McHugh G, Swain ID. A comparison between reported therapy staffing levels and the department of health therapy staffing guidelines for stroke rehabilitation: a national survey. BMC Health Serv Res. 2014;14:216.
Article
PubMed
PubMed Central
Google Scholar
Ntsiea MV. Current stroke rehabilitation services and physiotherapy research in South Africa. S Afr J Physiother. 2019;75:475–475.
Article
PubMed
PubMed Central
Google Scholar
Manguerra MV, Baniqued PDE, Abad AC, Baldovino RG, Dungao JR, Bugtai NT. Active motor control for an upper extremity exoskeleton. Adv Sci Lett. 2018;24:9937–8840.
Article
Google Scholar
Wolpaw JR, Wolpaw EW. Brain–Computer Interfaces, principles and practise. Oxford: Oxford University Press; 2012.
Book
Google Scholar
Vidal JJ. Toward direct brain-computer communication. Ann Rev Biophys Bioeng. 1973;2:157–80.
Article
CAS
Google Scholar
Berger H. Über das elektrenkephalogramm des menschen. Archiv für Psychiatrie und Nervenkrankheiten. 1929;527–70.
Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442:164.
Article
CAS
PubMed
Google Scholar
Silvoni S, Ramos-Murguialday A, Cavinato M, Volpato C, Cisotto G, Turolla A, et al. Brain-computer interface in stroke: a review of progress. Clin EEG Neurosci. 2011;42:245–52.
Article
PubMed
Google Scholar
Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kubler A, et al. A spelling device for the paralysed. Nature. 1999;398:297–8.
Article
CAS
PubMed
Google Scholar
Graimann B, Allison B, Pfurtscheller G. Brain–computer interfaces: a gentle introduction. In: Graimann B, Pfurtscheller G, Allison B, editors. Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 1–27. Available from: https://doi.org/https://doi.org/10.1007/978-3-642-02091-9_1
Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM&R. 2018;10:S174–88.
Article
Google Scholar
European Commission. Medical devices: guidance document - classification of medical devices. United Kingdom Medicines and Healthcare products Regulation Agency; 2016. http://ec.europa.eu/growth/sectors/medical-devices/guidance/
Guiochet J, Hoang QAD, Kaaniche M, Powell DJ. Applying existing standards to a medical rehabilitation robot: limits and challenges. IROS. 2012.
Yue Z, Zhang X, Wang J. Hand rehabilitation robotics on poststroke motor recovery. Hindawi Behavioural Neurology. 2017.
Houwink A, Nijland RH, Geurts AC, Kwakkel G. Functional recovery of the paretic upper limb after stroke: who regains hand capacity? Arch Phys Med Rehabil. 2013;94:839–44.
Article
PubMed
Google Scholar
Takahashi K, Domen K, Sakamoto T, Toshima M, Otaka Y, Seto M, et al. Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia: an exploratory randomized trial. Stroke. 2016;47:1385–8.
Article
PubMed
Google Scholar
Fregni F, Pascual-Leone A. Hand motor recovery after stroke: tuning the orchestra to improve hand motor function. Cogn Behav Neurol. 2006;19:21–33.
Article
PubMed
Google Scholar
Hallett M. Plasticity of the human motor cortex and recovery from stroke. Brain Res Brain Res Rev. 2001;36:169–74.
Article
CAS
PubMed
Google Scholar
Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26:609–16.
Article
PubMed
PubMed Central
Google Scholar
Mawase F, Uehara S, Bastian AJ, Celnik P. Motor learning enhances use-dependent plasticity. J Neurosci. 2017;37:2673–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teplan M. Fundamentals of EEG measurement. Measurement Science Review. 2002;2.
Cohen MX. Analyzing neural time series data: theory and practice. Cambridge; 2014. http://lib.ugent.be/catalog/rug01:002161004
Li M, Xu G, Xie J, Chen C. A review: motor rehabilitation after stroke with control based on human intent. Proc Inst Mech Eng H. 2018;232:344–60.
Article
PubMed
Google Scholar
Pfurtscheller G, da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–57.
Article
CAS
PubMed
Google Scholar
Jiang X, Bian GB, Tian Z. Removal of artifacts from EEG signals: a review. Sensors. 2019;19:1.
Google Scholar
Mammone N, Morabito FC. Enhanced automatic wavelet independent component analysis for electroencephalographic artifact removal. Entropy. 2014;16:6553–72.
Article
Google Scholar
Val-Calvo M, Alvarez-Sanchez JR, Ferrandez-Vicente JM, Fernandez E. Optimization of real-time EEG artifact removal and emotion estimation for human-robot interaction applications. Front Comput Neurosci. 2019.
Kilicarslan A, Vidal JLC. Characterization and real-time removal of motion artifacts from EEG signals. J Neural Eng. 2019;16:1.
Article
Google Scholar
Chang CY, Hsu SH, Pion-Tonachini L, Jung TP. Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Transactions on Biomedical Engineering. 2019.
Lotte F, Guan C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng. 2011;58:355–62.
Article
PubMed
Google Scholar
Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng. 2019;16:1.
Article
Google Scholar
Schirrmeister RB, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp. 2017;38:5391–420.
Article
PubMed
PubMed Central
Google Scholar
Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobeh Rev. 2018;1:31–44.
Article
Google Scholar
Xu L, Zhang H, Hui M, Long Z, Jin Z, Liu Y, et al. Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory. Neuroscience. 2014;261:184–94.
Article
CAS
PubMed
Google Scholar
Sharma N, Baron JC. Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis. Front Hum Neurosci. 2013;7:564–564.
Article
PubMed
PubMed Central
Google Scholar
Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage. 2001;14:S103–9.
Article
CAS
PubMed
Google Scholar
Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehab. 2009;6:1.
Article
Google Scholar
Brookes J, Mushtaq F, Jamieson E, Fath AJ, Bingham G, Culmer P, et al. Exploring disturbance as a force for good in motor learning. PLOS ONE. 2020;15:1.
Article
CAS
Google Scholar
Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm (Vienna). 2007;114:1265–78.
Article
Google Scholar
Vogt S, Di Rienzo F, Collet C, Collins A, Guillot A. Multiple roles of motor imagery during action observation. Front Human Neurosci. 2013;7:807.
Article
Google Scholar
Friesen CL, Bardouille T, Neyedli HF, Boe SG. Combined action observation and motor imagery neurofeedback for modulation of brain activity. Front Human Neurosci. 2017;10:692.
Article
Google Scholar
Eaves DL, Riach M, Holmes PS, Wright DJ. Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Front Human Neurosci. 2016;10:514.
Google Scholar
Kim T, Frank C, Schack T. A systematic investigation of the effect of action observation training and motor imagery training on the development of mental representation structure and skill performance. Front Human Neurosci. 2017;11:499.
Article
Google Scholar
Nakano H, Kodama T. Motor imagery and action observation as effective tools for physical therapy. IntechOpen: Neurological Physical Therapy; 2017.
Book
Google Scholar
Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11: CD008349–CD008349.
Brookes J, Warburton M, Alghadier M, Mon-Williams M, Mushtaq F. Studying human behavior with virtual reality: the Unity experiment framework. Behav Res Methods. 2019. https://doi.org/10.3758/s13428-019-01242-0.
Article
PubMed Central
Google Scholar
Vourvopoulos A, Cardona JEM, Badia SB. Optimizing motor imagery neurofeedback through the use of multimodal immersive virtual reality and motor priming. In: 2015 International Conference on Virtual Rehabilitation (ICVR). 2015. p. 228–34.
Johnston M, Bonetti D, Joice S, Pollard B, Morrison V, Francis JJ, et al. Recovery from disability after stroke as a target for a behavioural intervention: results of a randomized controlled trial. Disabil Rehabil. 2007;29:1117–27.
Article
PubMed
Google Scholar
Hülsmann F, Frank C, Senna I, Ernst MO, Schack T, Botsch M. Superimposed skilled performance in a virtual mirror improves motor performance and cognitive representation of a full body motor action. Front Robot AI. 2019;6:43.
Article
PubMed
PubMed Central
Google Scholar
Monge-Pereira E, Ibanez-Pereda J, Alguacil-Diego IM, Serrano JI, Spottorno-Rubio MP, Molina-Rueda F. Use of electroencephalography brain-computer interface systems as a rehabilitative approach for upper limb function after a stroke: a systematic review. PM R. 2017;9:918–32.
Article
PubMed
Google Scholar
Cervera MA, Soekadar SR, Ushiba J, Millan J d. R, Liu M, Birbaumer N, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. bioRxiv. 2017; http://biorxiv.org/content/early/2017/11/24/224618.abstract
McConnell AC, Moioli RC, Brasil FL, Vallejo M, Corne DW, Vargas PA, et al. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke. J Rehabil Med. 2017;49:449–60.
Article
PubMed
Google Scholar
Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.
CAS
PubMed
Google Scholar
Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. International Journal of Rehabilitation Research. 1981;4. https://journals.lww.com/intjrehabilres/Fulltext/1981/12000/A_performance_test_for_assessment_of_upper_limb.1.aspx
Matthews WB. Aids to the examination of the peripheral nervous system. J Neurol Sci. 1977;33:299.
Article
Google Scholar
Office of the Director of Defense Research and Engineering Washington DC. Technology Readiness Assessment (TRA) deskbook [Internet]. Fort Belvoir, VA, USA: Defense Technical Information Center; 2009 Jul. Report No.: ADA524200. Available from: https://apps.dtic.mil/dtic/tr/fulltext/u2/a524200.pdf
Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–21.
Article
PubMed
Google Scholar
PEDro Scale. 1999. http://www.pedro.org.au/english/downloads/pedro-scale/. Accessed 30 Nov 2018.
Belardinelli P, Laer L, Ortiz E, Braun C, Gharabaghi A. Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. Neuroimage Clin. 2017;14:726–33.
Article
PubMed
PubMed Central
Google Scholar
Bergamasco M, Frisoli A, Fontana M, Loconsole C, Leonardis D, Troncossi M, et al. Preliminary results of BRAVO project: brain computer interfaces for robotic enhanced action in visuo-motor tasks. IEEE Int Conf Rehabil Robot. 2011;2011:5975377.
PubMed
Google Scholar
Broetz D, Braun C, Weber C, Soekadar SR, Caria A, Birbaumer N. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil Neural Repair. 2010;24:674–9.
Article
PubMed
Google Scholar
Cincotti F, Pichiorri F, Arico P, Aloise F, Leotta F, de Vico FF, et al. EEG-based brain-computer interface to support post-stroke motor rehabilitation of the upper limb. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4112–5.
CAS
Google Scholar
George K, Iniguez A, Donze H, Kizhakkumthala S. Design, implementation and evaluation of a brain-computer interface controlled mechanical arm for rehabilitation. 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. 2014. p. 1326–8.
Ushiba J, Morishita A, Maeda T. A task-oriented brain-computer interface rehabilitation system for patients with stroke hemiplegia. 2014 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems (VITAE). 2014. p. 1–3.
Rathee D, Chowdhury A, Meena YK, Dutta A, McDonough S, Prasad G. Brain–machine interface-driven post-stroke upper-limb functional recovery correlates with beta-band mediated cortical networks. IEEE Trans Neural Syst Rehabil Eng. 2019;27:1020–31.
Article
PubMed
Google Scholar
Naros G, Gharabaghi A. Physiological and behavioral effects of beta-tACS on brain self-regulation in chronic stroke. Brain Stimul. 2017;10:251–9.
Article
PubMed
Google Scholar
Norman S. Brain computer interface design for robot assisted neurorehabilitation. University of California, Irvine; 2017. https://escholarship.org/uc/item/4v18v0d3
Pellegrino G, Tomasevic L, Tombini M, Assenza G, Bravi M, Sterzi S, et al. Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. Restor Neurol Neurosci. 2012;30:497–510.
CAS
PubMed
Google Scholar
Bousseta R, El Ouakouak I, Gharbi M, Regragui F. EEG based brain computer interface for controlling a robot arm movement through thought. IRBM. 2018;39:129–35.
Article
Google Scholar
Formaggio E, Storti SF, Boscolo Galazzo I, Gandolfi M, Geroin C, Smania N, et al. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements. J Neuroeng Rehabil. 2013;10:24.
Article
PubMed
PubMed Central
Google Scholar
Sarasola-Sanz A, Irastorza-Landa N, Lopez-Larraz E, Bibian C, Helmhold F, Broetz D, et al. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. IEEE Int Conf Rehabil Robot. 2017;2017:895–900.
PubMed
Google Scholar
Shiman F, Irastorza-Landa N, Sarasola-Sanz A, Spuler M, Birbaumer N, Ramos-Murguialday A. Towards decoding of functional movements from the same limb using EEG. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:1922–5.
Google Scholar
Muralidharan A, Chae J, Taylor DM. Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke. Front Neurosci. 2011;5:39.
Article
PubMed
PubMed Central
Google Scholar
Ono T, Mukaino M, Ushiba J. Functional recovery in upper limb function in stroke survivors by using brain-computer interface: a single case A-B-A-B design. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:265–8.
Google Scholar
Ang KK, Guan C, Phua KS, Wang C, Zhou L, Tang KY, et al. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014;7:30–30.
Article
PubMed
PubMed Central
Google Scholar
Barsotti M, Leonardis D, Loconsole C, Solazzi M, Sotgiu E, Procopio C, et al. A full upper limb robotic exoskeleton for reaching and grasping rehabilitation triggered by MI-BCI. 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). 2015. p. 49–54.
Bundy DT, Souders L, Baranyai K, Leonard L, Schalk G, Coker R, et al. Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke. 2017;48:1908–15.
Article
PubMed
PubMed Central
Google Scholar
Chowdhury A, Raza H, Meena YK, Dutta A, Prasad G. Online covariate shift detection based adaptive brain-computer interface to trigger hand exoskeleton feedback for neuro-rehabilitation. IEEE Transactions on Cognitive and Developmental Systems. 2018;1–1.
Chowdhury A, Meena YK, Raza H, Bhushan B, Uttam AK, Pandey N, et al. Active physical practice followed by mental practice using BCI-driven hand exoskeleton: a pilot trial for clinical effectiveness and usability. IEEE J Biomed Health Inform. 2018;22:1786–95.
Article
PubMed
Google Scholar
Frolov AA, Mokienko O, Lyukmanov R, Biryukova E, Kotov S, Turbina L, et al. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front Neurosci. 2017;11:400–400.
Article
PubMed
PubMed Central
Google Scholar
Ono Y, Tominaga T, Murata T. Digital mirror box: an interactive hand-motor BMI rehabilitation tool for stroke patients. 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). 2016. p. 1–7.
Norman SL, McFarland DJ, Miner A, Cramer SC, Wolbrecht ET, Wolpaw JR, et al. Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke. J Neural Eng. 2018;15:056026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Wong W, Sun R, Chu WC, Tong KY. Differentiated effects of robot hand training with and without neural guidance on neuroplasticity patterns in chronic stroke. Front Neurol. 2018;9:810.
Article
PubMed
PubMed Central
Google Scholar
Tsuchimoto S, Shindo K, Hotta F, Hanakawa T, Liu M, Ushiba J. Sensorimotor connectivity after motor exercise with neurofeedback in post-stroke patients with hemiplegia. Neuroscience. 2019;416:109–25.
Article
CAS
PubMed
Google Scholar
Carino-Escobar RI, Carillo-Mora P, Valdes-Cristerna R, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, et al. Longtitudinal analysis of stroke patient’ brain rhythms during an interview with a brain-computer interface. Neural Plasticity. 2019;2019:11.
Article
Google Scholar
Cantillo-Negrete J, Carino-Escobar RI, Elias-Vinas D, Gutierrez-Martinez J. Control signal for a mechatronic hand orthosis aimed for neurorehabilitation. 2015 Pan American Health Care Exchanges (PAHCE). 2015. p. 1–4.
Chowdhury A, Raza H, Dutta A, Nishad SS, Saxena A, Prasad G. A study on cortico-muscular coupling in finger motions for exoskeleton assisted neuro-rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:4610–4.
Google Scholar
Li M, He B, Liang Z, Zhao CG, Chen J, Zhuo Y, et al. An attention-controlled hand exoskeleton for the rehabilitation of finger extension and flexion using a rigid-soft combined mechanism. Front Neurorobot. 2019;13:34.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Wang B, Zhang C, Xiao Y, Wang MY. An EEG/EMG/EOG-based multimodal human-machine interface to real-time control of a soft robot hand. Front Neurorobot. 2019;13:7.
Article
PubMed
PubMed Central
Google Scholar
Randazzo L, Iturrate I, Perdikis S, Millán JR. mano: a wearable hand exoskeleton for activities of daily living and neurorehabilitation. IEEE Robot Autom Lett. 2018;3:500–7.
Article
Google Scholar
Tacchino G, Gandolla M, Coelli S, Barbieri R, Pedrocchi A, Bianchi AM. EEG analysis during active and assisted repetitive movements: evidence for differences in neural engagement. IEEE Trans Neural Syst Rehabil Eng. 2017;25:761–71.
Article
PubMed
Google Scholar
Coffey AL, Leamy DJ, Ward TE. A novel BCI-controlled pneumatic glove system for home-based neurorehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3622–5.
Google Scholar
Holmes CD, Wronkiewicz M, Somers T, Liu J, Russell E, Kim D, et al. IpsiHand Bravo: an improved EEG-based brain-computer interface for hand motor control rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1749–52.
Google Scholar
Stan A, Irimia DC, Botezatu NA, Lupu RG. Controlling a hand orthosis by means of P300-based brain computer interface. 2015 E-Health and Bioengineering Conference (EHB). 2015. p. 1–4.
Ramos-Murguialday A, Schürholz M, Caggiano V, Wildgruber M, Caria A, Hammer EM, et al. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses. PLoS ONE. 2012;7:e47048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos-Murguialday A, Birbaumer N. Brain oscillatory signatures of motor tasks. J Neurophysiol. 2015;113:3663–82.
Article
PubMed
PubMed Central
Google Scholar
Bauer R, Fels M, Vukelic M, Ziemann U, Gharabaghi A. Bridging the gap between motor imagery and motor execution with a brain-robot interface. Neuroimage. 2015;108:319–27.
Article
PubMed
Google Scholar
Naros G, Naros I, Grimm F, Ziemann U, Gharabaghi A. Reinforcement learning of self-regulated sensorimotor beta-oscillations improves motor performance. Neuroimage. 2016;134:142–52.
Article
CAS
PubMed
Google Scholar
Vukelic M, Gharabaghi A. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage. 2015;111:1–11.
Article
PubMed
Google Scholar
Ono Y, Wada K, Kurata M, Seki N. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback. Neuropsychologia. 2018;114:134–42.
Article
PubMed
Google Scholar
Witkowski M, Cortese M, Cempini M, Mellinger J, Vitiello N, Soekadar S. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). J NeuroEng Rehabil. 2014;11:165.
Article
PubMed
PubMed Central
Google Scholar
Fok S, Schwartz R, Wronkiewicz M, Holmes C, Zhang J, Somers T, et al. An EEG-based brain computer interface for rehabilitation and restoration of hand control following stroke using ipsilateral cortical physiology. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6277–80.
Google Scholar
Diab MS, Hussain Z, Mahmoud S. Restoring function in paralyzed limbs using EEG. 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS). 2016. p. 1–4.
King CE, Wang PT, Mizuta M, Reinkensmeyer DJ, Do AH, Moromugi S, et al. Noninvasive brain-computer interface driven hand orthosis. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5786–9.
Google Scholar
Ang KK, Chin ZY, Wang C, Guan C, Zhang H. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci. 2012;6:39–39.
Article
PubMed
PubMed Central
Google Scholar
Bobrov PD, Korshakov AV, Roshchin VI, Frolov AA. Bayesian classifier for brain-computer interface based on mental representation of movements. Zh Vyssh Nerv Deiat Im I P Pavlova. 2012;62:89–99.
Gonzalez CDV, Azuela JHS, Espino ER, Ponce VH. Classification of motor imagery imagery EEG signals with CSP filtering through neural networks models. Advances in Soft Computing, Lecture Notes in Computer Science. Springer, Cham; 2018. p. 123–35.
Chaudhari R, Galiyawala HJ. A review on motor imagery signal classification for BCI. Signal Process. 2017;11:16–34.
Google Scholar
Oña ED, Cano-de la Cuerda R, Sanchez-Herrera P, Balaguer C, Jardon A. A review of robotics in neurorehabilitation: towards an automated process for upper limb. J Healthc Eng. 2018.
Kersten P. Principles of physiotherapy assessment and outcome measures. Physical Management in Neurological Rehabilitation. 2004. p. 29–46.
Dovat L, Lambercy O, Ruffieux Y, Chapuis D, Gassert R, Bleuler H, et al. A haptic knob for rehabilitation after stroke. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE; 2006.
Ballester BR, Maier M, Duff A, Cameirao M, Bermudez S, Duarte E, et al. A critical time window for recovery extends beyond one-year post-stroke. J Neurophysiol. 2019;1:350–7.
Article
Google Scholar
Kam JWY, Griffin S, Shen A, Patel S, Hinrichs H, Heinze HJ, et al. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes. NeuroImage. 2019;184:119–29.
Article
PubMed
Google Scholar
Mathewson KE, Harrison TJL, Kizuk SAD. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology. 2017;54:74–82.
Article
PubMed
Google Scholar
Saab J, Battes B, Grosse-Wentrup M. Simultaneous EEG recordings with dry and wet electrodes in motor-imagery. Austria: In proceedings. Graz; 2011.
Google Scholar
Abdalsalam E, Yusoff MZ, Kamel N, Malik AS, Mahmoud D. Classification of four class motor imagery for brain computer interface. In: Ibrahim H, Iqbal S, Teoh SS, Mustaffa MT, editors. 9th International Conference on Robotic. Vision: Signal Processing and Power Applications. Springer Singapore; 2017. p. 297–305.
Google Scholar
Grummett TS, Leibbrandt RE, Lewis TW, De Los Angeles D, Powers DMW, Willoughby JO, et al. Measurement of neural signals from inexpensive, wireless and dry EEG systems. Physiological Measurement. 2015;36.
Mladenov T, Kim K, Nooshabadi S. Accurate motor imagery based dry electrode brain-computer interface system for consumer applications. 2012 IEEE 16th International Symposium on Consumer Electronics. 2012. p. 1–4.
Guger C, Krausz G, Edliner G. Brain-computer interface control with dry EEG electrodes. Proceedings of the 5th International Brain-Computer Interface Conference. 2011. p. 316–9.
Srinivasan R. Methods to improve the spatial resolution of EEG. Int J Bioelectromagn. 1999;1:102–11.
Google Scholar
Liao K, Xiao R, Gonzalez J, Ding L. Decoding individual finger movements from one hand using human EEG signals. PLoS ONE. 2014;9:e85192.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johnson MJ, Micera S, Shibata T, Guglielmelli E. Rehabilitation and assistive robotics [TC Spotlight]. IEEE Robot Autom Mag. 2008;15:16–110.
Article
Google Scholar
Arvaneh M, Guan C, Ang K, Quek C. Optimizing the channel selection and classification accuracy in EEG-based BCI. Biomed Eng IEEE Trans. 2011;58:1865–73.
Article
Google Scholar
Quattrocchi G, Greenwood R, Rothwell JC, Galea JM, Bestmann S. Reward and punishment enhance motor adaptation in stroke. J Neurol Neurosurg Psychiatry. 2016;88:730–6.
Article
Google Scholar