Sherrington CS. On the proprio-ceptive system, especially in its reflex aspect. Brain. 1907;29(4):467–82.
Article
Google Scholar
Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):1651–97.
Article
CAS
PubMed
Google Scholar
Edin BB, Johansson N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J Physiol. 1995;487(1):243–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins DF, Refshauge KM, Todd G, Gandevia SC. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J Neurophysiol. 2005;94(3):1699–706.
Article
CAS
PubMed
Google Scholar
Gardner EP, Johnson KO. Chapter 22: the somatosensory system: receptors and central pathways. In: Principles of neural science. 5th ed. New York: McGraw-Hill; 2013. p. 475–95.
Google Scholar
Ben-Shabat E, Matyas TA, Pell GS, Brodtmann A, Carey LM. The Right Supramarginal Gyrus Is Important for Proprioception in Healthy and Stroke-Affected Participants: A Functional MRI Study. Front Neurol. 2015;6. Cited 2020 Mar 26. Available from:. https://doi.org/10.3389/fneur.2015.00248/abstract.
Naito E, Morita T, Saito DN, Ban M, Shimada K, Okamoto Y, et al. Development of right-hemispheric dominance of inferior parietal lobule in proprioceptive illusion task. Cereb Cortex. 2017;27(11):5385–97.
Article
PubMed
PubMed Central
Google Scholar
Weiller C, Jüptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, et al. Brain representation of active and passive movements. NeuroImage. 1996;4(2):105–10.
Article
CAS
PubMed
Google Scholar
Findlater SE, Hawe RL, Semrau JA, Kenzie JM, Yu AY, Scott SH, et al. Lesion locations associated with persistent proprioceptive impairment in the upper limbs after stroke. NeuroImage Clin. 2018;20:955–71.
Article
PubMed
PubMed Central
Google Scholar
Dukelow SP, Herter TM, Moore KD, Demers MJ, Glasgow JI, Bagg SD, et al. Quantitative assessment of limb position sense following stroke. Neurorehabil Neural Repair. 2010;24(2):178–87.
Article
PubMed
Google Scholar
Semrau JA, Herter TM, Scott SH, Dukelow SP. Examining differences in patterns of sensory and motor recovery after stroke with robotics. Stroke. 2015;46(12):3459–69.
Article
PubMed
Google Scholar
Kusoffsky A, Wadell I, Nilsson BY. The relationship between sensory impairment and motor recovery in patients with hemiplegia. Scand J Rehabil Med. 1982;14(1):27–32.
CAS
PubMed
Google Scholar
Stolk-Hornsveld F, Crow JL, Hendriks EP, van der Baan R, Harmeling-van der Wel BC. The Erasmus MC modifications to the (revised) Nottingham sensory assessment: a reliable somatosensory assessment measure for patients with intracranial disorders. Clin Rehabil. 2006;20(2):160–72.
Article
CAS
PubMed
Google Scholar
Hillier S, Immink M, Thewlis D. Assessing proprioception: a systematic review of possibilities. Neurorehabil Neural Repair. 2015 Nov;29(10):933–49.
Article
PubMed
Google Scholar
Hirayama K, Fukutake T, Kawamura M. ‘Thumb localizing test’ for detecting a lesion in the posterior column–medial lemniscal system. J Neurol Sci. 1999 Aug;167(1):45–9.
Article
CAS
PubMed
Google Scholar
Lincoln N, Crow J, Jackson J, Waters G, Adams S, Hodgson P. The unreliability of sensory assessments. Clin Rehabil. 1991;5(4):273–82.
Article
Google Scholar
Yi LK, Hui Wu Y, Shayn Chen R. Interrater reliability of clinically performed manual arm position and motion matching test. Neuropsychiatry. 2018;07(04) Cited 2019 Apr 10. Available from: http://www.jneuropsychiatry.org/peer-review/interrater-reliability-of-clinically-performed-manual-arm-position-and-motion-matching-test.html.
Scott SH, Dukelow SP. Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. J Rehabil Res Dev. 2011;48(4):335.
Article
PubMed
Google Scholar
McKenzie A, Dodakian L, See J, Le V, Quinlan EB, Bridgford C, et al. Validity of robot-based assessments of upper extremity function. Arch Phys Med Rehabil. 2017;98(10):1969–1976.e2.
Article
PubMed
PubMed Central
Google Scholar
Ingemanson ML, Rowe JB, Chan V, Wolbrecht ET, Cramer SC, Reinkensmeyer DJ. Use of a robotic device to measure age-related decline in finger proprioception. Exp Brain Res. 2016;234(1):83–93.
Article
PubMed
Google Scholar
Rinderknecht MD, Popp WL, Lambercy O, Gassert R. Reliable and Rapid Robotic Assessment of Wrist Proprioception Using a Gauge Position Matching Paradigm. Front Hum Neurosci. 2016;10. Cited 2019 Apr 10. Available from:. https://doi.org/10.3389/fnhum.2016.00316/abstract.
Cappello L, Elangovan N, Contu S, Khosravani S, Konczak J, Masia L. Robot-aided assessment of wrist proprioception. Front Hum Neurosci. 2015;9. Cited 2019 Apr 10. Available from:. https://doi.org/10.3389/fnhum.2015.00198/abstract.
Contu S, Hussain A, Kager S, Budhota A, Deshmukh VA, Kuah CWK, et al. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator. PLoS One. 2017;12(11):e0183257 Tremblay F, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Domingo A, Marriott E, de Grave RB, Lam T. Quantifying lower limb joint position sense using a robotic exoskeleton: A pilot study. In: 2011 IEEE International Conference on Rehabilitation Robotics. Zurich: IEEE; 2011. p. 1–6. Cited 2019 Apr 10. Available from: http://ieeexplore.ieee.org/document/5975455/.
Google Scholar
Bhanpuri NH, Okamura AM, Bastian AJ. Predictive modeling by the cerebellum improves proprioception. J Neurosci. 2013;33(36):14301–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rinderknecht MD, Lambercy O, Raible V, Büsching I, Sehle A, Liepert J, et al. Reliability, validity, and clinical feasibility of a rapid and objective assessment of post-stroke deficits in hand proprioception. J NeuroEngineering Rehabil. 2018;15(1) Cited 2019 Jul 25. Available from:. https://doi.org/10.1186/s12984-018-0387-6.
Sketch SM, Bastian AJ, Okamura AM. Comparing proprioceptive acuity in the arm between joint space and task space. In: 2018 IEEE Haptics Symposium (HAPTICS). San Francisco: IEEE; 2018. p. 125–32. Cited 2020 Mar 26. Available from: https://ieeexplore.ieee.org/document/8357164/.
Chapter
Google Scholar
Logan LM, Semrau JA, Cluff T, Scott SH, Dukelow SP. Effort matching between arms depends on relative limb geometry and personal control. J Neurophysiol. 2019;121(2):459–70.
Article
PubMed
Google Scholar
Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke. 2013;44(12):3414–21.
Article
PubMed
Google Scholar
Semrau JA, Herter TM, Kenzie JM, Findlater SE, Scott SH, Dukelow SP. Robotic characterization of Ipsilesional motor function in subacute stroke. Neurorehabil Neural Repair. 2017;31(6):571–82.
Article
PubMed
Google Scholar
Bourke TC, Coderre AM, Bagg SD, Dukelow SP, Norman KE, Scott SH. Impaired corrective responses to postural perturbations of the arm in individuals with subacute stroke. J NeuroEngineering Rehabil. 2015;12(1):7.
Article
Google Scholar
Lowrey CR, Bourke TC, Bagg SD, Dukelow SP, Scott SH. A postural unloading task to assess fast corrective responses in the upper limb following stroke. J NeuroEngineering Rehabil. 2019;16(1) Cited 2019 Jul 24. Available from:. https://doi.org/10.1186/s12984-019-0483-2.
Pohl PS, Winstein CJ, Somporn O. Sensory—motor control in the ipsilesional upper extremity after stroke. NeuroRehabilitation. 1997;9(1):57–69.
CAS
PubMed
Google Scholar
Schaefer SY, Haaland KY, Sainburg RL. Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain. 2007;130(8):2146–58.
Article
PubMed
Google Scholar
Simmatis L, Atallah G, Scott SH, Taylor S. The feasibility of using robotic technology to quantify sensory, motor, and cognitive impairments associated with ALS. Amyotroph Lateral Scler Front Degener. 2019;20(1–2):43–52.
Article
CAS
Google Scholar
Ravits J, Paul P, Jorg C. Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology. 2007;68(19):1571–5.
Article
PubMed
Google Scholar
Körner S, Kollewe K, Fahlbusch M, Zapf A, Dengler R, Krampfl K, et al. Onset and spreading patterns of upper and lower motor neuron symptoms in amyotrophic lateral sclerosis. Muscle Nerve. 2011;43(5):636–42.
Article
PubMed
Google Scholar
Goble DJ, Mousigian MA, Brown SH. Compromised encoding of proprioceptively determined joint angles in older adults: the role of working memory and attentional load. Exp Brain Res. 2012;216(1):35–40.
Article
PubMed
Google Scholar
Goble DJ. Proprioceptive acuity assessment via joint position matching: from basic science to general practice. Phys Ther. 2010 Aug 1;90(8):1176–84.
Article
PubMed
Google Scholar
Lesniak M, Bak T, Czepiel W, Seniów J, Członkowska A. Frequency and prognostic value of cognitive disorders in stroke patients. Dement Geriatr Cogn Disord. 2008;26(4):356–63.
Article
PubMed
Google Scholar
Coderre AM, Zeid AA, Dukelow SP, Demmer MJ, Moore KD, Demers MJ, et al. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabil Neural Repair. 2010;24(6):528–41.
Article
PubMed
Google Scholar
Elangovan N, Herrmann A, Konczak J. Assessing proprioceptive function: evaluating joint position matching methods against psychophysical thresholds. Phys Ther. 2014;94(4):553–61.
Article
PubMed
PubMed Central
Google Scholar
Deblock-Bellamy A, Batcho CS, Mercier C, Blanchette AK. A new approach to quantify elbow position sense using an exoskeleton and a virtual reality display. In: 2017 International Conference on Virtual Rehabilitation (ICVR). Montreal: IEEE; 2017. p. 1–2. Cited 2019 Apr 10. Available from: http://ieeexplore.ieee.org/document/8007518/.
Google Scholar
Refshauge KM, Kilbreath SL, Gandevia SC. Movement detection at the distal joint of the human thumb and fingers. Exp Brain Res. 1998;122(1):85–92.
Article
CAS
PubMed
Google Scholar
Mrotek LA, Bengtson M, Stoeckmann T, Botzer L, Ghez CP, McGuire J, et al. The Arm Movement Detection (AMD) test: a fast robotic test of proprioceptive acuity in the arm. J NeuroEngineering Rehabil. 2017;14(1) Cited 2018 Aug 3. Available from:. https://doi.org/10.1186/s12984-017-0269-3.
Simo L, Botzer L, Ghez C, Scheidt RA. A robotic test of proprioception within the hemiparetic arm post-stroke. J NeuroEngineering Rehabil. 2014;11(1):77.
Article
Google Scholar
de Jong A, Kilbreath SL, Refshauge KM, Adams R. Performance in different proprioceptive tests does not correlate in ankles with recurrent sprain. Arch Phys Med Rehabil. 2005;86(11):2101–5.
Article
PubMed
Google Scholar
Grob KR, Kuster MS, Higgins SA, Lloyd DG, Yata H. Lack of correlation between different measurements of proprioception in the knee. J Bone Joint Surg Br. 2002;84-B(4):614–8.
Article
Google Scholar
Vaz S, Falkmer T, Passmore AE, Parsons R, Andreou P. The case for using the repeatability coefficient when calculating test–retest reliability. PLoS One. 2013;8(9):e73990 Hempel S, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.
Article
PubMed
PubMed Central
Google Scholar
Bland JM, Altman DG. Statistics notes: measurement error. BMJ. 1996;312(7047):1654.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herter TM, Scott SH, Dukelow SP. Systematic changes in position sense accompany normal aging across adulthood. J NeuroEngineering Rehabil. 2014;11(1):43.
Article
Google Scholar
Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J J Med Assoc Malawi. 2012;24(3):69–71.
CAS
Google Scholar
Weir JP. Quantifying test-retest reliability using the Intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231.
PubMed
Google Scholar
Semrau JA, Herter TM, Scott SH, Dukelow SP. Inter-rater reliability of kinesthetic measurements with the KINARM robotic exoskeleton. J Neuroengineering Rehabil. 2017;14(1):42.
Article
Google Scholar
Lönn J, Crenshaw AG, Djupsjöbacka M, Johansson H. Reliability of position sense testing assessed with a fully automated system. Clin Physiol Oxf Engl. 2000;20(1):30–7.
Article
Google Scholar
Iandolo R, Bellini A, Saiote C, Marre I, Bommarito G, Oesingmann N, et al. Neural correlates of lower limbs proprioception: an fMRI study of foot position matching. Hum Brain Mapp. 2018;39(5):1929–44.
Article
PubMed
PubMed Central
Google Scholar
Kenzie JM, Findlater SE, Pittman DJ, Goodyear BG, Dukelow SP. Errors in proprioceptive matching post-stroke are associated with impaired recruitment of parietal, supplementary motor, and temporal cortices. Brain Imaging Behav. 2019; Cited 2019 Aug 13. Available from. https://doi.org/10.1007/s11682-019-00149-w.
Skinner HB, Barrack RL, Cook SD. Age-related decline in proprioception. Clin Orthop. 1984;184:208–11.
Article
Google Scholar
Gurari N, Drogos JM, Dewald JPA. Individuals with chronic hemiparetic stroke can correctly match forearm positions within a single arm. Clin Neurophysiol. 2017;128(1):18–30.
Article
PubMed
Google Scholar
Adamo DE, Martin BJ, Brown SH. Age-related differences in upper limb proprioceptive acuity. Percept Mot Skills. 2007;104(3_suppl):1297–309.
Article
PubMed
Google Scholar