Bonita R, Mendis S, Truelsen T, Bogousslavsky J, Toole J, Yatsu F. The global stroke initiative. Lancet Neurol. 2004;3(7):391–3.
Article
PubMed
Google Scholar
Prevalence of stroke–united states, 2006-2010. Centers for Disease Control and Prevention (CDC and others). Morbidity and Mortality Weekly Report 61(20), 379 (2012)
Adamson J, Beswick A, Ebrahim S. Is stroke the most common cause of disability? J Stroke Cerebrovasc Dis. 2004;13(4):171–7.
Article
PubMed
Google Scholar
Wade D, Langton-Hewer R, Wood V, Skilbeck C, Ismail H. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry. 1983;46(6):521–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker V, Wade D, Hewer RL. Loss of arm function after stroke: measurement, frequency, and recovery. Int Rehab Med. 1986;8(2):69–73.
CAS
Google Scholar
Connell LA, Lincoln N, Radford K. Somatosensory impairment after stroke: frequency of different deficits and their recovery. Clin Rehab. 2008;22(8):758–67.
Article
CAS
Google Scholar
Tyson SF, Hanley M, Chillala J, Selley AB, Tallis RC. Sensory loss in hospital-admitted people with stroke: characteristics, associated factors, and relationship with function. Neurorehab Neural Rep. 2008;22(2):166–72.
Article
Google Scholar
Feldman DE, Brecht M. Map plasticity in somatosensory cortex. Science. 2005;310(5749):810–5.
Article
CAS
PubMed
Google Scholar
Van der Loos H, Woolsey TA. Somatosensory cortex: structural alterations following early injury to sense organs. Science. 1973;179(4071):395–8.
Article
PubMed
Google Scholar
Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Ann Rev Neurosci. 1998;21(1):149–86.
Article
CAS
PubMed
Google Scholar
Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol. 1998;79(4):2119–488.
Article
CAS
PubMed
Google Scholar
Jablonka J, Burnat K, Witte O, Kossut M. Remapping of the somatosensory cortex after a photothrombotic stroke: dynamics of the compensatory reorganization. Neuroscience. 2010;165(1):90–100.
Article
CAS
PubMed
Google Scholar
Bird T, Choi S, Goodman L, Schmalbrock P, Nichols-Larsen DS. Sensorimotor training induced neural reorganization after stroke: a case series. J Neurol Phys Ther. 2013;37(1):27.
Article
PubMed
PubMed Central
Google Scholar
Pleger B, Schwenkreis P, Dinse HR, Ragert P, Höffken O, Malin J-P, Tegenthoff M. Pharmacological suppression of plastic changes in human primary somatosensory cortex after motor learning. Exp Brain Res. 2003;148(4):525–32.
Article
PubMed
Google Scholar
Porter LL. Patterns of projections from area 2 of the sensory cortex to area 3a and to the motor cortex in cats. Exp Brain Res. 1992;91(1):85–93.
Article
CAS
PubMed
Google Scholar
Mattay VS, Callicott JH, Bertolino A, Santha AK, Van Horn JD, Tallent KA, Frank JA, Weinberger DR. Hemispheric control of motor function: a whole brain echo planar fmri study. Psychiatry Res. 1998;83(1):7–22.
Article
CAS
PubMed
Google Scholar
Dewald JA, Given J, Rymer WZ. Long-lasting reductions of spasticity induced by skin electrical stimulation. IEEE Trans Rehab Eng. 1996;4(4):231–42.
Article
CAS
Google Scholar
Schabrun SM, Hillier S. Evidence for the retraining of sensation after stroke: a systematic review. Clin Rehab. 2009;23(1):27–39.
Article
CAS
Google Scholar
Dimitrijevic MM, Stokié DS, Wawro AW, Wun C-CC. Modification of motor control of wrist extension by mesh-glove electrical afferent stimulation in stroke patients. Arch Phys Med Rehab. 1996;77(3):252–8.
Article
CAS
Google Scholar
Smith PS, Dinse HR, Kalisch T, Johnson M, Walker-Batson D. Effects of repetitive electrical stimulation to treat sensory loss in persons poststroke. Arch Phys Med Rehab. 2009;90(12):2108–11.
Article
Google Scholar
Tu-Chan AP, Natraj N, Godlove J, Abrams G, Ganguly K. Effects of somatosensory electrical stimulation on motor function and cortical oscillations. J Neuroeng Rehab. 2017;14(1):113.
Article
Google Scholar
Cordo P, Lutsep H, Cordo L, Wright WG, Cacciatore T, Skoss R. Assisted movement with enhanced sensation (ames): coupling motor and sensory to remediate motor deficits in chronic stroke patients. Neurorehab Neural Rep. 2009;23(1):67–77.
Article
Google Scholar
Estes, L.T., Backus, D., Starner, T.: A wearable vibration glove for improving hand sensation in persons with spinal cord injury using passive haptic rehabilitation. In: 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 37–44 (2015). IEEE
Enders LR, Hur P, Johnson MJ, Seo NJ. Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance. J Neuroeng Rehab. 2013;10(1):105.
Article
Google Scholar
Abercromby AF, Amonette WE, Layne CS, Mcfarlin BK, Hinman MR, Paloski WH. Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc. 2007;39(9):1642–50.
Article
PubMed
Google Scholar
Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc. 2003;35(6):1033–41.
Article
PubMed
Google Scholar
Ness LL, Field-Fote EC. Effect of whole-body vibration on quadriceps spasticity in individuals with spastic hypertonia due to spinal cord injury. Restorat Neurol Neurosci. 2009;27(6):623–33.
Article
Google Scholar
Pang M, Lau R, Yip S. The effects of whole-body vibration therapy on bone turnover, muscle strength, motor function, and spasticity in chronic stroke: a randomized controlled trial. Eur J Phys Rehab Med. 2013;49(4):439–50.
CAS
Google Scholar
Binder C, Kaya AE, Liepert J. Vibration prolongs the cortical silent period in an antagonistic muscle. Muscle Nerve. 2009;39(6):776–80.
Article
PubMed
Google Scholar
Kossev A, Siggelkow S, Kapels H-H, Dengler R, Rollnik J. Crossed effects of muscle vibration on motor-evoked potentials. Clin Neurophysiol. 2001;112(3):453–6.
Article
CAS
PubMed
Google Scholar
Marconi B, Filippi GM, Koch G, Giacobbe V, Pecchioli C, Versace V, Camerota F, Saraceni VM, Caltagirone C. Long-term effects on cortical excitability and motor recovery induced by repeated muscle vibration in chronic stroke patients. Neurorehab Neural Rep. 2011;25(1):48–60.
Article
Google Scholar
Noma T, Matsumoto S, Shimodozono M, Etoh S, Kawahira K. Anti-spastic effects of the direct application of vibratory stimuli to the spastic muscles of hemiplegic limbs in post-stroke patients: a proof-of-principle study. J Rehab Med. 2012;44(4):325–30.
Article
Google Scholar
Rittweger J. Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol. 2010;108(5):877–904.
Article
PubMed
Google Scholar
Siggelkow S, Kossev A, Schubert M, Kappels H-H, Wolf W, Dengler R. Modulation of motor evoked potentials by muscle vibration: the role of vibration frequency. Muscle Nerve. 1999;22(11):1544–8.
Article
CAS
PubMed
Google Scholar
Steyvers M, Levin O, Verschueren S, Swinnen S. Frequency-dependent effects of muscle tendon vibration on corticospinal excitability: a TMS study. Exp Brain Res. 2003;151(1):9–14.
Article
CAS
PubMed
Google Scholar
Seim, C.: Wearable vibrotactile stimulation: How passive stimulation can train and rehabilitate. PhD thesis, Georgia Institute of Technology (2019)
Johnson KO. The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol. 2001;11(4):455–61.
Article
CAS
PubMed
Google Scholar
Weinstein, S.: Reminiscences on the history and development of the semmes-weinstein monofilaments. In: Proceedings of the Conference on Biomechanics of Deformity and Treatment of the Insensitive Hand, May 4-6, Gillis W. Long Hansen’s Disease Center, Carville, LA (1992)
Bulut T, Tahta M, Sener U, Sener M. Inter-and intra-tester reliability of sensibility testing in healthy individuals. J Plastic Surg Hand Surg. 2018;52(3):189–92.
Article
Google Scholar
Bulut T, Akgun U, Ozcan C, Unver B, Sener M. Inter-and intra-tester reliability of sensibility testing in digital nerve repair. J Hand Surg. 2016;41(6):621–3.
Article
CAS
Google Scholar
Bohannon RW, Smith MB. Interrater reliability of a modified ashworth scale of muscle spasticity. Phys Ther. 1987;67(4):522–5.
Article
CAS
PubMed
Google Scholar
Jebsen R, Taylor N, Trieschmann R, Trotter M, Howard L. An objective and standardized test of hand function. Arch Phys Med Rehab. 1969;50(6):311.
CAS
Google Scholar
Dajpratham P, Kuptniratsaikul V, Kovindha A, Kuptniratsaikul PS-a, Dejnuntarat K. Prevalence and management of poststroke spasticity in thai stroke patients: a multicenter study. Med J Med Assoc Thailand. 2009;92(10):1354.
Google Scholar
Watkins C, Leathley M, Gregson J, Moore A, Smith T, Sharma A. Prevalence of spasticity post stroke. Clin Rehab. 2002;16(5):515–22.
Article
CAS
Google Scholar
Matsumoto Y, Griffin M. Dynamic response of the standing human body exposed to vertical vibration: influence of posture and vibration magnitude. J Sound Vibr. 1998;212(1):85–107.
Article
Google Scholar
Gurram R, Rakheja S, Gouw GJ. Vibration transmission characteristics of the human hand-arm and gloves. Int J Ind Ergon. 1994;13(3):217–34.
Article
Google Scholar
Teasell R, Bitensky J, Salter K, Bayona NA. The role of timing and intensity of rehabilitation therapies. Top Stroke Rehab. 2005;12(3):46–57.
Article
Google Scholar
Kwakkel G. Impact of intensity of practice after stroke: issues for consideration. Disability Rehab. 2006;28(13–14):823–30.
Article
Google Scholar
Jette DU, Warren RL, Wirtalla C. The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Arch Phys Med Rehab. 2005;86(3):373–9.
Article
Google Scholar
Noma T, Matsumoto S, Etoh S, Shimodozono M, Kawahira K. Anti-spastic effects of the direct application of vibratory stimuli to the spastic muscles of hemiplegic limbs in post-stroke patients. Brain Injury. 2009;23(7–8):623–31.
Article
PubMed
Google Scholar
Grant VM, Gibson A, Shields N. Somatosensory stimulation to improve hand and upper limb function after stroke-a systematic review with meta-analyses. Top Stroke Rehab. 2018;25(2):150–60.
Article
Google Scholar
Liepert J, Miltner W, Bauder H, Sommer M, Dettmers C, Taub E, Weiller C. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett. 1998;250(1):5–8.
Article
CAS
PubMed
Google Scholar
Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D, Investigators E, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the excite randomized clinical trial. Jama. 2006;296(17):2095–104.
Article
CAS
PubMed
Google Scholar
Schaechter JD, Kraft E, Hilliard TS, Dijkhuizen RM, Benner T, Finklestein SP, Rosen BR, Cramer SC. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehab Neural Rep. 2002;16(4):326–38.
Article
Google Scholar
Liepert J, Bauder H, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.
Article
CAS
PubMed
Google Scholar
Dietz, V., Sinkjaer, T.: Spasticity. In: Handbook of Clinical Neurology. Elsevier, New York;2012, pp. 197–211.
Powers R, Marder-Meyer J, Rymer W. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol. 1988;23(2):115–24.
Article
CAS
PubMed
Google Scholar
Lynskey JV, Belanger A, Jung R. Activity-dependent plasticity in spinal cord injury. J Rehab Res Dev. 2008;45(2):229.
Article
Google Scholar
Sheean G. The pathophysiology of spasticity. Eur J Neurol. 2002;9:3–9.
Article
PubMed
Google Scholar
Burke D, Hagbarth K-E, Löfstedt L, Wallin BG. The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol. 1976;261(3):673–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and golgi tendon organs. Muscle Nerve. 2007;36(1):21–9.
Article
PubMed
Google Scholar
Ollivier-Lanvin K, Keeler BE, Siegfried R, Houlé JD, Lemay MA. Proprioceptive neuropathy affects normalization of the h-reflex by exercise after spinal cord injury. Exp Neurol. 2010;221(1):198–205.
Article
PubMed
Google Scholar
Doyle S, Bennett S, Fasoli SE, McKenna KT. Interventions for sensory impairment in the upper limb after stroke. Cochrane Database Syst Rev. 2010;6:1.
Google Scholar
Platz T. Impairment-oriented training (iot)-scientific concept and evidence-based treatment strategies. Restor Neurol Neurosci. 2004;22(3–5):301–15.
CAS
PubMed
Google Scholar
Raghavan P. The nature of hand motor impairment after stroke and its treatment. Curr Treatm Opt Cardiovasc Med. 2007;9(3):221–8.
Article
Google Scholar
Rosenkranz K, Rothwell JC. Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol. 2003;551(2):649–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cordo P, Wolf S, Lou J-S, Bogey R, Stevenson M, Hayes J, Roth E. Treatment of severe hand impairment following stroke by combining assisted movement, muscle vibration, and biofeedback. J Neurol Phys Ther. 2013;37(4):194–203.
Article
PubMed
Google Scholar
Forner-Cordero A, Steyvers M, Levin O, Alaerts K, Swinnen SP. Changes in corticomotor excitability following prolonged muscle tendon vibration. Behav Brain Res. 2008;190(1):41–9.
Article
PubMed
Google Scholar
Golaszewski SM, Bergmann J, Christova M, Kunz AB, Kronbichler M, Rafolt D, Gallasch E, Staffen W, Trinka E, Nardone R. Modulation of motor cortex excitability by different levels of whole-hand afferent electrical stimulation. Clin Neurophysiol. 2012;123(1):193–9.
Article
PubMed
Google Scholar
Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540(2):623–33.
Article
CAS
PubMed
PubMed Central
Google Scholar