produced by the models should be minimized. There are 
several ways in which this can be achieved. For instance, 
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a state recognition system could be implemented to auto-
matically detect when a person is walking or not. In addi-
tion, if used as part of a cueing system, a consecutive cue 
threshold could be implemented. The models presented 
in this paper classified every datapoint separately; how-
ever, in a real-time cuing system, a minimum number of 
classifications could be required to activate a cue. Given 
the resolution of 100  Hz used in this paper, requiring 
several consecutive classifications to trigger a cue would 
likely result in an unnoticeable delay.

The training dataset did not contain standing activ-
ity data, thus the standing data (inactive state) in the 
validation set were misclassified as FOG by the model. 
While classifying only active states improved model 
performance, the model was not trained to recognize 
FOG during gait initiation. If used in a real-life system, 
the model may be unable to detect all FOG episodes. 
Given the different characteristics of FOG that occur 
during gait initiation and during walking, separate 
models may perform better than a single model for all 
FOG. Further study could include one FOG detection 
model for gait initiation and one for walking.

To improve LSTM model performance, more features 
could be explored together with a feature-selection 
technique, which would select the best features to be 
used in models. Models based on  time series  predic-
tion could also be explored to improve FOG prediction 
performance.

A  personalized  model could be made with transfer 
learning. The final few layer’s weights in a participant-
independent  deep-learning model could be trained 
with the target participant’s data. In addition to train-
ing the model with a larger dataset, future work could 
implement the LSTM model in a microcontroller for 
real-time FOG detection and prediction.
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