- Research
- Open Access
Validation of spinal motion with the spine reposition sense device
- Cheryl M Petersen†1Email author and
- Peter J Rundquist2
https://doi.org/10.1186/1743-0003-6-12
© Petersen and Rundquist; licensee BioMed Central Ltd. 2009
- Received: 10 July 2008
- Accepted: 22 April 2009
- Published: 22 April 2009
Abstract
Background
A sagittal plane spine reposition sense device (SRSD) has been developed. Two questions were addressed with this study concerning the new SRSD: 1) whether spine movement was occurring with the methodology, and 2) where movement was taking place.
Methods
Sixty-five subjects performed seven trials of repositioning to a two-thirds full flexion position in sitting with X and Y displacement measurements taken at the T4 and L3 levels. The thoracolumbar angle between the T4 and the L3 level was computed and compared between the positions tested. A two (vertebral level of thoracic and lumbar) by seven (trials) mixed model repeated measures ANOVA indicated whether significant differences were present between the thoracic (T4) and lumbar (L3) angular measurements.
Results
Calculated thoracolumbar angles between T4 and L3 were significantly different for all positions tested indicating spinal movement was occurring with testing. No interactions were found between the seven trials and the two vertebral levels. No significant findings were found between the seven trials but significant differences were found between the two vertebral levels.
Conclusion
This study indicated spine motion was taking place with the SRSD methodology and movement was found specific to the lumbar spine. These findings support utilizing the SRSD to evaluate changes in spine reposition sense during future intervention studies dealing with low back pain.
Keywords
- Lumbar Spine
- Vertebral Level
- Angular Measurement
- Full Flexion
- Trigonometric Equation
Background
Patients with low back pain present with impaired spine reposition sense and altered motor control. [1–5] Motor control problems found include a delay in feed-forward control of the transversus abdominis with upper and lower extremity movements within subjects with low back pain compared to controls. [6–8] Also, the loss of multifidus cross sectional area, occurring with the first episode of low back pain, has been improved with biofeedback training with decreased low back pain recurrence rates one, two and three years later. [9–11] However, evaluation of proprioception, as an outcome measure, has not been performed as part of these studies, in spite of suggesting rehabilitation was addressing proprioception.
The clinicians/researchers involved with the development of this new spine reposition sense device (SRSD) have found many devices (piezoelectric accelerometer, [1] Lumbar Motion Monitor, [2] 3SPACE, [12, 13] Fastrak [4, 14, 15] and an ultrasound movement analysis system [16]) used in the literature to measure spine reposition sense. These various devices have not been used in the clinical setting to evaluate spine proprioception nor have they been used as an outcome measure during spine proprioception rehabilitation. It was hypothesized that the cost, lack of ease of use, no metal in the area (3SPACE and Fastrak) or time required to use these various devices, was the explanation for the fact that these devices were not used to demonstrate proprioception change with rehabilitation in low back pain research. Therefore, a device which could be easily incorporated into clinical research or the clinical setting was proposed as necessary. Three phases of research have been carried out with SRSD. The number of trials to test spine reposition sense have been determined, test-retest reliability and validation of the device compared to the Skill Technologies 6D (ST6D) Imperial Motion Capture and Analysis System, have been established. [17] The SRSD methodology [12] involved sitting and reproducing a two-thirds position of full flexion seven times compared to a reference two-thirds position. The X and Y displacement measurements, using trigonometry (theta = tan-1 X/Y), produced angles which can be compared. The device's measurement methodology has been challenged though regarding whether movement in the spine was occurring with reposition sense testing. The flexion motion has been thought to be due to rotation about the pelvis on the femurs and not due to lumbar flexion. Also, measurements have been taken from the T4 level which does not implicate lumbar spine motion with testing.
Trunk range of motion is important to function. Values for trunk flexion range from 51° to 62° (OSI CA-6000 Spine Motion Analyzer data). [18] Trunk movement is essential for the movement of sit-to stand. The propulsive impulse at the beginning of movement initiating forward momentum is thought to be generated by the angular velocity of the trunk and pelvis in the sagittal plane. [19] Average values of 16 degrees of trunk flexion on the pelvis have been found. [20] Differences in subjects with low back pain compared to controls have been found for the rotational relationship between the thorax and the pelvis during gait [21] and intra-subject variability has been noted in pelvic and thoracic angular displacements in subjects with low back pain. [22] A higher stride-to-stride variability in angular displacements was found and may be due to deficits in motor control and spine proprioception.
The purpose, therefore of this study, was to determine if spine movement was present during testing with the SRSD and where in the spine motion was taking place. Movement was suspected in both the thoracic and lumbar areas and the relative amounts in the two regions would be described from measurements taken from the two locations at the T4 and L3 levels.
Movement in the lumbar area should be present to allow further use of the device to examine lumbar intervention(s) proposed to improve spine reposition sense, as suggested in the literature but not measured. Two hypotheses were tested: 1) no difference would be found in the thoracolumbar angle between the various positions tested and 2) no difference would be found between the angular measurements taken at the T4 and L3 locations across the seven trials used in testing.
Methods
Subjects
Exclusion criteria (by self-report)
Oswestry back pain scores of greater than or equal to 5% |
Balance, coordination, or stabilization therapy within the last six months |
Excessive use of pain medication, drugs, or alcohol |
Ligamentous injury to the hips, pelvis, or spine |
Spinal surgery |
Balance disorders secondary to: active or recent ear infections, vestibular disorders, trauma to the vestibular canals, or orthostatic hypotension |
Neurologic disorders including: multiple sclerosis (MS), cerebral vascular accident (CVA), spinal cord injury, neuropathies, and myopathies |
Diseases of the spine including: osteoporosis, instability, fractures, rheumatoid arthritis (RA), degenerative disc disease (DDD), and spondylolisthesis |
Descriptive statistics for subject characteristics
Number | 65 |
---|---|
Age | |
(Mean ± SD) | 23.4 ± 2.9 |
Sex Ratio | |
Male:Female | 14: 51 (27.5%) |
Height (cm) | |
(Mean ± SD) Female, Male | 169.1 ± 7.2, 180.5 ± 7.1 |
Weight (kg) | |
(Mean ± SD) Female, Male | 65.5 ± 10.5, 86.5 ± 14.4 |
Protocol
The measurement method: X and Y coordinates are measured and used in a trigonometric calculation to determine the angle. An individual is shown seated in the upright neutral posture; during the study, all subjects were blindfolded throughout testing.
Vertical measurement view for the new SRSD method taken through an opening in the back of the sliding mechanism.
Horizontal measurement view for the new SRSD method taken from the side of the sliding mechanism.
The measurement method: The X and Y coordinates are shown above with an individual in a position 2/3 of full flexion; during the study, all subjects were blindfolded throughout testing.
Analysis
Spine versus hip movement
Illustration of the derivation of the thoracolumbar angle measures where T = thoracic, L = lumbar, N = neutral position, F = full flexion position.
Relative spinal measurements in thoracic versus lumbar spine
Descriptive statistics were used for comparison of the thoracic, lumbar and computed thoracolumbar measurements of the positions tested. Additionally, the use of a two (vertebral level of thoracic and lumbar) by seven (trials) mixed model repeated measures ANOVA indicated whether significant differences were present between the thoracic (T4) and lumbar (L3) angular measurements at each position tested. The use of an ICC (3, k) with the 95% confidence interval (CI) and standard error of the mean (SEM) indicated the reliability of the reposition trials from the thoracic (T4) and lumbar (L3) level measurements.
Results
Spine versus hip movement
Descriptive statistics (mean, standard deviation, standard error, minimum and maximum values) in degrees for the angular measurements at the thoracic (T4) versus the lumbar (L3) levels.
Mean | Mean Difference T-L | Standard Deviation | Standard Error | Minimum | Maximum | |
---|---|---|---|---|---|---|
Neutral 1 | ||||||
T | 12.38 | -11.11 | 2.00 | 0.25 | 7.88 | 17.28 |
L | 23.49 | 3.76 | 0.47 | 17.28 | 42.39 | |
Full | ||||||
T | 50.65 | 14.13 | 7.89 | 0.98 | 27.30 | 63.54 |
L | 36.52 | 6.15 | 0.76 | 23.45 | 48.39 | |
Ref | ||||||
T | 39.37 | 7.67 | 7.00 | 0.87 | 23.56 | 52.4 |
L | 31.70 | 4.56 | 0.57 | 23.39 | 42.34 | |
2/3 1 | ||||||
T | 38.75 | 7.41 | 6.51 | 0.81 | 21.38 | 51.68 |
L | 31.34 | 4.48 | 0.56 | 22.14 | 41.88 | |
2/3 2 | ||||||
T | 38.82 | 7.34 | 6.72 | 0.83 | 20.96 | 52.53 |
L | 31.48 | 4.67 | 0.58 | 22.14 | 42.22 | |
2/3 3 | ||||||
T | 38.62 | 7.15 | 6.84 | 0.85 | 21.63 | 53.36 |
L | 31.47 | 4.84 | 0.60 | 21.48 | 42.22 | |
2/3 4 | ||||||
T | 38.46 | 7.06 | 6.85 | 0.85 | 21.97 | 52.82 |
L | 31.40 | 4.69 | 0.58 | 21.83 | 42.47 | |
2/3 5 | ||||||
T | 38.30 | 6.98 | 6.60 | 0.82 | 21.63 | 53.76 |
L | 31.32 | 4.50 | 0.56 | 21.99 | 42.66 | |
2/3 6 | ||||||
T | 38.14 | 6.76 | 6.57 | 0.81 | 22.29 | 53.60 |
L | 31.38 | 4.64 | 0.58 | 21.12 | 42.30 | |
2/3 7 | ||||||
T | 37.81 | 6.38 | 7.44 | 0.92 | 13.19 | 53.38 |
L | 31.43 | 4.75 | 0.59 | 20.76 | 41.14 | |
Neutral 2 | ||||||
T | 13.40 | -10.24 | 2.66 | 0.33 | 9.12 | 26.74 |
L | 23.64 | 2.89 | 0.36 | 16.9 | 32.68 |
Descriptive statistics (mean, standard deviation, standard error, minimum and maximum values) in degrees for the thoracolumbar angle computed from the thoracic T4 minus the lumbar L3 X and Y measurements for movement above the L3 level.
Mean | Standard Deviation | Standard Error | Minimum | Maximum | |
---|---|---|---|---|---|
Neutral 1 | 2.18 | 3.94 | 0.49 | -6.16 | 14.13 |
Full | 67.29 | 11.77 | 1.46 | 30.20 | 84.11 |
Reference | 48.29 | 11.45 | 1.42 | 23.02 | 68.26 |
Ref-2/3 1 | 47.45 | 10.51 | 1.30 | 20.27 | 68.65 |
Ref-2/3 2 | 47.43 | 10.79 | 1.34 | 19.54 | 70.40 |
Ref-2/3 3 | 46.96 | 11.03 | 1.37 | 20.32 | 72.53 |
Ref-2/3 4 | 46.65 | 11.03 | 1.37 | 20.94 | 70.48 |
Ref-2/3 5 | 46.42 | 10.74 | 1.33 | 20.56 | 72.97 |
Ref-2/3 6 | 46.05 | 10.62 | 1.32 | 21.92 | 72.97 |
Ref-2/3 7 | 46.33 | 10.98 | 1.36 | 21.46 | 74.87 |
Neutral 2 | 3.16 | 4.09 | 0.51 | -4.29 | 14.49 |
Relative spinal measurements in the thoracic versus lumbar spine
Neutral, full flexion and the two-thirds (2/3) flexion position for thoracic T4 and lumbar L3 angle measurements including mean degrees ± standard deviation.
Thoracic T4 Level | Lumbar L3 Level | ||||||
---|---|---|---|---|---|---|---|
Neutral | Full Flexion | Two-Thirds Flexion | Percentage of Full Flexion | Neutral | Full Flexion | Two-Thirds Flexion | Percentage of Full Flexion |
12.38 ± 2.0 | 50.65 ± 7.89 | 39.37 ± 7.0 | 70.5 | 23.49 ± 3.76 | 36.52 ± 6.15 | 31.70 ± 4.56 | 63 |
Comparison of the angular measurements for trials 1–7 computed from the thoracic (T4 = triangles) and lumbar (L3 = circles) X and Y measurements.
Discussion
Spine versus hip movement
If the spine does not move during the protocol with the SRSD but instead rotation occurs at the pelvis on the femurs, no differences would be found for the computed thoracolumbar angle in the various positions tested. This angle represents movement occurring between T4 and L3 and is spinal movement. The significant differences (paired t tests) between the thoracolumbar angles (full flexion minus neutral versus two-thirds of full flexion minus neutral, two-thirds of full flexion minus neutral versus full flexion minus two-thirds of full flexion and full flexion minus neutral versus full flexion minus two-thirds of full flexion) provided evidence that the protocol used with the new SRSD allows movement in the spine. The descriptive data for the differences found in the thoracic and lumbar measurements also provided support (Table 3). Motion occurred within the lumbar and the thoracic spines. The first hypothesis that no difference would be found in the thoracolumbar angle between the various positions tested was rejected. The documented movement in the upper lumbar spine will be important for future use of the device for evaluation of treatment interventions and their proposed impact on spine reposition sense.
The measurement procedures used though did not allow determination of the amount of movement occurring at the pelvis on the femurs with this protocol. Previous literature has demonstrated that during forward bending, movement occurred through flexion of the lumbar spine and the pelvis on the femurs. The magnitude of the movement at the spine was greater than at the pelvis on the femurs, in the early stage of forward bending. In the final stage of forward bending, the relative contribution of the spine was reduced. [37–40] The contribution to forward bending from the lumbar spine was reduced in subjects with low back pain [39, 40] as well as in subjects with back injury and asymptomatic subjects with a history of back pain. [37, 41] Decreased range of hip flexion during forward bending of the trunk has been found in subjects with back pain. [37, 38] Clinically, the evaluation of the lumbar spine, pelvis and hips, in subjects with back pain, should be considered.
Relative spinal measurements in the thoracic versus lumbar spine
Because the spine did not move as a rigid body about the hips during the testing protocol, the second objective of where movement in the spine was taking place was addressed. The statistical findings using the mixed model repeated measures ANOVA and the graphical analysis (Figure 6) indicated the lumbar and the thoracic measurements were different from one another at all seven trials tested. The amounts of movement in the thoracic and lumbar spines are presented in Table 3. These data support rejection of the second null hypothesis (no difference would be found between the angular measurements taken at the T4 and L3 locations across the seven trials used in testing). Comparison of the subject's mean full flexion position value to the two-thirds position at the thoracic and the lumbar levels indicated the subjects were producing near to a two-thirds position in each area (Table 4). These thoracic and lumbar percentages of 70.5% and 63% respectively average to 66.75%, which was very close to a true two-thirds position.
The good ICC (3, k) findings for both the thoracic and the lumbar trials indicated good reliability. [42] The low SEM findings (0.78 and 1.18) associated with the ICCs (3,4) provided an estimate of the precision of the measurement. [43]
Study Limitations
The results of this study are limited to healthy young adults. Additional testing with older subjects as well as subjects with spinal pathology needs to be completed to assess the use of the SRSD within these populations.
Conclusion
Due to concerns with the new reposition sense device including 1) that the spine was moving as a rigid body rotating about the pelvis on the femurs during movement testing and 2) that movement was not specific to the lumbar spine, additional testing was completed. Spinal movement was found using the new SRSD methodology indicating the spine did not move as a rigid body. Movement was also found specific to the lumbar spine. This last finding will allow the device to be used to assess lumbar spine treatment intervention(s) suspected to impact spine proprioception which has not been previously assessed.
Notes
Declarations
Acknowledgements
We would like to thank Clive Pai, PT, PhD for the original concept for the trunk repositioning sense device and mathematical assistance; Arvid Brekke, for creating the device; Dr. Jon Baum, Dr. Terry Steffen and Paul Wangerin for statistical help and Dr. Chris Zimmermann and Dr. Pamela Ritzline for editorial help. Written consent was obtained from the subjects for publication of this study.
Authors’ Affiliations
References
- Brumagne S, Cordo P, Lysens R, Verschueren S, Swinnen S: The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine 2000, 25: 989-994. 10.1097/00007632-200004150-00015View ArticlePubMedGoogle Scholar
- Gill K, Callaghan M: The measurement of lumbar proprioception in individuals with and without low back pain. Spine 1998,23(3):371-377. 10.1097/00007632-199802010-00017View ArticlePubMedGoogle Scholar
- Leinonen V, Kankaanpaa M, Luukkonen M, Kansanen M, Hanninen O, Airaksinen O, Taimela S: Lumbar paraspinal muscle function, perception of lumbar position, and postural control in disc herniation-related back pain. Spine 2003,28(8):842-848. 10.1097/00007632-200304150-00019PubMedGoogle Scholar
- O'Sullivan P, Burnett A, Floyd A, Gadsdon K, Logiudice J, Miller D, Quirke H: Lumbar repositioning deficit in a specific low back pain population. Spine 2003,28(10):1074-1079. 10.1097/00007632-200305150-00022View ArticlePubMedGoogle Scholar
- Parkhurst T, Burnett C: Injury and proprioception in the lower back. J Orthop Sports Phys Ther 1994,19(5):282-295.View ArticlePubMedGoogle Scholar
- Hodges P, Richardson C: Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. J Spinal Disord 1998,11(1):46-56. 10.1097/00002517-199802000-00008View ArticlePubMedGoogle Scholar
- Hodges P, Richardson C: Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil 1999, 80: 1005-1012. 10.1016/S0003-9993(99)90052-7View ArticlePubMedGoogle Scholar
- Hodges P: Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res 2001, 141: 261-266. 10.1007/s002210100873View ArticlePubMedGoogle Scholar
- Hides J, Stokes M, Saide M, Jull G, Cooper D: Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine 1994,19(2):165-172.View ArticlePubMedGoogle Scholar
- Hides J, Richardson C, Jull G: Multifidus muscle recovery is not automatic after resolution of acute first-episode low back pain. Spine 1996,21(23):2763-2769. 10.1097/00007632-199612010-00011View ArticlePubMedGoogle Scholar
- Hides J, Jull G, Richardson C: Long term effects of specific stabilizing exercises for first episode low back pain. Spine 2001,26(11):243-248. 10.1097/00007632-200106010-00004View ArticleGoogle Scholar
- Newcomer K, Laskowski E, Yu B, Johnson J, An K: Differences in repositioning error among patients with low back pain compared with control subjects. Spine 2000, 25: 2488-2493. 10.1097/00007632-200010010-00011View ArticlePubMedGoogle Scholar
- Newcomer K, Laskowski E, Yu B, Larson D, An K: Repositioning error in low back pain. Comparing trunk repositioning error in subjects with chronic low back pain and control subjects. Spine 2000,25(2):245-250. 10.1097/00007632-200001150-00017View ArticlePubMedGoogle Scholar
- Lam S, Jull G, Treleaven J: Lumbar spine kinesthesia in patients with low back pain. J Orthop Sports Phys Ther 1999,29(5):294-299.View ArticlePubMedGoogle Scholar
- Maffrey-Ward L, Jull G, Wellington L: Toward a clinical test of lumbar spine kinesthesia. J Orthop Sports Phys Ther 1996,24(6):354-358.View ArticleGoogle Scholar
- Stevens V, Bouche K, Mahieu N, Cambier D, Vanderstraeten G, Danneels L: Reliability of a functional clinical test battery evaluating postural control, proprioception and trunk muscle activity. Am J Phys Med Rehabil 2006, 85: 727-736. 10.1097/01.phm.0000233180.88299.f6View ArticlePubMedGoogle Scholar
- Petersen C, Zimmermann C, Cope S, Bulow M, Ewers-Panveno E: A new measurement for spine resposition sense. J Neuroeng Rehabil 2008,5(1):9. 10.1186/1743-0003-5-9PubMed CentralView ArticlePubMedGoogle Scholar
- Schuit D, Petersen C, Johnson R, Levine P, Knecht H, Goldberg D: Validity and reliability of measures obtained from the OSI CA-6000 spine motion analyzer for lumbar spinal motion. Man Ther 1997,2(4):206-215. 10.1054/math.1997.0301View ArticlePubMedGoogle Scholar
- Riley P, Schenkman M, Mann R, Hodge W: Mechanics of a constrained chair rise. J Biomech 1991, 24: 77-85. 10.1016/0021-9290(91)90328-KView ArticlePubMedGoogle Scholar
- Schenkman M, Berger R, O Riley P, Mann R, Hodge W: Whole-body movements during rising to standing from sitting. Phys Ther 1990,70(10):638-651.PubMedGoogle Scholar
- Lamoth C, Meijer O, Wuisman P: Co-ordination of movement in specific low back pain. Acta Orthop Scand 1999, 70: 15.Google Scholar
- Vogt L, Banzer W: Measurement of lumbar spine kinematics in incline treadmill walking. Gait Posture 1999, 9: 18-23. 10.1016/S0966-6362(98)00038-1View ArticlePubMedGoogle Scholar
- Ashton-Miller J, McGlashen K, Schultz A: Trunk positioning accuracy in children 7–18 years old. J Orthop Res 1992, 10: 217-225. 10.1002/jor.1100100209View ArticlePubMedGoogle Scholar
- Goble D, Lewis C, Hurvitz E, Brown S: Development of upper limb proprioceptive accuracy in children and adolescents. Hum Mov Sci 2005, 24: 155-170. 10.1016/j.humov.2005.05.004View ArticlePubMedGoogle Scholar
- Kaplan F, Nixon J, Reitz M, Rindfleish L, Tucker J: Age-related changes in proprioception and sensation of joint position. Acta Orthop Scand 1985,59(56):72-74.View ArticleGoogle Scholar
- Marks R, Quinney H, Wessel J: Proprioceptive sensibility in women with normal and osteoarthritic knee joints. Clin Rheumatol 1993, 12: 170-175. 10.1007/BF02231522View ArticlePubMedGoogle Scholar
- Sharma L, Pai Y-C: Impaired proprioception and osteoarthritis. Curr Opin Rheumatol 1997, 9: 253-258. 10.1097/00002281-199705000-00013View ArticlePubMedGoogle Scholar
- Sharma L, Pai Y-C, Holtkamp K, Rymer W: Is knee joint proprioception worse in the arthritic knee versus the unaffected knee in unilateral knee osteoarthritis? Arthritis Rheum 1997,40(8):1518-1525. 10.1002/art.1780400821View ArticlePubMedGoogle Scholar
- Skinner H, Barrack R, Cook S: Age-related decline in proprioception. Clin Orthop 1984, 184: 208-211.PubMedGoogle Scholar
- Skinner H, Barrack R, Cook S, Haddad R: Joint position sense in total knee arthroplasty. J Orthop Res 1984, 1: 276-283. 10.1002/jor.1100010307View ArticlePubMedGoogle Scholar
- Koumantakis G, Watson P, Oldham J: Trunk muscle stabilization training plus general exercise versus general exercise only: Randomized controlled trial of patients with recurrent low back pain. Phys Ther 2005,85(3):209-225.PubMedGoogle Scholar
- Swinkels A, Dolan P: Regional assessment of joint position sense in the spine. Spine 1998,23(5):590-597. 10.1097/00007632-199803010-00012View ArticlePubMedGoogle Scholar
- Swinkels A, Dolan P: Spinal position sense is independent of the magnitude of movement. Spine 2000,25(1):98-105. 10.1097/00007632-200001010-00017View ArticlePubMedGoogle Scholar
- Brumagne S, Lysens R, Spaepen A: Lumbosacral position sense during pelvic tilting in men and women without low back pain: Test development and reliability assessment. J Orthop Sports Phys Ther 1999,29(6):345-351.View ArticlePubMedGoogle Scholar
- Brumagne S, Lysens R, Spaepen A: Lumbosacral repositioning accuracy in standing posture: A combined electrogoniometric and videographic evaluation. Clin Biomech 1999, 14: 361-363. 10.1016/S0268-0033(98)00086-2View ArticleGoogle Scholar
- Altman D, Bland J: Measurement in medicine: The analysis of method comparison studies. Statistician 1983,32(2):307-317. 10.2307/2987937View ArticleGoogle Scholar
- Esola M, McClure P, Fitzgerald G, Siegler S: Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine 1996,21(1):71-78. 10.1097/00007632-199601010-00017View ArticlePubMedGoogle Scholar
- Lee R, Wong T: Relationship between the movements of the lumbar spine and hip. Hum Move Sci 2002, 21: 481-494. 10.1016/S0167-9457(02)00117-3View ArticleGoogle Scholar
- Paquet N, Malouin F, Richards C: Hip-spine movement interaction and muscle activation patterns during sagittal trunk movements in low back pain patients. Spine 1994,19(5):596-603. 10.1097/00007632-199403000-00016View ArticlePubMedGoogle Scholar
- Porter J, Wilkinson A: Lumbar-hip flexion motion. Spine 1997,22(13):1508-1514. 10.1097/00007632-199707010-00017View ArticlePubMedGoogle Scholar
- Wong T, Lee R: Effects of low back pain on the relationship between the movements of the lumbar spine and hip. Hum Move Sci 2004, 23: 21-34. 10.1016/j.humov.2004.03.004View ArticleGoogle Scholar
- Portney L, Watkins M: Foundations of Clinical Research: Applications to Practice. Connecticut: Appleton & Lange; 2000.Google Scholar
- Denegar C, Ball D: Assessing reliability and precision of measurement: An introduction to intraclass correlation and standard error of measurement. J Sports Rehabil 1993, 2: 35-42.Google Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.