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Abstract 

Background:  Brain-computer interfaces (BCIs) are systems capable of translating human brain patterns, meas-
ured through electroencephalography (EEG), into commands for an external device. Despite the great advances in 
machine learning solutions to enhance the performance of BCI decoders, the translational impact of this technology 
remains elusive. The reliability of BCIs is often unsatisfactory for end-users, limiting their application outside a labora-
tory environment.

Methods:  We present the analysis on the data acquired from an end-user during the preparation for two Cybath-
lon competitions, where our pilot won the gold medal twice in a row. These data are of particular interest given the 
mutual learning approach adopted during the longitudinal training phase (8 months), the long training break in 
between the two events (1 year) and the demanding evaluation scenario. A multifaceted perspective on long-term 
user learning is proposed: we enriched the information gathered through conventional metrics (e.g., accuracy, appli-
cation performances) by investigating novel neural correlates of learning in different neural domains.

Results:  First, we showed that by focusing the training on user learning, the pilot was capable of significantly improv-
ing his performance over time even with infrequent decoder re-calibrations. Second, we revealed that the analysis of 
the within-class modifications of the pilot’s neural patterns in the Riemannian domain is more effective in tracking the 
acquisition and the stabilization of BCI skills, especially after the 1-year break. These results further confirmed the key 
role of mutual learning in the acquisition of BCI skills, and particularly highlighted the importance of user learning as a 
key to enhance BCI reliability.

Conclusion:  We firmly believe that our work may open new perspectives and fuel discussions in the BCI field to shift 
the focus of future research: not only to the machine learning of the decoder, but also in investigating novel training 
procedures to boost the user learning and the stability of the BCI skills in the long-term. To this end, the analyses and 
the metrics proposed could be used to monitor the user learning during training and provide a marker guiding the 
decoder re-calibration to maximize the mutual adaptation of the user to the BCI system.
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Background
A brain-computer interface (BCI) is, by definition, com-
posed by two intelligent actors: the user and the neural 
decoder [1, 2]. On the one hand, the BCI user actively 
performs a given mental task by responding to an exter-
nal stimulus or by voluntary self-modulating the brain 
signals. On the other hand, the decoder is responsible 
for classifying and interpreting the user’s neural signals 
in order to translate them into commands for an external 
device [1, 3].

Following this approach, several studies demonstrated 
the potentiality of BCI as an assistive technology to con-
trol a variety of brain-actuated prototypes (e.g., com-
puter-based applications, telepresence robots, powered 
wheelchairs [4]) and, eventually, to restore the independ-
ence of those people suffering from severe motor disabili-
ties [5, 6].

However, despite the great advances and after decades 
of research, the translational impact of BCI technology 
remains elusive. Indeed, in most cases BCI reliability is 
still unsatisfactory for end-users. In addition, current 
protocols to calibrate the BCI are long and tiring, while 
the robustness and the stability over time of the perfor-
mances are often limited [5]. As a consequence, current 
evaluations of BCI systems mostly report on able-bodied 
users or on end-users during short-term and control 
study scenarios [7–11].

The last decades have seen a growing and wide-spread 
tendency of facing these challenges by focusing on the 
learning processes of the second actor involved in the 
BCI system, the neural decoder. This is probably due to 
the vast research in the domain of stimulus driven BCIs 
(e.g., based on P300 evoked potentials or (SSVEPs)) 
where the space for the user to learn how to modulate 
his/her neural rhythms is limited. Several machine learn-
ing solutions have been proposed to handle the variabil-
ity of the BCI, to stabilize the performances, to increase 
the number of possible commands and even to achieve 
out-of-the-box BCI systems that do not need either train-
ing nor calibration to decode user’s intentions [12–22]. 
However, to date, these approaches were not efficient in 
managing the current translational limitations of BCI 
systems.

On the contrary, recent evidence identifies a more 
holistic approach as a possible solution for improving 
the BCI reliability. This approach is based on the con-
cept of mutual learning in which both BCI actors (user 
and decoder) need to concurrently adapt and learn from 

each other in order to achieve optimal BCI control [1, 2]. 
The hypothesis that BCI is a skill to be learned through 
mutual learning has been already introduced in the 
early years of research, and especially in the invasive 
BCI community [20, 21, 23–30]. However, recent stud-
ies highlighted the importance of user/decoder training 
and mutual learning also in noninvasive BCIs (e.g., based 
on electroencephalography (EEG)) and especially in the 
case of interfaces based on the voluntary self-regulation 
of brain rhythms (e.g.,BCIs driven by motor imagina-
tion) [31–38]. These studies demonstrated that robust 
BCI control may be achieved by systematically targeting 
improvements of both user learning and machine learn-
ing during the training period. In particular, works from 
[34–38] report on the experience in the BCI Race Disci-
pline of the Cybathlon events (i.e., 2016 Cybathlon, 2019 
Cybathlon BCI Series in Graz and the 2020 Cybathlon 
Global edition). While in [37, 38] the importance of the 
training and the user’s engagement during closed-loop 
BCI operations has been clearly highlighted, in [35, 36] 
the authors described the machine learning approaches 
for unsupervised adaptive re-calibration exploited by 
the teams to reduce intra- and inter-session variability 
of user’s brain signals. Perdikis et al. [34] mostly focused 
on the user learning evolution by reporting the longitu-
dinal BCI training of two tetraplegic users for the first 
2016 Cybathlon event. Results showed the clear correla-
tion between the increasing acquisition of BCI skill (user 
learning) through mutual learning and the application 
performances that ended up with the discipline record 
and the gold medal victory during the event.

In this paper, we present the analysis on the data 
acquired during the preparation for the 2019 Cybathlon 
BCI Series in Graz and the 2020 Cybathlon Global Edi-
tion where our pilot won the gold medal—twice in a 
row– as a member of the WHI Team. We consider the 
data of particular interest given the mutual learning 
approach adopted during the longitudinal training phase 
(8 months), the long training break in between the two 
events (1 year) and the demanding evaluation scenario 
represented by the Cybathlon competition. As in [34], 
results have strengthened the hypothesis that mutual 
learning is the key for triggering user learning, especially 
in the first months of training. Moreover, in this study, 
we aimed at exploiting the longitudinal training protocol 
to further and deeply investigate the neural correlates of 
user learning by proposing a new metric that appears to 
be directly related to the acquisition of stable and robust 

Keywords:  Mutual learning, User learning, Motor imagery, Brain-computer interface, Riemann geometry, Long-term 
evaluation, Cybathlon
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BCI skills. We consider that this may represent the key 
not only for the success of our pilot during the Cybathlon 
events but also for improving the long-term reliability of 
BCI technology in real-world scenarios.

Methods
Pilot
Our pilot (male, 30 years old) is a paralympic swimming 
athlete. He was diagnosed at the age of two with Charcot 
Marie Tooth 2A. He had clinical bilateral severe weak-
ness of distal upper and lower limbs (1/5 on Medical 
Research Council (MRC) Scale), and weakness of proxi-
mal muscles (3+/5 MRC on deltoide, biceps and triceps 
brachii and ileopsoas). Head and trunk control was main-
tained. His formal neurological examination fulfilled all 
the inclusion criteria for the Cybathlon BCI Discipline 
and he was eligible for participation to the competition.

He voluntary accepted to take part to both the com-
petitions, the 2019 Cybathlon BCI Series and the 2020 
Cybathlon Global Edition, and to the intensive train-
ing sessions over 2019-2020 years. He agreed to the 
recording and the analysis of his EEG activity for this 
purpose. Moreover, he has been actively involved in all 
the development phases of the BCI system used for the 
competitions.

Cybathlon BCI Race
The Cybathlon BCI Race consists of a virtual game, called 
“BrainDriver”1, where the pilot was required to steer a 
brain-controlled vehicle through a race track. Each track 
is divided into 16 sections. The avatar could pass through 
four possible sections, equally distributed over the track: 
“right”, “headlight”, “left” and “noinput”. The first three 
are called “active sections” since in these sections the 
pilots are expected to send the appropriate in-game com-
mands using the BCI system in order to make the avatar 
accelerate. The “noinput” sections correspond to areas 
where any command could be sent, otherwise the avatar 
decelerates.

During the race, pilots must watch the screen with-
out receiving any additional stimulation and/or external 
feedback (e.g., about the decoder output). Any ocular 
control and any other muscular activity is not allowed. 
Any command affected by muscular artefacts is therefore 
automatically discarded (please refer to Section  “EOG 
detection”).

BCI implementation
SMR BCI
The BCI system adopted by the WHI team consists of a 
motor imagery (MI) BCI based on sensorimotor rhythms 
(SMRs) for class discrimination. In particular, the sys-
tem was developed to discriminate between the imagi-
nation of the movement of both hands against both feet. 
The choice of the MI paradigm was taken after a screen-
ing session in which the separability of different mental 
tasks has been evaluated with our pilot. The selection of 
the both hands vs. both feet paradigm is also supported 
by the results obtained in previous BCI experiments 
[39, 40]. EEG was acquired with a lightweight, 16-chan-
nel g.USBamp amplifier (g.Tec medical engineering, 
Schiedelberg, Austria). The EEG signal was recorded at 
512 Hz sampling rate, hardware filtered within 0.1 and 
100 Hz, and notch-filtered at 50 Hz. For the MI BCI, 14 
electrodes were placed over the sensorimotor cortex (Fz, 
FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP1, CPz, 
CP2 of the 10-20 EEG system), with the ground location 
on the AFz electrode and referenced to the right earlobe. 
The BCI algorithms for data recording and processing, 
as well as for user training and game control were imple-
mented in ROS-Neuro2, an open-source extension of the 
Robot Operating System (ROS) for brain-driven robotic 
applications [41–43]. The algorithms for the BCI system 
calibration were instead running offline in Matlab using a 
custom software library.

A schematic representation of the EEG processing 
and classification pipeline is shown in Fig.  1a. The EEG 
signal was first spatially filtered with a Laplacian mask 
using adjacent electrodes. The power spectral density 
(PSD) of the signal with 2 Hz resolution was computed 
via Welch’s algorithm using a 1 s-long Hamming window 
sliding every 62.5 ms. A semi-automatic feature selection 
was performed through canonical variate analysis (CVA) 
identifying the most discriminant spatiospectral features 
(i.e., channel-frequency pairs) according to the train-
ing data. The operators regularly checked for changes 
in the pilot’s feature maps, which were correlated with a 
decrease of performance, either quantitatively by looking 
to the classification accuracy or qualitatively by directly 
interrogating the pilot, in order to decide when an update 
of the system was required. Table 1 presents the spatio-
spectral features (bands and locations) selected in every 
system re-calibration. A Gaussian classifier was then 
trained with the selected features to model the probabil-
ity distributions over the two MI tasks (i.e., both hands, 
both feet) and to compute the posterior class probabili-
ties of each feature vector in real-time. The classifier’s 

1  https://​cybat​hlon.​ethz.​ch/​en/​event/​disci​plines/​bci 2  https://​github.​com/​rosne​uro

https://cybathlon.ethz.ch/en/event/disciplines/bci
https://github.com/rosneuro
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parameters were initialized using self-organizing maps 
(SOM) clustering and trained with a gradient-descent 
supervised learning method. The samples whose maxi-
mum posterior probability was below a certain threshold 
were rejected (i.e., threj = 0.6 selected by the operators’ 
experience), since they correspond to “uncertain” classi-
fications. To increase the system reliability, the posterior 
probabilities were accumulated over time by means of an 
integration framework based on dynamical systems [39]. 
When the integrated probabilities of a class reach the 
value of 1, the corresponding BCI command is delivered. 
The integrator has been designed with a twofold pur-
pose: to support the user in the delivery of the intended 
commands and, at the same time, to handle the possible 
erratic behavior of the BCI decoder output, thus prevent-
ing false positives. Upon delivery of a BCI command, 
the integrated probabilities are reset to the uniform 

distribution and a refractory period of 1 s is set between 
two consecutive commands.

To translate the commands of our 2-class BCI into in-
game commands and control the avatar in the four sec-
tions, we adopted the strategy which is described below. 
The “left” and “right” commands were controlled by both 
hands and both feet MI tasks, respectively. For the third 
“active section”, we decided to implement a sequential 
strategy: the “headlight” command was delivered when 
the pilot succeeded in sending two consecutive BCI 
commands of different types (i.e., both hands/both feet 
or both feet/both hands) within a configurable inter-
val of time (e.g., 2  seconds). Thus, the pilot should first 
deliver to the game either a “right” or “left” command, 
through the corresponding MI task. If the following BCI 
command is generated within the interval of time and 
it is opposite to the previous command, then instead 

Fig. 1  Overview of the BCI implementation and training protocol. a BCI pipeline to classify both hands and both feet motor imagery. First, the raw 
EEG signals were spatially filtered and their power spectral density (PSD) extracted. During the offline calibration, the most discriminative features 
were identified through canonical variate analysis (CVA) and used to calibrate the decoder to classify the two mental tasks. The BCI commands were 
then converted into the proper game commands to control the BrainDriver game. During the online evaluation only, continuous feedback about 
the decoder outputs were visually provided to the user to foster learning. b Timeline illustrating the pilot training protocol and the approximate day 
of decoder update from the first contact with the pilot to the day of the Cybathlon 2020 Global Edition. Between the end of the Cybathlon 2019 BCI 
Series (17/09/2019) to the following training session (15/09/2020), the pilot spent almost one year without using any BCI system
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of sending a “right” or “left” command, the “headlight” 
command is delivered to the game. A schematic repre-
sentation depicting the design of the implemented game 
control paradigm is shown in Additional file  1: Fig. S1. 
Although this approach requires the delivery of a wrong 
command before outputting the correct “headlight” com-
mand, similar approaches have been previously proposed 
to increase the degree of control over complex active 
devices using few mental tasks [44–46] and have shown 
successful performance in the previous Cybathlon 2016 
edition [34]. The fourth game command, thus the one 
required to send no control commands to the game on 
the “noinput” sections, was implicitly obtained thanks 
to the integration framework of our BCI system. Indeed, 
when none of the integrated class probabilities of the two 
MI tasks reaches the value of 1, the subject is considered 
in an intentional non-control (INC) state [47], and no 
commands are sent to the game.

The implementation of our BCI system is available 
online3 and we refer the reader to [43] for a more detailed 
description of the software.

EOG detection
The implemented artifact control scheme targets the 
detection of electrooculography (EOG) and facial elec-
tromyogram (EMG) signals. The final goal is to freeze the 
BCI output and prevent any outgoing command towards 
the game while the presence of such artifacts is observed. 
To achieve a minimally obtrusive setup, only 2 electrodes 
(plus reference) are employed. Each electrode is placed 
above an eye (approximately Fp1 and Fp2 locations), 
while the reference is placed at the AFz location (10-20 
system layout). EOG signals were acquired at 512 Hz in 
frames of 32 samples every 62.5 ms, synchronously with 
the EEG acquisition. Artifact detection is performed 
separately on each consecutive frame, resulting in very 
fluid and responsive detection of artifact onset and offset. 
For each frame, the two original channels are combined 
as follows to determine the horizontal and vertical EOG 
components:

Low-frequency content is extracted from the signals with 
a zero-lag second-order Butterworth filter in the 1–10 
Hz frequency band [48, 49]. Signal mirroring is applied 
before filtering to avoid discontinuities at the edges of the 
time window. EOG amplitudes are then obtained as the 
absolute value of the horizontal and vertical components. 
If the amplitude of the horizontal and/or vertical EOG 
components exceeds a predefined threshold (i.e., 30 uV), 
the system prevents the BCI from sending commands for 
2 seconds. The threshold of 30 uV has been selected for 
our pilot after empirical evaluation. During the races, the 
threshold value is kept constant.

Training periods and strategy
In order to foster the mutual learning between the user 
and the machine, we adopted a three-stage training: 
calibration, online evaluation, race control. This strategy 
aimed at speeding up the creation of a reliable classi-
fier with stable features, allowing the pilot to learn how 
to modulate his SMRs in the final application as soon as 
possible.

The pilot started the training in May 2019. Initially, an 
open-loop calibration acquisition of EEG data was per-
formed. The protocol concerned the repetition of cue-
guided trials of either both hands or both feet MI. After 
the appearance of a color-coded cue, informing the pilot 
on the task to be performed, each MI trial lasted from 
4.5 s to 5.5 s. At this stage, a visual feedback, automati-
cally moving towards the correct direction, was provided 
to the user. Each calibration run consisted of 15 trials for 
each MI task. Data from the first day (3 calibration runs) 

(1)
HEOG = EOGFp1 − EOGFp2

VEOG =
(EOGFp1 + EOGFp2)

2

Table 1  Features selected for decoder calibration

The table presents the date and all the spatio-spectral features selected for 
the BCI decoders trained throughout our pilot’s training periods. Each feature 
refers to a specific frequency band (2 Hz resolution) and EEG channel location 
according to the international 10-20 system

Date Feature Date Feature

Location Band [Hz] Location Band [Hz]

2019/05/02 FC2 20 2019/07/09 FC1 20

FC2 22 FC1 22

C4 20 FC2 20

C4 22 FC2 22

2019/05/21 Fz 22 C4 18

Cz 16 C4 20

Cz 22 C4 22

C4 20 2020/10/27 C3 22

C4 22 C3 24

2019/06/27 FC2 20 C4 20

FC2 22 C4 22

C4 20 C4 24

C4 22 CP2 22

2019/07/01 FC2 20 CP2 24

FC2 22

C4 20

C4 22

3  https://​github.​com/​rosne​uro

https://github.com/rosneuro
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were used to calibrate the BCI classifier. Other calibra-
tion runs were occasionally recorded in the following 
months, either as a warm-up of the pilot or to update the 
decoder if required.

After the initial BCI calibration, closed-loop online 
evaluation sessions immediately followed. As before, 
the user was engaged in a cue-guided BCI control with 
a continuous visual feedback based on the output of the 
BCI decoder (Fig.  1a). During this phase, the classifier 
was re-calibrated four times (see Table  1) to better fol-
low the evolution of the pilot’s brain patterns in the first 
two months of training, in which mutual learning is most 
likely to occur [34].

The third stage involved the pilot’s training in the actual 
race control. Initially, the pilot was asked to control the 
avatar only in the “left” and “right” turning sections, 
while relaxing in both the “noinput” and “headlight” sec-
tions. Afterwards, we included the possibility to deliver 
the “headlight” command as the close sequence of the 
two MI tasks. At every race control runs, we fully rand-
omized the track sections.

The decision on when and whether to re-calibrate the 
decoder was taken by the operators evaluating the sat-
isfaction of at least two of the following criteria: (i) if a 
change of the features location and/or band is identified 
from the user’s feature maps; (ii) if the classification accu-
racy drops below 75% during online evaluation sessions; 
(iii) if the pilot self-reports a difficulty in controlling the 
BCI output during either an online evaluation session 
or a race control session. The EEG data for the decoder 
re-calibration were taken through additional calibration 
runs. The features that were used in the previous decoder 
were selected also in the updated decoder, when possi-
ble. This approach was adopted to avoid abrupt changes 
of the classification model and to reinforce the stability 
of discriminant features in the long-term (e.g., C4 in the 
20-22 Hz frequency bands, see Table 1).

After the Cybathlon BCI Series in September 2019, our 
pilot stopped the BCI training. In September 2020, after 
a year break, the training was resumed to prepare for the 
Cybathlon Global Edition. During this second training 
period, the pilot was almost fully engaged in the racing 
game, with no re-calibration of the BCI decoder with 
respect to the previous year. The pilot performed 2 cali-
bration and 4 online runs in October 2020 for the final 
tuning of the BCI.

We approximately trained our pilot twice per week 
(three times in the weeks before the two Cybathlon 
events). Overall, our pilot performed 16 calibration, 30 
online and 45 race runs before the 2019 Cybathlon BCI 
Series, and 3 calibration, 20 online and 68 race runs 
before the 2020 Cybathlon Global Edition. A schematic 
representation of the timeline of our pilot’s training 

protocol before the two competitions is reported in 
Fig. 1b.

Data analysis and learning metrics
Application performance. Given the characteris-
tics of the BCI race application, to measure the pilot’s 
performance we considered, as primary outcome, the 
time in seconds to complete a race track. In addition, 
we reported the time spent in each type of section (i.e., 
section crossing time). The average performance of the 
training sessions have been finally compared to the 
results obtained during the two competitions, to high-
light the stability of our BCI system.

BCI performance. For these and the following analy-
ses, we considered only EEG data in which no artifacts 
were detected by our EOG detector to ensure the 
results were not affected. The performance of the 
2-class BCI system was measured by analysing the out-
put of the Gaussian classifier, before the probability 
integration. In particular, we considered both the sam-
ple-by-sample accuracy (i.e., the percentage of correctly 
classified samples) and rejection (i.e., the percentage of 
samples whose classifier output is below the rejection 
threshold.) This second metric supplements the accu-
racy by providing an estimation of the system confi-
dence in recognizing the correct class. The evolution of 
the user’s features was considered by analysing the dis-
criminancy between the two MI tasks for each EEG 
channel-frequency pair. The class discriminancy was 
computed using the Fisher’s score as FS =

|µ1−µ2|

s2
1
+s2

2

 , 

where µ1 , µ2 are the means and s1 , s2 the standard devi-
ations of the PSD samples for class 1 (both hands) and 
class 2 (both feet), respectively. For the calibration and 
online runs, we exploited the cue associated with each 
trial for data labeling, while for the racing runs we con-
sidered and labeled the EEG data according to the logs 
provided by the BrainDriver application. Topographic 
discriminancy distributions were obtained by averaging 
the Fisher score of the PSD features in the β frequency 
bands (16–26 Hz) corresponding to the brain rhythms 
modulated by our pilot (see Table 1).

User learning. To investigate the user learning, we 
decided to characterize the changes of his brain activ-
ity over the training periods. In particular, we analysed 
the evolution of the neural patterns associated with 
each mental task. Since a direct visualization of neural 
patterns’ trajectory in a high-dimensional neural space 
would be difficult to interpret, we identified two geomet-
rical assessment metrics: (i) the between-class distance 
describes the discriminability between the brain activity 
of the two MI tasks (i.e., both hands - bh, both feet - bf) as
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It represents how well the different mental tasks can be 
discriminated in the neural space; (ii) the within-class 
distance measures the variation of the brain activity asso-
ciated with each MI task l in the r − th training run with 
respect to the first day of training, and is denoted by

Despite not being directly related to a functional 
improvement of class discriminancy, the wcDist may 
still provide interesting information on the reorganiza-
tion of brain network to optimize the execution of a spe-
cific mental task. In the above definitions of bcDist and 
wcDist, the numerator represents an opportune met-
ric of distance between the mean neural patterns of the 
two classes (i.e., bcDist) or between two runs for a given 
class (i.e., wcDist), while the denominator computes the 
sum of the average distance around the means. For dis-
tance computation, two neural domains were considered, 
which are described below.

(2)bcDist =
δ(µbh,µbf )

(σbh + σbf )

(3)wcDist =
δ(µl

1
,µl

r)

(σ l
1
+ σ l

r )

Channels’ domain
The first is the domain of EEG channels. In particular, 
each axis corresponds to the PSD values of each of the 14 
EEG electrodes over the sensorimotor cortex, averaged in 
the µ or β bands. In this domain, the Euclidean distance 
was considered as distance metric between the arithme-
tic mean of two neural data distributions, as schemati-
cally illustrated in Fig. 2 (top). Thus, the computation of 
the bcDist corresponds to the Fisher’s score FS. For the 
wcDist, the Fisher’s score of each run was computed with 
respect to the first recorded run.

Riemann domain
In the second approach, we projected the EEG data of 
each channel in a different neural manifold based on 
Riemannian geometry. Let X ∈ R

C×T , with C being 
the 14 zero-mean band-pass filtered EEG channels in 
the µ or β bands, and T the number of samples in the 
1  s-long window sliding every 62.5  ms. For the ith win-
dow, we computed the sample covariance matrix (SCM) 
as Ci =

1
T−1

XiX
T
i  . These matrices are symmetric positive 

definite and lie in a C × C space. For each run, the geo-
metric mean of the class-specific SCMs can be derived 
in the Riemann manifold using the algorithm proposed 
by [50]. According to Riemannian geometry, we can also 
obtain the distance between two covariance matrices as 
the geodesic distance of the two matrices in the Riemann 
manifold [51], as schematically illustrated in Fig. 2 (bot-
tom). Given these definitions, the bcDist measures the 
distance between the SCM distributions associated with 
the two classes, while the wcDist between SCMs of each 
run with respect to the first run. More details on mean 
covariance matrix and geodesic distance computation in 
Riemannian geometry can be found in the Appendix.

Statistical analysis
The effect of training on user’s performance has been 
evaluated by reporting Pearson’s correlation coefficients 
and their significance at the 95% confidence interval 
through Student’s t-test distribution between the perfor-
mance metrics and the (chronological) race/run index. 
This analysis was carried out on race times, BCI accuracy, 
between-class and within-class distances. The same sta-
tistical test was used also to find significant correlations 
at the 95% confidence interval between the performance 
metrics. Additionally, inter-sessions improvements of 
these metrics were studied at the 95% confidence inter-
val through nonparametric Kruskal-Wallis tests between 
the first and last 15 races/runs of both the 2019 and 
2020 training periods. If the effect is deemed significant, 
Tukey-Kramer post-hoc tests were computed for multi-
ple comparison analysis at the 95% confidence interval. 
Finally, the section crossing time improvements between 

Fig. 2  Schematic illustration of the metrics proposed to track 
user learning. The between-class distance represents the distance 
between the means of the EEG features distribution of the two motor 
imagery classes (i.e., both hands, both feet). The within-class distance 
is computed separately for the two classes as the distance of the 
means of the EEG features distribution with respect to the first day 
of training. In the channels’ domain the two metrics were calculated 
using the Euclidean distance, while in the Riemann domain we 
considered the geodesic distance (i.e., the shortest path between 
feature distributions following the Riemannian manifold M)
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the first and last 15 races are compared and tested for sig-
nificant differences at the 95% confidence interval using 
unpaired, two-sided Wilcoxon nonparametric rank-sum 
tests.

Results
Application performance
The time performance of our pilot in the final application 
are reported in Fig. 3. The negative Pearson’s correlation 
between race time and race index highlights a statisti-
cally significant effect of training on race performance 

(Fig.  3a, r = −0.61 , p < .001 , N = 133 ). Indeed, the 
pilot was able to reduce the race completion time from 
242.89± 21.64  s in the first 15 runs to 209.93± 29.11  s 
in the last 15 runs in 2019 (mean ± standard deviation) 
(Fig.  3b, p < .05 , Tukey-Kramer post-hoc test), well far 
away from the maximum allowed race time of 240  s. 
Interestingly, no significant difference has been found 
between the last 15 runs in 2019 and the first 15 runs in 
2020 (Fig. 3b, p = .99 ), showing stable performance even 
after a year. An additional reduction of race completion 
time to 174.41± 9.44 s is then visible in the last 15 runs 

Fig. 3  Cybathlon BCI race completion time. a Race completion times (s) achieved by our pilot throughout training. Training effect is shown by 
the linear fit and the Pearson correlation coefficient (significance tested with Student t test distribution). Dashed horizontal line illustrate the 
maximum race completion time allowed during the competition. Vertical thin lines indicate the date of each racing session, while vertical thick 
black lines represent the dates of decoder update. The break of 1 year is marked by a vertical red line. Markers colored in green and red show 
the race completion times obtained during the two competitions, in the 2019 BCI Series and the 2020 Global Edition respectively. b Boxplot of 
race completion times (s) in the first and last 15 races of 2019 and 2020 training periods. The box edges signify the 75th (top) and 25th (bottom) 
percentiles and the horizontal line the median of the corresponding distribution. The whiskers extend to the largest and smallest nonoutlier values. 
Single-race values are marked with filled circles. Statistically significant differences are shown with Tukey-Kramer post-hoc test. c Boxplot of section 
crossing time (s, time spent on each section) in the first 15 races of 2019 and the last 15 races of 2020 training periods. The box edges signify 
the 75th (top) and 25th (bottom) percentiles and the horizontal line the median of the corresponding distribution. The whiskers extend to the 
largest and smallest nonoutlier values. Outliers are marked with black crosses, while single-section values with filled circles. Statistically significant 
differences are shown with two-sided Wilcoxon ranksum tests. * p < .05 , ** p < .01 , *** p < .001
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in 2020, including the day of the final competition. This 
improvement is also found to be statistically significant 
(Fig. 3b, p < .001 ). To better understand the pilot’s per-
formance, Fig. 3c reports the comparison of the section 
crossing time for each type of sections between the first 
and last 15 runs. Overall, our pilot was able to reduce the 
time spent in each type of active sections. Statistically 
significant improvements have been found for the right 
sections ( p < .001 , two-sided Wilcoxon ranksum test), 
headlight sections ( p < .001 ) and left sections ( p < .01 ), 
spending on average less than 10  s in all of them after 
training. No significant improvement has been found for 
the “noinput” sections ( p = .93).

Competition outcomes
Even if the improvements of our pilot previously reported 
are an important sign of the efficacy of the human-
machine interaction that was established during the 
training periods, an unequivocal proof of the BCI perfor-
mance is shown by the results obtained during the two 
Cybathlon events. In fact, these events represent a unique 
opportunity to measure the translational efficacy of the 
BCI system in non-ideal conditions (e.g., out-of-lab, 
in front of audience), similar to the ones that would be 
faced in a daily usage. The first competition was held in 
a conference hall during the “8th Graz Brain-Computer 

Interface Conference”. Two races were performed during 
a qualification phase, and the four teams with the lowest 
race time participated in the one-hot final race. The offi-
cial results of the 2019 Cybathlon BCI Series are reported 
in Table 2. Our pilot qualified with a time of 175 s, setting 
the competition record, and won the final with a time of 
183  s. The 2020 Cybathlon Global Edition was instead 
performed remotely, due to the COVID-19 health emer-
gency. The competition consisted of three consecutive 
races, and the three pilots who obtained the lowest race 
completion time won the gold, silver and bronze medal, 
respectively. The official results of the competition for the 
BCI discipline are reported in Table 2, in which our pilot 
achieved, for the second time, the best race performance 
of 172 s.

BCI performance
The performance of the BCI system has been analysed as 
the capability of discriminating the two mental tasks (i.e., 
hands vs. feet MI) from the user’s EEG signals. Fig.  4a 
shows the evolution of the BCI performance in terms of 
percentage of correctly classified samples and percent-
age of rejected samples. For this analysis we considered 
also the online runs together with the races. Significant 
positive/negative Pearson’s correlations between accu-
racy/rejection and run index in 2019 ( r = 0.36/− 0.68 , 

Table 2  Cybathlon BCI race results

 The table presents the race completion times, distance, and ranking of all competing teams during the two Cybathlon competitions. The 2019 Cybathlon BCI Series 
was organized in two qualification races (Q1, Q2) and a Final race with the best four teams. The 2020 Cybathlon Global Edition consisted in three independent races 
and the result of the best race of each team (in bold) was considered for the ranking

2019 Cybathlon BCI Series

Rank Team Final Q2 Q1

Distance [m] Time [s] Distance [m] Time [s] Distance [m] Time [s]

1 WHI Team 500.0 183 500.0 175 500.0 221

2 MIRAGE 91 500.0 229 500.0 215 492.7 240

3 NeuroCONCISE 386.6 240 455.5 240 296.4 240

4 Mahidol BCI 99.9 57 500.0 233 462.0 240

5 NITRO 1 399.8 240 422.8 240 421.0 240

6 NITRO 2 390.5 240 435.8 240 418.4 240

2020 Cybathlon Global Edition

Rank Team Race 1 Race 2 Race 3

Distance [m] Time [s] Distance [m] Time [s] Distance [m] Time [s]

1 WHI Team 500.0 189 500.0 176 500.0 172
2 Mahidol BCI 500.0 208 500.0 186 500.0 176
3 Neurorobotics 500.0 224 500.0 213 500.0 237

4 SEC FHT 354 240 500.0 235 500.0 221
5 MIRAGE 91 440 240 452 240 500.0 223
6 NeuroCONCISE 439 240 452 240 350 206

7 Phoenix 439 240 437 240 496 240
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p < .01/.001 , N = 75/75 ) revealed the success of our 
mutual learning training strategy in increasing the overall 
classification performance of the BCI system. In particu-
lar, a significant reduction of 17.8% in rejection (Fig. 4b, 
p < .01 , Tukey-Kramer post-hoc test) have been obtained 
from the first to the last runs of the 2019 training period. 
The pilot was capable of reducing the percentage of 
rejected samples also in 2020 (Fig. 4a, p < .001 ), with a 
significant linear correlation to run index ( r = −0.39 , 
p < .001 , N = 88 ). No statistically significant difference 
in rejection have been found between the end of the 2019 
and the beginning of 2020 (Fig. 4c, p = .78 ). Remarkably, 

the accuracy increased by 7.4% after the year off, even if 
not statistically significant (Fig. 4b, p = .24 ). Fig. 4d por-
traits the arising of discriminant SMRs patterns ( β-band, 
16–26  Hz) which are coherent with the selected BCI 
paradigm. The pilot started in May with a higher activa-
tion of EEG features associated with the both hands MI 
(lateral, electrodes FC3, C3, FC4, C4 of the 10–20 EEG 
system). Likely related to the longitudinal training, he 
also acquired emerging features associated with both feet 
MI (medial, electrodes Fz, FCz, Cz), which led to the sig-
nificant increase of accuracy in September 2019. Similar 
topographies between the end of 2019 and the beginning 

Fig. 4  BCI performance and topographic maps. a Evolution over training runs of the decoder accuracy (green, % of correctly classified samples) 
and rejection (red, % of samples whose prediction was discarded due to low confidence). Their corresponding linear fits and Pearson correlation 
coefficients (significance tested with Student t test distribution) were evaluated for the two years (2019, 2020) separately. Vertical thin lines 
indicate the date of each training session, while vertical thick black lines represent the dates of decoder update. The break of 1 year is marked by a 
vertical red line. (b-c) Boxplots of decoder accuracy b and rejection c in the first and last 15 runs of 2019 and 2020 training periods. The box edges 
signify the 75th (top) and 25th (bottom) percentiles and the horizontal line the median of the corresponding distribution. The whiskers extend 
to the largest and smallest nonoutlier values. Single-run values are marked with filled circles. Statistically significant differences are shown with 
Tukey-Kramer post-hoc tests. d Topographic maps of discriminancy per training month on the 14 EEG channel locations over the sensorimotor 
cortex. Bright color indicates high discriminancy between Both Hands and Both Feet MI tasks. The discriminancy of each channel is quantified as 
the Fisher score of the EEG signal’s power spectral density distributions for the two mental classes in the β-band (16–26 Hz) within each run. Each 
map illustrates local Fisher scores (with interchannel interpolation) averaged over all runs within the month
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of 2020 highlight the robustness of the BCI skills acquired 
by the pilot and the effectiveness of our training strategy 
in the long-term.

User learning
The evolution of user learning has been evaluated by 
analysing the modification of the user’s neural patterns 
in two multi-dimensional domains, corresponding to 
the channels’ domain and the Riemann manifold. Fig.  5 
shows the evolution of the between-class distance for the 
µ and β bands in the channels’ domain and in the Rie-
mann domain. A significant positive increase of discri-
minancy in β-band is visible in both domains (channels/
Riemann) at the end of 2019 ( p < .001/.001 , Tukey-
Kramer post-hoc tests), showing a significant linear cor-
relation with training ( r = 0.56/0.69 , p < .001/.001 , 
N = 61/61 ) which is then kept stable in the long-term. 

The Riemann domain displays also a positive increase of 
bcDist for the µ-band in 2019 (Fig. 5c, r = 0.38 , p < .01 , 
N = 61 ), even if lower than for the β-band. On the other 
hand, no significant evolution of the bcDist happened for 
the µ-band in the channels’ domain, which is consistent 
with our selection of β features to train the classifier (see 
Table 1). Again, no statistically relevant variation can be 
appreciated in β band between the training end in 2019 
and the training begin in 2020, which is consistent with 
the BCI and application performance.

The evolution of the second user learning metric, the 
within-class distance, is depicted in Fig. 6 for the chan-
nels’ domain and the Riemann domain. This metric 
aims at highlighting changes of the user’s brain activ-
ity as a consequence of longitudinal training with our 
BCI. For the wcDist, we reported the distance averaged 
across the two classes. For completeness, the wcDist of 

Fig. 5  Between-class distance in channels’ and Riemann domains. a–c Evolution over races of the between-class distance in channels’ domain 
a and Riemann domain c computed in the µ-band (8–12 Hz) and β-band (16–26 Hz). Their corresponding linear fits and Pearson correlation 
coefficients (significance tested with Student t test distribution) were evaluated for the two years (2019, 2020) separately. Vertical thin lines indicate 
the date of each racing session, while vertical thick black lines represent the dates of decoder update. The break of 1 year is marked by a vertical red 
line. b–d Boxplots of between-class distance in channels’ domain b and Riemann domain d for µ-band (left) and β-band (right) in the first and last 
15 runs of 2019 and 2020 training periods. The box edges signify the 75th (top) and 25th (bottom) percentiles and the horizontal line the median of 
the corresponding distribution. The whiskers extend to the largest and smallest nonoutlier values. Single-run values are marked with filled circles. 
Statistically significant differences are shown with Tukey-Kramer post-hoc tests
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the two classes separately is provided in the Additional 
files (Additional file 4: Fig. S4 and Additional file 5: Fig. 
S5). The effect of the initial training (in 2019) on the 
user’s neural patterns is demonstrated in both domains 
(channels/Riemann) by a significant positive Pearson’s 
correlation of the wcDist in the β-band with race index 
( r = 0.77/0.78 , p < .001/.001 , N = 61/61 ). The user 
shows a significant increase of the wcDist in the µ-band 
( r = 0.75/0.75 , p < .001/.001 , N = 61/61 ), even if it 
was not considered in the feature selection for our pilot’s 
decoder. A significant distance of his neural patterns has 
been found close to the 2019 BCI Series competition 
with respect to the first training runs in both frequency 
bands ( µ : p < .001/.001 , β : p < .001/.001 , Tukey-
Kramer post-hoc tests). Interestingly, the representation 
in the channels’ domain shows a regression of the pilot’s 
brain activity to its original state after the 1-year break. 

Indeed, the wcDist of the user at the beginning of 2020 
results to be significantly decreased compared to the end 
of 2019 (Fig.  6b, µ : p < .001 , β : p < .001 ), with neural 
patterns similar to the ones at the first days of training 
( µ : p = 0.27 , β : p = 0.47 ). By training again, the wcDist 
increases in the 2020 as well (Fig.  6a, r = 0.48/0.43 , 
p < .001/.001 , N = 72/72 ), with comparable values 
between the days close to the two competitions in the β 
band ( p = 0.15).

Conversely, it is worth to highlight the behavior of the 
within-class distance in the Riemann space. Our analy-
sis revealed two different behaviors for the trained β
-band and the untrained µ-band (Fig. 6c–d). In particu-
lar, the latter is characterized by the same discontinuity 
after the 1-year break as in the channels’ domain, with a 
significant reduction of the distance at the beginning of 
2020 ( p < .001 ) towards the values of the training begin 

Fig. 6  Within-class distance in channels’ and Riemann domains. a–c Evolution over races of the within-class distance in channels’ domain a and 
Riemann domain c computed in the µ-band (8–12 Hz) and β-band (16–26 Hz). Their corresponding linear fits and Pearson correlation coefficients 
(significance tested with Student t test distribution) were evaluated for the two years (2019, 2020) separately. Vertical thin lines indicate the date 
of each racing session, while vertical thick black lines represent the dates of decoder update. The break of 1 year is marked by a vertical red line. 
b–d Boxplots of within-class distance in channels’ domain b and Riemann domain d for µ-band (left) and β-band (right) in the first and last 15 
runs of 2019 and 2020 training periods. The box edges signify the 75th (top) and 25th (bottom) percentiles and the horizontal line the median of 
the corresponding distribution. The whiskers extend to the largest and smallest nonoutlier values. Single-run values are marked with filled circles. 
Statistically significant differences are shown with Tukey-Kramer post-hoc tests
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in 2019 ( p = 0.90 ). On the other hand, the wcDist in 
the Riemann domain presents no differences in β-band 
between the training end in 2019 and the training begin 
in 2020 ( p = 0.12 ), and remained stable until the day of 
the main competition ( p = 0.98).

Discussion
In the present study, we explored a unique dataset reg-
istered during the training for the participation to the 
Cybathlon BCI race competitions in 2019 and 2020. This 
dataset contains EEG data from more than 40 train-
ing sessions with an end-user engaged with our MI BCI 
system. Moreover, it gave us the opportunity to test the 
robustness of the user-decoder interaction reinforced by 
the training in the long term (1 year) without using a BCI, 
which represents an unprecedented opportunity in the 
field.

Mutual learning in BCI
As shown in Fig.  4a, the first months of training were 
characterized by a rapid increase of classification accu-
racy and confidence in discriminating between the two 
mental tasks, particularly in the first three months of 
training (May-July 2019). These results are in line with 
well-established evidences that the concomitant training 
of the two main actors (i.e., user and decoder) improves 
BCI performances already after a few sessions of prac-
tice, and that they positively correlate with improved 
application performances (Additional file 2: Fig. S2) [34]. 
Even if the concept of mutual learning is becoming more 
and more popular in the BCI community, also thanks to 
events like the Cybathlon competitions, the role of user 
learning in this process is often overlooked. Previous 
studies focused mostly on the machine learning aspects, 
with the most common approach to the mutual learning 
consisting in regularly adapting the decoder parameters 
to deal with the intra- and inter-session variability of the 
user’s brain patterns [35–38]. However, a more or less 
frequent re-calibration of the BCI system could poten-
tially mask the effect of pure user learning on the perfor-
mance [20].

In light of these considerations, we adopted a different 
strategy. On the one hand, we opted for a game control 
paradigm which allowed the use of a simpler 2-class BCI 
decoder to implement the four game control commands. 
Indeed, it is well known that the BCI classification per-
formance drops sharply as the number of classes to be 
decoded increases. Since the BCI represents a difficult 
task in itself, a multi-class classification approach could 
have been a task too challenging for the pilot, with the 
risk of hampering the user learning [52]. On the other 
hand, we decided to update the BCI system only a few 
times to leave more degrees of freedom to the user. This 

strategy was corroborated by previous experience and by 
the high accuracy of our BCI system [34], entailing sev-
eral advantages. Firstly, it allowed to significantly reduce 
the time spent in tedious calibration runs and to train our 
pilot in self-modulating his brain rhythms as soon as pos-
sible in the BrainDriver game. Indeed, a closed-loop BCI 
usage in the final application have shown to significantly 
boost the training effect [34, 38]. Secondly, a BCI system 
that is too adaptive to the user could have compromised 
the learning process of our pilot by overly relying on 
the system capabilities rather than on his progress [20]. 
Conversely, it is worth highlighting that we last updated 
the decoder at the beginning of July 2019 and we made 
no re-calibration until October 2020. On the first day 
of the 2020 training period (i.e., 2020/09/15), the pilot 
directly used the decoder that was previously calibrated 
on 2019/07/09, more than 1 year earlier. This fact ensures 
that the visible and significant improvements of both BCI 
and race performances in between this period can only 
be traced back to modifications of user’s ability in cor-
rectly modulating his SMRs while receiving training.

The stability of BCI and application performances of 
our pilot (Fig.  3, 4) demonstrates that, once learned, he 
was capable of recalling the BCI skills accurately and 
consistently even after a 1-year break. However, how the 
brain achieves this behavioral stability is an open ques-
tion. Improvements in online classification accuracy and/
or application performance do not necessarily imply 
changes at the brain level underpinning BCI learnabil-
ity [53]. Hence, the main contribution of this work is the 
provision of neural correlates associated with user learn-
ing of BCI skills and their evolution over time.

User learning in channels’ domain
The first attempt to investigate the evolution of the user’s 
brain activity concerned the analysis of the EEG features 
distribution used to create the decoder (i.e., the channels’ 
domain) since it directly reflects the ability of the user to 
control the BCI. In particular, the emergence of SMRs 
modulations associated with the mental tasks is the most 
commonly used index in the BCI literature to monitor 
longitudinal improvements [14, 15, 34–36, 54]. Except 
for [34], none of these studies explicitly related the evo-
lution of SMRs modulations to consistent and continu-
ous changes of BCI performance. Herein, we reported a 
strong correlation between classification accuracy and 
bcDist in β band, but not in µ band (Additional file  3: 
Fig. S3a), establishing the impact of operant condition-
ing training in user learning. Indeed, since the system 
output—thus the feedback to the user—depends solely 
on the features selected during decoder calibration, we 
expected our pilot to improve the between-class distance 
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only in the frequency band for which he received a coher-
ent feedback during training (Fig. 4d) [55].

Despite its straightforwardness, the sole neuroimaging-
based difference of class prototypes is likely to provide 
only a partial picture of the neural processes occurring in 
the user’s brain as a consequence of training. The time-
dependent variability of the brain signals may lead to 
within-class modifications of neural patterns, which are 
not directly related to maximizing class separability. We 
found that the brain activity of our pilot during the exe-
cution of the mental tasks significantly shifted with regu-
lar training (Fig. 6a). Remarkably, this shift interested the 
two classes symmetrically (Additional file 4: Fig. S4), and 
both the µ and β bands (Fig. 6b), indicating a more holis-
tic phenomenon which is not limited to class-specific 
discriminant features. While an increase of the within-
class distance is usually seen negatively in the literature—
and a lot of effort is spent in the development of machine 
learning algorithms to minimize it [14, 36]—recent litera-
ture promotes the idea that it could be linked with a posi-
tive user adaptation to the BCI system [20, 35]. The user 
modifies his brain activity to produce brain signal mod-
ulations that match more closely those expected by the 
decoder [35]. However, the analysis of the wcDist in the 
channels’ domain reported in Fig. 6a, b shows that these 
modifications are limited to transitory effects which 
occur only when the user is regularly receiving train-
ing. These results are not consistent with the continuous 
improvements shown by our pilot, substantiated by the 
lack of correlation between the wcDist in the channels’ 
domain and the classification accuracy (Additional file 3: 
Fig. S3c). This could mean that this representation shows 
only short-term adjustments of the user’s BCI aptitude, 
rather than a stable learning effect in the long term.

User learning in neural manifold
As previously discussed and widely established in the 
literature, the analysis of the EEG signals in the chan-
nels’ domain is effective and convenient for the real-time 
classification of mental tasks, but it fails in capturing the 
long-term stability of the BCI skills demonstrated by our 
pilot. In this paper, we overcome this limitation by pro-
posing to investigate user learning in an hyperspace—the 
Riemann manifold—different with respect to the input 
space generated by the features that are exploited in the 
BCI system.

From the perspective of class discrimination (Fig.  5), 
our results show that the between-class distance in 
the Riemannian geometry matched the performance 
obtained in the channels’ input space. Like before, a 
strong correlation between classification accuracy and 
the Riemann bcDist in β-band, but not in µ-band, was 
found (Additional file  3: Fig. S3b). This finding was not 

completely unexpected since the use of the signal covari-
ance matrices as features of interest for classification of 
mental tasks is becoming increasingly popular in BCI 
applications [56–59] and they have been also exploited by 
a team during the Cybathlon competitions [35]. Compa-
rably to the channels’ domain, regular training induced a 
sharp shift of the within-class EEG covariance matrices 
as our pilot was adapting to the use of the BCI system 
in the 2019 (Fig. 6c). Nevertheless, of greater interest is 
the different evolution in the Riemann domain of the 
wcDist between the two frequency bands after the one 
year break. While the wcDist in the µ band significantly 
decreased from 2019 to 2020, the β band did not show 
this regression and remained stable between the two 
years (Fig.  6d and Additional file  5: Fig. S5). Thanks to 
these findings, we pinpoint the existence and definition 
of two type of neural modifications as a consequence of 
user learning: the first are short-term modifications, that 
spontaneously arise during training since they involve 
also features which are not directly targeted by the train-
ing (i.e., µ band). Given these characteristics, these modi-
fications are likely to be not robust enough to endure for 
a long between-session period; but they may be at the 
basis of the mutual-learning process and of the emer-
gence of new SMRs features which were not considered 
in the previous decoders [20, 34]. On the other hand, the 
unique stability of the wcDist in the Riemann domain of 
the β band—whose features were consistently selected 
and reinforced over the all training period (Table  1)—
may underpin stable modifications of our pilot’s brain 
activity related to a long-term learning of the BCI skills 
which allowed him to maintain his excellent performance 
even without a continuous training and/or re-calibration 
of the decoder. In support to this statement, a strong 
positive correlation between classification accuracy and β
-band wcDist in the Riemann domain is reported (Addi-
tional file 3: Fig. S3d), which would not have been found 
by limiting the analyses to the channels’ domain only.

We believe that the results of this paper open a new 
way of studying and analysing user learning in BCI, 
breaking the typical approach of searching learning cor-
relates only in the space spanned by the neural features 
used as input to the decoder. A similar approach is actu-
ally commonly considered to enhance the understanding 
of BCI training in stroke rehabilitation: neural mecha-
nisms underlying the clinical effects of BCI therapy are 
often evaluated through various markers which are 
not limited to a stronger desynchronized activity dur-
ing MI tasks; they include also interhemispheric imbal-
ance, functional connectivity changes [60–62], and even 
functional and structural assessments through different 
neuroimaging techniques (e.g., functional near-infrared 
spectroscopy (fNIRS), functional magnetic resonance 
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imaging (fMRI)) [63, 64]. In this line, the evolution of the 
wcDist in the Riemann domain may be helpful to better 
follow the progress of user learning of BCI skills together 
with conventional metrics (e.g., classification accuracy). 
It is interesting to note an evident discontinuity of the 
Riemann’s wcDist in the runs right before our decision 
of re-calibrating the decoder in October 2020 (Fig.  6c). 
Even if further analysis would be required to support this 
hypothesis, an abrupt changeover of the user’s neural 
state in performing the mental tasks could hide a break of 
the user-decoder interaction, wandering in an area of the 
neural manifold that prevented our pilot from efficiently 
controlling the BCI. We thus suggest, and better investi-
gate in future studies, that a monitoring of the proposed 
Riemann’s within-class distance may hint when updates 
of the decoder parameters are required.

Overall this study confirms the effective learnability of 
BCI thanks to longitudinal usage, i.e. increase of classi-
fication accuracy across the training sessions [34–38]. 
In addition, this study shows that by focusing the train-
ing strategy on improving user learning, it is feasible to 
achieve a robust stabilization of BCI skills and features 
over a long period of time. An hypothesis that might 
explain these results is that the regular user-centered BCI 
training applied by us induced a functional reorganiza-
tion of our pilot’s neural networks that are responsible for 
the imagination of the two motor tasks. This hypothesis 
is supported by previous studies [62, 63, 65] revealing 
that BCI-guided rehabilitation training induces long-
term neuroplasticity modulations which are kept up to 
6 months after the intervention [63]. A similar phenom-
enon was previously seen in invasive BCI experiments, 
which showed that the brain is capable of encoding a 
stable representation of motor-related tasks for very long 
periods of time (i.e., from months up to years) [66–68]. 
However, in this work we show for the first time in a 
non-invasive BCI application the possibility to achieve a 
stability of BCI skills through learning for a time period 
longer than 1 year of non-use of the BCI. This feature 
allowed our pilot to retain his performance at the begin-
ning of the 2020 training period without the need of any 
decoder re-calibration. In future work, we will perform a 
more in depth analysis in relation to connectivity to iden-
tify if the seen stable performance of our pilot were due 
to the effective existence of a functional reorganization or 
to the adoption of a more efficient motor imagery strat-
egy activating existing neural networks. Nevertheless, we 
believe that our findings—combined with the success-
ful results obtained in the challenging scenarios of the 
Cybathlon competitions—may provide a strong contri-
bution in shifting the focus of the BCI community: not 
only to the machine learning of the decoder, but also in 
investigating novel training procedures to boost the user 

learning and the mutual adaptation of the user to the BCI 
system.

Limitations
There are certain limitations of this study that need to be 
mentioned. The major limitation concerns the inclusion 
of only one subject in the dataset which holds us back 
from drawing definitive conclusions. Thus, in future work 
we aim at recruiting a larger cohort of users in a longitu-
dinal BCI training in order to strengthen the preliminary 
results on user learning reported in this paper. Neverthe-
less, as previously mentioned, the type of training and the 
limited number of re-calibrations assure us that there has 
certainly been a learning process in our pilot, and that 
the significant improvements in performance over time 
are mainly due to this.

The second limitation to be mentioned is that the study 
was conceived to be observational and uncontrolled. Still, 
the results obtained by our competitors may be helpful as 
a fair control group to highlight the effective importance 
of user learning in BCI. Indeed, the other teams adopted 
a training strategy focused on frequent re-calibrations 
of their decoders [35–38]. Except for [36], all the other 
teams reported a significant worsening of their pilots’ 
performances during the competitions, explained by the 
presence of audience or, in general, conditions of stress. 
It is well-known that the psychophysiological state of 
the user has a negative effect on BCI operation [69–71]. 
Interestingly, our pilot was able to achieve race comple-
tion times during the competitions that were comparable 
or even better than his average results in the previous 
days. The fact that our pilot was already used to compe-
titions surely represents an important factor accounting 
for these results. Nevertheless, we speculate that the sta-
ble user learning attained by our pilot, identifiable both 
at the behavioral and neural level, strongly contributed 
to the achievement of not only a high BCI accuracy, but 
more importantly a high reliability which represents a 
critical challenge in the field.

Conclusions
This paper presents the analysis of a unique longitudinal 
study that allowed us to deepen our understanding on 
user learning during long-term BCI training in prepara-
tion to the Cybathlon competition, spanning more than 
1 year. Our results undoubtedly demonstrated that our 
pilot effectively learnt how to control the BCI. As main 
contribution, herein we proposed a multifaceted per-
spective on the evolution of user learning, enriching 
the information gathered through conventional metrics 
(e.g., BCI accuracy, features’ topographic distribution) 
by investigating novel neural correlates of learning. We 
revealed that examining the neural patterns associated 
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to the BCI tasks in the Riemann space provides valuable 
insights to explain the progressive improvements of our 
pilot’s performance in the final application, as well as the 
stability of his BCI skills, even if not using the system for 
a long period. In future work, such approach could be 
used to monitor the co-adaptation of the user-decoder 
dyad and potentially provide a marker predicting when a 
re-calibration of the decoder is required.

Appendix
Riemann geodesic distance
The Riemannian space is a differentiable manifold in 
which the tangent space at each point is a finite dimen-
sional Euclidean space. For each point C (i.e. symmetric 
positive-definite (SPD) matrix) in the manifold M , a tan-
gent Euclidean space TCM can be defined which is locally 
homomorphic to the manifold. Given this definition and 
letting C(n) be the set of all possible n× n SPD matri-
ces, the distance between two points C1,C2 ∈ C(n) can 
be computed as the length of the shortest curve between 
these two points along the manifold, also called geodesic 
distance, which is denoted as

where || · ||F is the Frobenius norm, and �i, i = 1, ..., n the 
real eigenvalues of C−1

1
C2 . The Riemannian geodesic dis-

tance is characterized by the following main properties:

•	 δR(C1,C2) = δR(C2,C1)

•	 δR(C
−1
1

,C
−1
2

) = δR(C1,C2)

•	 δR(W
T
C1W,WT

C2W) = δR(C1,C2)∀W ∈ G(n)

with G(n) the set of all possible n× n invertible matrices.

SCM mean in Riemann geometry
The mean value represents the simplest statistical 
descriptor of a distribution of points in the space. Given a 
set of K SPD matrices C1, ...,CK ∈ C(n) , their arithmetic 
mean CE could be computed in the Euclidean space as the 
SPD matrix C that minimizes the sum of squared Euclid-
ean distances dE(·, ·)

This arithmetic mean can be used as a reference point in 
the manifold where the tangent space is computed [72].

Similarly, we can compute the geometric mean of the 
SPD matrices in the Riemannian manifold using the defi-
nition of distance in (4) as

(4)δR(C1,C2) = ||log(C−1
1

C2)||F = [

n
∑

i=1

log2�i]
1/2

(5)CE = arg min
C∈C(n)

K
∑

k=1

d2E(Ck ,C) =
1

K

K
∑

k=1

Ck

This geometric mean is proven to always exist and to 
be unique for a finite set of points [50]. However, since 
for K > 2 a closed-form expression is not possible, sev-
eral methods have been proposed to solve this problem 
iteratively [73]. In this study, we computed the geometric 
mean with the following algorithm: 

1	 Initialize the tangent space in the reference point 
computed using (5);

2	 Project the SPD matrices in the tangent space and 
compute the closed-form arithmetic mean in this 
Euclidean space;

3	 Project the arithmetic mean back in the manifold 
(i.e., estimated geometric mean CR);

4	 Compute the new tangent space using CR as reference 
point;

5	 Repeat steps 2–4 until convergence.

The full implementation of the above algorithm can be 
found in [50], while for a more detailed explanation of the 
manifold-to-tangent and tangent-to-manifold projection 
functions we refer the reader to [72].
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Additional file 1. Schematic representation depicting the design of the 
implemented game control paradigm. Both hands (BH) and both feet (BF) 
BCI commands were associated with the delivery of “left” (L) and “right” (R) 
game commands, respectively. The third active command, the “headlight” 
(H) was instead obtained through a sequential combination approach, by 
sending two different BCI commands within a configurable time window 
(e.g., 2 seconds). While no BCI commands are generated, the pilot is con-
sidered resting and the game receives the “noinput” (N) command.

Additional file 2. Relationship between our pilot’s race completion times 
and the classification accuracy of the decoder. Higher decoding perfor-
mance generally corresponds to a shorter racing time, as shown by the 
linear fit and the Pearson correlation coefficient (significance tested with 
Student t test distribution).

Additional file 3. Relationship between the classification accuracy of the 
decoder and the between-class distance a, b and within-class distance c, 
d of our pilot’s EEG features. Linear fit and the Pearson correlation coeffi-
cients (significance tested with Student t test distribution) show a positive 
correlation between accuracy and band between-class distances in both 
the channels’ domain (a) and Riemann domain (b). A positive correlation 
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between accuracy and the band within-class distance was found only in 
the Riemann domain (d), but not in the channels’ domain (b).

Additional file 4. Evolution over races of the within-class distance in 
channels’ domain for the both hands class (top) and for the both feet 
class (bottom) in the μ-band (8–12 Hz) and β-band (16–26 Hz). Their 
corresponding linear fits and Pearson correlation coefficients (significance 
tested with Student t test distribution) were evaluated for the two years 
(2019, 2020) separately. Vertical thin lines indicate the date of each racing 
session, while vertical thick black lines represent the dates of decoder 
update. The break of 1 year is marked by a vertical red line.

Additional file 5. Evolution over races of the within-class distance in 
Riemann domain for the both hands class (top) and for the both feet 
class (bottom) in the μ-band (8–12 Hz) and β-band (16–26 Hz). Their 
corresponding linear fits and Pearson correlation coefficients (significance 
tested with Student t test distribution) were evaluated for the two years 
(2019,  2020) separately. Vertical thin lines indicate the date of each racing 
session, while vertical thick black lines represent the dates of decoder 
update. The break of 1 year is marked by a vertical red line.
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