Holden MK. Virtual environments for motor rehabilitation: review. Cyber Psychol Behav. 2005;8:187–211.
Article
Google Scholar
Riva G, Anguera MT, Wiederhold BK, Mantovani F. From communication to presence: cognition, emotions and culture towards the ultimate communicative experience. Amsterdam: IOS Press; 2006.
Google Scholar
Nudo R, Milliken G, Jenkins W, Merzenich M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16(2):785–807.
CAS
PubMed
Google Scholar
Boyd L, Vidoni E, Wessel B. Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change. Neurosci Lett. 2010;482:21–5.
Article
CAS
PubMed
Google Scholar
Nudo R, Milliken G. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75(5):2144–9.
CAS
PubMed
Google Scholar
Plautz E, Milliken G, Nudo R. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000;74:27–55.
Article
CAS
PubMed
Google Scholar
Sveistrup H. Motor rehabilitation using virtual reality. J Neuroeng Rehabil. 2004;11:10.
Article
Google Scholar
Fu MJ, Knutson JS, Chae J. Stroke rehabilitation using virtual environments. Phys Med Rehabil Clin N Am. 2015;26:747–57.
Article
PubMed
PubMed Central
Google Scholar
Calabrò RS, Russo M, Naro A, De Luca R, Leo A, Tomasello P, Molonia F, Dattola V, Bramanti A, Bramanti P. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial. J Neurol Sci. 2017;377:25–30.
Kwakkel G, Kollen B, Wagenaar R. Therapy impact on functional recovery in stroke rehabilitation: a critical review of the literature. Physiotherapy. 1999;85(7):377–91.
Article
Google Scholar
Rossini P, Forno G. Neuronal post-stroke plasticity in the adult. Restorative Neurology and Neurosci. 2004;22(3-5):193–206.
Google Scholar
Maier I, Schwab M. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans of the R Soc B: Biol Sci. 2006;361(1473):1611–34.
Article
CAS
Google Scholar
Nudo R, Plautz E, Frost S. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve. 2001;24(8):1000–19.
Article
CAS
PubMed
Google Scholar
Stroemer R, Kent T, Hulsebosch C. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.
Article
CAS
PubMed
Google Scholar
Pavone EF, Tieri G, Rizza G, Tidoni E, Grisoni L, Aglioti SM. Embodying others in immersive virtual reality: electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. J Neurosci. 2016;36:268–79.
Article
CAS
PubMed
Google Scholar
Fadiga L, Craighero L. Electrophysiology of action representation. Clin Neurophysiol. 2004;21:157–69.
Article
Google Scholar
Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13:400–4.
CAS
PubMed
Google Scholar
Ramachandran VS, Hirstein W. The perception of phantom limbs. Brain. 1998;121:1603–30.
Article
PubMed
Google Scholar
Pavlova M, Lutzenberger W, Sokolov A, Birbaumer N. Dissociable cortical processing of recognizable and non-recognizable biological movement: analyzing gamma MEG activity. Cereb Cortex. 2004;14:181–8.
Article
PubMed
Google Scholar
Modroño C, Navarrete G, Rodríguez-Hernández AF, González-Mora JL. Activation of the human mirror neuron system during the observation of the manipulation of virtual tools in the absence of a visible effector limb. Neurosci Lett. 2013;555:220–4.
Article
PubMed
CAS
Google Scholar
Buccino G, Solodkin A, Small S. Functions of the mirror neuron system: implications for neurorehabilitation. Cogn Behav Neurol. 2006;19:55–63.
Article
PubMed
Google Scholar
Laver K, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review. Eur J Phys Rehabil Med. 2015;51:497–506.
CAS
PubMed
Google Scholar
Krakauer J. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.
Article
PubMed
Google Scholar
Jäncke L, Cheetham M, Baumgartner T. Virtual reality and the role of the prefrontal cortex in adults and children. Front Neurosci. 2009;3:52–9.
Article
PubMed
PubMed Central
Google Scholar
Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12:217–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller R. Theory of the normal waking EEG: from single neurones to waveforms in the alpha, beta and gamma frequency ranges. Int J Psychophysiol. 2007;64:18–23.
Article
PubMed
Google Scholar
Sharma N, Classen J, Cohen LG. Neural plasticity and its contribution to functional recovery. Handb Clin Neurol. 2013;110:3–12.
Article
PubMed
PubMed Central
Google Scholar
Oberman LM, Pineda JA, Ramachandran VS. The human mirror neuron system: a link between action observation and social skills. Soc Cogn Affect Neurosci. 2007;2(1):62–6.
Article
PubMed
PubMed Central
Google Scholar
Zarka D, Cevallos C, Petieau M, Hoellinger T, Dan B, Cheron G. Neural rhythmic symphony of human walking observation: upside-down and uncoordinated condition on cortical theta, alpha, beta and gamma oscillations. Front Syst Neurosci. 2014;8:169.
Article
PubMed
PubMed Central
Google Scholar
Cheron G, Petit G, Cheron J, et al. Brain oscillations in sport: toward EEG biomarkers of performance. Front Psychol. 2016;7:246.
PubMed
PubMed Central
Google Scholar
Kazuhiro U, Masataka Y, Hongbo L, Chi Z. Effect of motor intensity on motion imagery with electroencephalogram signal analysis in mirror neuron system. J Neurosci Neuroeng. 2017;4(1):38–43.
Article
Google Scholar
McGarry LMJ. The role of the mirror neuron system in bottom-up and top-down perception of human action. Canada: Toronto University Press; 2015.
Google Scholar
Filimon F, Rieth CA, Sereno MI, Cottrell GW. Observed, executed, and imagined action representations can be decoded from ventral and dorsal areas. Cereb Cortex. 2015;25(9):3144–58.
Article
PubMed
Google Scholar
Ferreira Dos Santos L, Christ O, Mate K, Schmidt H, Krüger J, Dohle C. Movement visualization in virtual reality rehabilitation of the lower limb: a systematic review. Biomed Eng Online. 2016;15(Suppl 3):144.
Article
PubMed
PubMed Central
Google Scholar
de Rooij IJ, van de Port IG, Meijer JG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther. 2016;96(12):1905–18.
Article
PubMed
Google Scholar
Chan L, Heinemann AW, Roberts J. Elevating the quality of disability and rehabilitation research: mandatory use of the reporting guidelines. Ann Phys Rehabil Med. 2014;57:558–60.
Article
PubMed
Google Scholar
Medical Research Council. Aids to the examination of the peripheral nervous system, memorandum no. 45. London: Pengragon House; 1978.
Google Scholar
Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.
Article
CAS
PubMed
Google Scholar
Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;16(2):216.
Article
PubMed
PubMed Central
Google Scholar
You RX, McNeil JJ, O'Malley HM, Davis SM, Thrift AG, Donnan GA. Risk factors for stroke due to cerebral infarction in young adults. Stroke. 1997;28(10):1913–8.
Article
CAS
PubMed
Google Scholar
Song GB, Park EC. Effect of virtual reality games on stroke patients' balance, gait, depression, and interpersonal relationships. J Phys Ther Sci. 2015;27(7):2057–60.
Article
PubMed
PubMed Central
Google Scholar
de Rooij IJ, van de Port IG, Meijer JG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. J Neuroeng Rehabil. 2015;12:46.
Article
Google Scholar
Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. Biomed Res Int. 2016;2016:7309272.
Google Scholar
Ling C, Wai LAL, Yu RM, Ming HD, Qiang L, Hai L, et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed Res Int. 2016;2016:7309272.
Google Scholar
Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neur Syst Reh. 2005;13(3):380–94.
Article
Google Scholar
Riener R, Lunenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43(5):679–94.
Article
PubMed
Google Scholar
Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.
Article
PubMed
Google Scholar
Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66.
PubMed
Google Scholar
Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, Swerdlow NR, Braff DL. Electroencephalography (EEG) and Event-Related Potentials (ERP’s) with Human Participants. Curr Protoc Neurosci. 2010;6:2524.
Lisi G, Morimoto J. EEG single-trial detection of gait speed changes during treadmill walk. PLoS One. 2015;10(5):e0125479.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kilicarslan A, Grossman RG. Contreras-Vidal JL. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. J Neural Eng. 2016;13:026013.
Article
PubMed
Google Scholar
Fruhstorfer H, Langanke P, Meinzer K, Peter JH, Pfaff U. Neurophysiological vigilance indicators and operational analysis of a train vigilance monitoring device: a laboratory and field study. In: Mackie RR, editor. Vigilance. New York: Plenum Press; 1977. p. 147–62.
Chapter
Google Scholar
Makeig S, Debener S, Onton J, Delorme A. Mining event-related brain dynamics. Trends Cogn Sci. 2004;8(5):204–10.
Article
PubMed
Google Scholar
Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage. 2012;63:1203–11.
Article
PubMed
Google Scholar
Onton J, Westerfield M, Townsend J, Makeig S. Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev. 2006;30:808–22.
Article
PubMed
Google Scholar
Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2010;54:1289–96.
Article
PubMed
Google Scholar
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.
Article
PubMed
Google Scholar
Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol. 1993;86:283–93.
Article
CAS
PubMed
Google Scholar
Perry J, Burnfield JM. Gait analysis, normal and pathological function. J Sports Sci Med. 2010;9(2):353.
Google Scholar
Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9.
Article
PubMed
Google Scholar
Nathan K, Contreras-Vidal JL. Negligible motion artifacts in scalp electroencephalography (EEG) during treadmill walking. Front Hum Neurosci. 2016;9:708.
Article
PubMed
PubMed Central
Google Scholar
Castermans T, Duvinage M, Cheron G, Dutoit T. Towards effective non-invasive brain-computer interfaces dedicated to gait rehabilitation systems. Brain Sci. 2014;4:1–48.
Pfurtscheller G, Neuper C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett. 1994;174:93–6.
Article
CAS
PubMed
Google Scholar
Andrew C, Pfurtscheller G. On the existence of different alpha band rhythms in the hand area of man. Neurosci Lett. 1997;222(2):103–6.
Article
CAS
PubMed
Google Scholar
Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Res. 2013;1509:43–57.
Article
CAS
PubMed
Google Scholar
Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression. NeuroImage. 2014;87:127–37.
Article
PubMed
Google Scholar
Taborri J, Palermo E, Rossi S, Cappa P. Gait Partitioning Methods: A Systematic Review. Sensors (Basel, Switzerland). 2016;16:66.
Rajmohan V, Mohandas E. Mirror neuron system. Indian J Psychiatry. 2007;49:66–69.
Kilner JM, Lemon RN. What we know currently about mirror neurons. Curr Biol. 2013;23(23):R1057–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schippers MB, Keysers C. Mapping the flow of information within the putative mirror neuron system during gesture observation. NeuroImage. 2011;57(1):37–44.
Article
PubMed
Google Scholar
Braadbaart L, Williams JH, Waiter GD. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol. 2013;89(1):99–105.
Article
PubMed
Google Scholar
Demiralp T, Bayraktaroglu Z, Lenz D, Junge S, Busch NA, Maess B, et al. Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int J Psychophysiol. 2007;64(1):24–30.
Article
PubMed
Google Scholar
de Lange FP, Jensen O, Bauer M, Toni I. Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front Hum Neurosci. 2008;2:7.
PubMed
PubMed Central
Google Scholar
Pfurtscheller G, Neuper C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett. 2011;174:93–6.
Article
Google Scholar
Pascual-Marqui RD. Review of methods for solving the EEG inverse problem. Int J Bioelectromagn. 1999;1:75–86.
Google Scholar
Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49–65.
Article
CAS
PubMed
Google Scholar
Fuchs M, Drenckhahn R, Wischmann HA, Wagner M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng. 1998;45:980–97.
Article
CAS
PubMed
Google Scholar
Fuchs M, Kastner J, Wagner M, et al. A standardized boundary element method volume conductor model. Clin Neurophysiol. 2002;113:702–12.
Article
PubMed
Google Scholar
Basile LF, Yacubian J, Castro CC, Grattaz WF. Widespread electrical cortical dysfunction in schizophrenia. Schizophr Res. 2004;69:255–66.
Article
PubMed
Google Scholar
Yao J, Dewald JP. Evaluation of different cortical source localization methods using simulated and experimental EEG data. NeuroImage. 2005;25:369–82.
Article
PubMed
Google Scholar
Chen HM, Hsieh CL. Sing Kai lo, Liaw LJ, Chen SM, Lin JH. The test-retest reliability of 2 mobility performance tests in patients with chronic stroke. Neurorehabil Neural Repair. 2007;21(4):347–52.
Article
PubMed
Google Scholar
Canbek J, Fulk G, Nof L, Echternach J. Test-retest reliability and construct validity of the tinetti performance-oriented mobility assessment in people with stroke. J Neurol Phys Ther. 2013;37(1):14–9.
Article
PubMed
Google Scholar
Monge-Pereira E, Molina-Rueda F, Rivas-Montero FM, Ibáñez J, Serrano JI, Alguacil-Diego IM, et al. Electroencephalography as a post-stroke assessment method: an updated review. Neurologia. 2017;32(1):40–9.
Article
CAS
PubMed
Google Scholar
Knaepen K, Mierau A, Swinnen E, Fernandez Tellez H, Michielsen M, Kerckhofs E, et al. Human-robot interaction: does robotic guidance force affect gait-related brain dynamics during robot-assisted treadmill walking? PLoS One. 2015;10(10):e0140626.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 2012;26:308–17.
Article
PubMed
PubMed Central
Google Scholar
Wutzke CJ, Mercer VS, Lewek MD. Influence of lower extremity sensory function on locomotor adaptation following stroke: a review. Top Stroke Rehabil. 2013;20(3):233–40.
Article
PubMed
Google Scholar
Park W, Kwon GH, Kim YH, Lee JH, Kim L. EEG response varies with lesion location in patients with chronic stroke. J Neuroeng Rehabil. 2016;13:21.
Article
PubMed
PubMed Central
Google Scholar
Wu J, Quinlan EB, Dodakian L, et al. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain. 2015;138(8):2359–69. doi:10.1093/brain/awv156.
Article
PubMed
PubMed Central
Google Scholar
Perry J. Gait analysis: normal and pathological function. Thorofare: Slack Incorporated; 1992.
Google Scholar
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.
Article
Google Scholar
Pfurtscheller G, Lopes da Silva F. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–57.
Article
CAS
PubMed
Google Scholar
Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain. 1998;121:2271–99.
Article
PubMed
Google Scholar
Gilbertson T, Lalo E, Doyle L, Di Lazzaro V, Cioni B, Brown P. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system. J Neurosci. 2005;25:7771–9.
Article
CAS
PubMed
Google Scholar
Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 2011;34:611–8.
Article
CAS
PubMed
Google Scholar
Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol. 2012;22:403–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. J Neurosci. 2007;53:63–88.
Google Scholar
Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, et al. Spectral changes in cortical surface potentials during motor movement. J Neurosci. 2007;27:2424–32.
Article
CAS
PubMed
Google Scholar
Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol. 2001;43:41–58.
Article
CAS
PubMed
Google Scholar
Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. J Neurosci. 2007;27:2424–32.
Article
CAS
Google Scholar
Knill DC, Maloney LT, Trommershäuser J. Sensorimotor Processing and Goal-Directed Movement. J Vis. 2007;7:1–2.
Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol. 2003;114:1226–36.
Article
CAS
PubMed
Google Scholar
Pfurtscheller G, Stancak J, Neuper C. Post-movement beta synchronization. A correlate of an idling area. Electroencephalogr. Clin. Neurophysiology. 1996;98:281–93.
CAS
Google Scholar
Alegre M, Labarga A, Gurtubay IG, Iriarte J, Malanda A, Artieda J. Movement-related changes in cortical oscillatory activity in ballistic, sustained and negative movements. Exp Brain Res. 2003;148:17–25.
Article
CAS
PubMed
Google Scholar
Brown P. Cortical drives to human muscle: the piper and related rhythms. Prog Neurobiol. 2000;60:97–108.
Article
CAS
PubMed
Google Scholar
Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.
Article
PubMed
Google Scholar
Mima T, Steger J, Schulman AE, Gerloff C, Hallett M. Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol. 2000;111:326–37.
Article
CAS
PubMed
Google Scholar
Müller-Putz P, Neuper C, Rupp R, Keinrath C, Gerner H, Pfurtscheller G. Event-related beta electroencephalographic changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci Lett. 2003;340:143–7.
Article
Google Scholar
Müller-Putz P, Zimmermann D, Graimann B, Nestinger K, Korisek G, Pfurtscheller G. Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res. 2007;1137:84–91.
Article
PubMed
CAS
Google Scholar
Pfurtscheller G, Neuper C. Simultaneous EEG 10 Hz desynchronization and 40Hz synchronization during finger movements. Neuroreport. 1992;3:1057–60.
Article
CAS
PubMed
Google Scholar
Pfurtscheller G, Neuper C, Kalcher J. 40-hz oscillations during motor behavior in man. Neurosci Lett. 1993;164:179–82.
Article
CAS
PubMed
Google Scholar
Raethjen J, Govindan RB, Binder S, Zeuner KE, Deuschl G, Stolze H. Cortical representation of rhythmic foot movements. Brain Res. 2008;1236:79–84.
Article
CAS
PubMed
Google Scholar
Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM. Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. NeuroImage. 2004;21(2):568–75.
Article
CAS
PubMed
Google Scholar
Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2011;54(2):1289–96.
Article
PubMed
Google Scholar
Haggard P. Human volition: towards a neuroscience of will. Nat Rev Neurosci. 2008;9:934–46.
Article
CAS
PubMed
Google Scholar
Haefeli J, Vögeli S, Michel J, Dietz V. Preparation and performance of obstacle steps: interaction between brain and spinal neuronal activity. Eur J Neurosci. 2011;33:338–48.
Article
PubMed
Google Scholar
Koenraadt KL, Roelofsen EG, Duysens J, Keijsers NL. Cortical control of normal gait and precision stepping: an fNIRS study. NeuroImage. 2013;85:415–22.
Article
PubMed
Google Scholar
Suzuki M, Miyai I, Ono T, Kubota K. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. NeuroImage. 2008;39:600–7.
Article
PubMed
Google Scholar
Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, et al. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. NeuroImage. 2004;23:1020–6.
Article
PubMed
Google Scholar
Capotosto P, Babiloni C, Romani GL, Corbetta M. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci. 2009;29:5863–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capotosto P, Babiloni C, Romani GL, Corbetta M. Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG-rTMS study. Cereb Cortex. 2012;22:446–54.
Article
PubMed
Google Scholar
Donner TH, Siegel M. A framework for local cortical oscillation patterns. Trends Cogn Sci. 2011;15:191–9.
Article
PubMed
Google Scholar
Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron. 2011;69:387–96.
Article
CAS
PubMed
Google Scholar
Perfetti B, Moisello C, Landsness EC, Kvint S, Pruski A, Onofrj M, et al. Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task. J Neurophysiol. 2011;105:18–27.
Article
PubMed
Google Scholar
Tombini M, Zappasodi F, Zollo L, Pellegrino G, Cavallo G, Tecchio F, et al. Brain activity preceding a 2D manual catching task. NeuroImage. 2009;47:1735–46.
Article
PubMed
Google Scholar
Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron. 2012;76:695–711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ray S, Maunsell JHR. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron. 2010;67:885–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunel N, Wang XJ. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol. 2003;90:415–30.
Article
PubMed
Google Scholar
Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, et al. Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron. 2013;78:523–36.
Article
CAS
PubMed
Google Scholar
Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C, Sirigu A. Movement intention after parietal cortex stimulation in humans. Science. 2009;324:811–3.
Article
CAS
PubMed
Google Scholar
Drew T, Andujar JE, Lajoie K, Yakovenko S. Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res Rev. 2008;57:199–211.
Article
PubMed
Google Scholar
Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Parietal lobe: from action organization to intention understanding. Science. 2005;308:662–7.
Article
CAS
PubMed
Google Scholar
Wagner J, Solis-Escalante T, Scherer R, Neuper C, Muller-Putz G. It's how you get there: walking down a virtual alley activates premotor and parietal areas. Front Hum Neurosci. 2014;8:93.
PubMed
PubMed Central
Google Scholar
Seeber M, Scherer R, Wagner J, Solis-Escalante T, Muller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. 2014;8:485.
Article
PubMed
PubMed Central
Google Scholar
Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.
Article
CAS
PubMed
Google Scholar
Presacco A, Goodman R, Forrester L, Contreras-Vidal JL. Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J Neurophysiol. 2011;106:1875–87.
Article
PubMed
PubMed Central
Google Scholar
Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10:79.
Article
PubMed
PubMed Central
Google Scholar
Aru J, Axmacher N, Do Lam ATA, Fell J, Elger CE, Singer W, et al. Local category-specific gamma band responses in the visual cortex do not reflect conscious perception. J Neurosci. 2012;32:14909–14.
Article
CAS
PubMed
Google Scholar
Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB. The motor cortex drives the muscles during walking in human subjects. J Physiol. 2012;590:2443–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vidal JR, Perrone-Bertolotti M, Levy J, De Palma L, Minotti L, Kahane P, et al. Neural repetition suppression in ventral occipito-temporal cortex occurs during conscious and unconscious. NeuroImage. 2012;95:129–35.
Article
Google Scholar
Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD. Functional localization of the system for visuospatial attention using positron emission tomography. Brain. 1997;120:515–33.
Article
PubMed
Google Scholar
Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci. 2006;7:160–6.
Article
CAS
PubMed
Google Scholar
Cao Y, D’Olhaberriague L, Vikingstad EM, et al. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke. 1998;29:112–22.
Article
CAS
PubMed
Google Scholar
Chen R, Gerloff C, Hallett M, Cohen LG. Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann Neurol. 1997;41:247–54.
Article
CAS
PubMed
Google Scholar
Mima T, Toma K, Koshy B, Hallett M. Coherence between cortical and muscular activities after subcortical stroke. Stroke. 2001;32:2597–601.
Article
CAS
PubMed
Google Scholar
Gerloff C, Bushara K, Sailer A, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129:791–808.
Article
PubMed
Google Scholar
Roland PE, Skinhoj E, Lassen NA, Larsen B. Different cortical areas in man in organization of voluntary movements in extrapersonal space. J Neurophysiol. 1980;43:137–50.
CAS
PubMed
Google Scholar
Kim SG, Ashe J, Hendrich K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 1993;261:615–7.
Article
CAS
PubMed
Google Scholar
Snyder LH, Batista AP, Andersen RA. Coding of intention in the posterior parietal cortex. Nature. 1997;386:167–70.
Article
CAS
PubMed
Google Scholar
Petkova VI, Khoshnevis M, Ehrsson HH. The perspective matters! Multisensory integration in ego-centric reference frames determines full-body ownership. Front Psychol. 2011;2:35.
Article
PubMed
PubMed Central
Google Scholar
Slater M, Spanlang B, Sanchez-Vives MV, Blanke O. First per- son experience of body transfer in virtual reality. PLoS One. 2010;5:e10564.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsakiris M, Longo MR, Haggard P. Having a body versus moving your body: neural signatures of agency and body-ownership. Neuropsychologia. 2010;48:2740–9.
Article
PubMed
Google Scholar
Meadows CC, Gable PA, Lohse KR, Miller MW. Motivation and motor cortical activity can independently affect motor performance. Neuroscience. 2016;339:174–9.
Article
CAS
PubMed
Google Scholar
Brütsch K, Schuler T, Koenig A, Zimmerli L, Merillat-Koeneke S, Lünenburger L, et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7:15.
Article
PubMed
PubMed Central
Google Scholar
Brütsch K, Koenig A, Zimmerli L, Merillat-Koeneke S, Riener R, Jäncke L, et al. Virtual reality for enhancement of robot-assisted gait training in children with neurological gait disorders. J Rehabil Med. 2011;43:493–9.
Article
PubMed
Google Scholar
Schuler T, Brütsch K, Müller R, van Hedel H, Meyer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: a surface electromyography study. NeuroRehabilitation. 2011;28:401–11.
PubMed
Google Scholar
Zimmerli L, Jacky M, Lünenburger L, Riener R, Bolliger M. Increasing patient engagement during virtual reality based motor rehabilitation. Arch Phys Med. 2013;94:1737–46.
Article
PubMed
Google Scholar
Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2005;93:1099–103.
Article
PubMed
Google Scholar
Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126:866–72.
Article
PubMed
Google Scholar