Skip to main content

Table 1 Subject-dependent parameters and population hyper-priors used in the best model

From: Long-term forecasting of a motor outcome following rehabilitation in chronic stroke via a hierarchical bayesian dynamic model

Model parameters

Priors

Hyper-priors

Retention rate

\({\alpha }_{i} \sim 1/\left(1+{e}^{-\mathcal{N}\left({\theta }_{\alpha }, { \sigma }_{\alpha } \right)}\right)\)

\({\theta }_{\alpha } \sim \mathcal{N}\left(\text{2,1}\right)\)

\({\sigma }_{\alpha } \sim \text{I}\text{n}\text{v}\text{G}\text{a}\text{m}\text{m}\text{a}\left(3, 2\right)\)

Learning rate

\({\beta }_{i } \sim {\mathcal{N}}_{\left[0,{\infty }\right)}\left({\theta }_{\beta }, {\sigma }_{\beta }\right)\)

\({\theta }_{\beta } \sim \mathcal{N}\left(0, 1\right)\)

\({\sigma }_{\beta } \sim \text{I}\text{n}\text{v}\text{G}\text{a}\text{m}\text{m}\text{a}\left(4, 2\right)\)

Self-training rate

\({\gamma }_{i} \sim {\mathcal{N}}_{\left[0,{\infty }\right)}\left({\theta }_{\gamma },{\sigma }_{\gamma }\right)\)

\({\theta }_{{\upgamma }} \sim \mathcal{N}\left(0, 1\right)\)

\({{\sigma }}_{{\gamma }} \sim \text{I}\text{n}\text{v}\text{G}\text{a}\text{m}\text{m}\text{a}\left(4, 2\right)\)

Initial state of memory

\({x}_{i}^{0} \sim{ \mathcal{N}}_{\left[0,{\infty }\right)}\left(k \text{M}\text{A}{\text{L}}_{\text{i}\text{n}\text{i}}, {\sigma }_{\text{i}\text{n}\text{i}}\right)\)

\(k \sim {\mathcal{N}}_{\left[0,{\infty }\right)}\left(0, 2\right)\)

\({\sigma }_{\text{i}\text{n}\text{i}} \sim \text{I}\text{n}\text{v}\text{G}\text{a}\text{m}\text{m}\text{a}\left(3, 2\right)\)

Data

Likelihood

Hyper-priors

MAL (measured)

\(\text{S}\text{t}\text{u}\text{d}\text{e}\text{n}\text{t}\text{T}\left({\text{M}\text{A}\text{L}}_{i}^{t} | {m}_{i}^{t}, { \sigma }_{\text{M}\text{A}\text{L}}, \nu \right)\)

\(\nu \sim \text{G}\text{a}\text{m}\text{m}\text{a}\left(2, 0.1\right)\)

\({\sigma }_{\text{M}\text{A}\text{L}} \sim {\mathcal{N}}_{\left[0,{\infty }\right)}\left(0.25, 0.1\right)\)

  1. Note that we modeled the measured \(\text{MAL}_{i}^{t}\) with a generalized \(t\)-distribution centered at \({m}_{i}^{t}\) with a scale parameter \({ \sigma }_\text{MAL}\) and the degrees of freedom \(\nu\)