# Table 1 System features and calculation

Features Description Calculation
$${Com}_{{Avg}_{Direction}}$$ Average $${\varvec{c}}{\varvec{o}}{\varvec{m}}$$ value for movements in each direction, where $${n}_{COM,Direction}$$ represents the number of steps for each direction. Four two-dimensional features $$(x,y)$$ per playthrough $$\frac{{\sum }_{t=1}^{{n}_{COM,Direction}}{\varvec{c}}{\varvec{o}}{\varvec{m}}\left(t\right)}{{n}_{COM,Direction}}$$
$$Direction=Up \leftrightarrow {com}_{y}>0.5, \left|{com}_{x}\right|<0.1$$
$$Direction=Down \leftrightarrow {com}_{y}<-0.5, \left|{com}_{x}\right|<0.1$$
$$Direction=Right \leftrightarrow {com}_{x}>0.5, \left|{com}_{y}\right|<0.1$$
$$Direction=Left \leftrightarrow {com}_{x}<-0.5, \left|{com}_{y}\right|<0.1$$
$${Com}_{{Std}_{Direction}}$$ Standard deviation of $${\varvec{c}}{\varvec{o}}{\varvec{m}}$$, for each direction, as above. Eight features per playthrough $$\sqrt{\frac{{\sum }_{t=1}^{{n}_{COM,Direction}}{\left({com}_{i}\left(t\right)-{{Com}_{Avg}}_{Direction,i}\right)}^{2}}{{n}_{COM,j}-1}},$$
$$i=x,y, Direction=Up,Down,Left, Right$$
$${Balance}_{Up}, {Balance}_{Down}$$ Average value of $${com}_{y}$$ for all values where $${com}_{y}>0$$ (up) or $${com}_{y}<0$$ (down), where $${n}_{COM}$$ is the number of $${\varvec{c}}{\varvec{o}}{\varvec{m}}$$ samples. Two features per playthrough $$\frac{{\sum }_{t=1}^{{n}_{COM}}{com}_{y}(t)}{{n}_{COM}}:{com}_{y}>0$$, $$\frac{{\sum }_{t=1}^{{n}_{COM}}{com}_{y}(t)}{{n}_{COM}}:{com}_{y}<0$$
$${Balance}_{Right}, {Balance}_{Left}$$ Average value of $${com}_{x}$$ for all values where $${com}_{x}>0$$ (right) or $${com}_{x}<0$$ (left). Two features per playthrough $$\frac{{\sum }_{t=1}^{{n}_{COM}}{com}_{x}(t)}{{n}_{COM}}:{com}_{x}>0$$, $$\frac{{\sum }_{t=1}^{{n}_{COM}}{com}_{x}(t)}{{n}_{COM}}:{com}_{x}<0$$
$${Avg}_{x}, {Avg}_{y}$$ Average value of $${com}_{x}$$ and $${com}_{y}$$. Two features $$(x,y)$$ per playthrough $$\frac{{\sum }_{t=1}^{{n}_{COM}}{com}_{x}(t)}{{n}_{COM}}$$, $$\frac{{\sum }_{t=1}^{{n}_{COM}}{com}_{y}(t)}{{n}_{COM}}$$
$${Max}_{x}, {Max}_{y}$$, $${Min}_{x}, {Min}_{y}$$ Maximum and minimum value of $${com}_{x}$$ and $${com}_{y}$$. Two features $$(x,y)$$ per playthrough $$Max ({com}_{x}\left(t\right),\forall t)$$, $$Max ({com}_{y}\left(t\right),\forall t)$$,
$$Min ({com}_{x}\left(t\right),\forall t)$$,$$Max ({com}_{y}\left(t\right),\forall t)$$
$${Std}_{x}, {Std}_{y}$$ Standard deviation of $${com}_{x}$$ and $${com}_{y}$$. Two features $$(x,y)$$ per playthrough $$\sqrt{\frac{{\sum }_{t=1}^{{n}_{COM}}{\left({com}_{i}\left(t\right)-{Avg}_{i}\right)}^{2}}{{n}_{COM}-1}}, i=x,y$$
$${If}_{Avg}$$, $${If}_{Max}$$ Average $$\mathrm{i}f\left(t\right)$$ value and maximum for the whole playthrough. Two features per playthrough $$\frac{{\sum }_{t=1}^{{n}_{COM}}if(t)}{{n}_{COM}}$$, $$Max (\mathrm{i}f\left(t\right),\forall t)$$
$${If}_{Threshold,i}$$ Number of times $$\mathrm{i}f\left(t\right)>i, i=\left[\mathrm{0.5,1},\mathrm{1.5,2}\right].$$ Normalized by the total number of samples. Four features per playthrough $$\frac{N (if(\mathrm{t})>i)}{{n}_{COM}}, i=\mathrm{0.5,1},\mathrm{1.5,2}$$
$${If}_{{Sum}_{Avg}}$$, $${If}_{{Sum}_{Max}}$$ Average value and maximum of the sum of the last 25 values of $$\mathrm{i}f\left(t\right)$$ for the whole playthrough. Two features per playthrough $$\frac{{\sum }_{t=1}^{{n}_{COM}}{if}_{Sum}(t)}{{n}_{COM}}, {if}_{Sum}\left(t\right)={\sum }_{i=t-24}^{t}if(\mathrm{t})$$, $$Max ({if}_{Sum}(t),\forall t)$$
$${If}_{{Sum}_{Overx}}$$ Number of times $${If}_{Sum}\left(t\right)>i,i=\left[\mathrm{0.5,1},\mathrm{1.5,2}\right].$$ Normalized by total playthrough time. Four features per playthrough $$\frac{N ({if}_{Sum}(t)>i)}{{n}_{COM}}, i=\mathrm{0.5,1},\mathrm{1.5,2}$$
$${Step}_{Avg}$$ Average time between steps, excluding the first step, defining $${Step}_{Time}(i)$$ as the time in seconds in which step $$i$$ occurred, and $${n}_{Steps}$$ as the total number of steps in the playthrough. One feature per playthrough $$\frac{{\sum }_{i=2}^{{n}_{Steps}}{Step}_{Time}\left(i\right)-{Step}_{Time}(i-1)}{{n}_{Steps}}$$
$${Step}_{Std}$$ Standard deviation of time between steps, excluding the first step. One feature per playthrough $$\sqrt{\frac{{\sum }_{i=2}^{{n}_{Steps}}{\left({Step}_{Time}\left(i\right)-{Step}_{Time}(i-1)-{Step}_{Avg}\right)}^{2}}{{n}_{Steps}-1}}$$