Juarez-Albuixech ML, Redondo-González O, Tello-Diaz I, Collado-Vazquez S, Jiménez AC. Vojta Therapy versus transcutaneous electrical nerve stimulation forlumbosciatica syndrome: a quasi-experimental pilot study. J Bodywork Mov Therap. 2020;24:39–46.
Article
Google Scholar
Gajewska E, Huber J, Kulczyk A, Lipiec J, Sobieska M. An attempt to explain the Vojta therapy mechanism of action using the surface polyelectromyography in healthy subjects: a pilot study. J Bodyw Mov Ther. 2018;22(2):287–92.
Article
PubMed
Google Scholar
Perez Gorricho AM, Jiménez Antona C, Luna Oliva L, Collado Vázquez S. Terapia de la Locomoción Refleja del doctor Vojta. En: Cano de la Cuerda R. Neurorrehabilitación. Métodos específicos de valoración y tratamiento. Madrid: Editorial Médica Panamericana; 2012. pp. 323–29.
Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil. 2011;8:66.
Article
PubMed
PubMed Central
Google Scholar
Vojta V. The basic elements of treatment according to Vojta. Management of the motor disorders of children with cerebral pals. Suffolk: Lavenham Press Ltd; 1984.
Google Scholar
Vojta V. Early diagnosis and therapy of cerebral motor disorders in childhood. A. Postural reflexes in developmental kinesiology Pathologic reactions. Z Orthop Ihre Grenzgeb. 1972;110:458–66.
CAS
PubMed
Google Scholar
Vojta V. Early diagnosis and therapy of cerebral movement disorders in childhood. C. Reflexogenous locomotion–reflex creeping and réflex turning. The kinesiologic content and connection with the tonic neck reflexes. Z Orthop Ihre Grenzgeb. 1973a;111:268–91.
CAS
PubMed
Google Scholar
Bauer H, Appaji G, Mundt D. Vojta neurophysiologic therapy. Indian J Pediatr. 1992;59:37–51.
Article
CAS
PubMed
Google Scholar
Ha SY, Sung YH. Effects of Vojta method on trunk stability in healthy individuals. J Exerc Rehabil. 2016;12(6):542–7.
Article
PubMed
PubMed Central
Google Scholar
Sanz-Esteban I, Calvo-Lobo C, Ríos-Lago M, Álvarez-Linera J, Muñoz-García D, Rodríguez-Sanz D. Mapping the human brain during a specific Vojta’s tactile input: the ipsilateral putamen’s role. Medicine (Baltimore). 2018;97(13):253.
Article
Google Scholar
Hok P, Opavský J, Kutín M, Tüdös Z, Kaňovský P, Hluštík P. Modulation of the sensorimotor system by sustained manual pressure stimulation. Neuroscience. 2017;348:11–22.
Article
CAS
PubMed
Google Scholar
Hok P, Opavský J, Labounek R, Kutín M, Šlachtová M, Tüdös Z, Kaňovský P, Hluštík P. Differential Effects of Sustained Manual Pressure Stimulation According to Site of Action. Front Neurosci. 2019;13:722.
Article
PubMed
PubMed Central
Google Scholar
Chang MC, Ahn SH, Cho YW, Son SM, Kwon YH, Lee MY, et al. The comparison of cortical activation patterns by active exercise, proprioceptive input, and touch stimulation in the human brain: a functional MRI study. NeuroRehabilitation. 2009;25:87–92.
Article
CAS
PubMed
Google Scholar
Vojta V. Early diagnosis and therapy of cerebral movement disorders in childhood. C. Reflexogenous locomotion–reflex creeping and reflex turning. The kinesiologic content and connection with the tonic neck reflexes. Z Orthop Ihre Grenzgeb. 1973b;111:268–91.
CAS
PubMed
Google Scholar
Ibáñez J, Monge E, Molina F, Serrano J, Del Castillo MD, Cuesta A, et al. Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front Neurosci. 2017;11:126.
PubMed
PubMed Central
Google Scholar
Mrachacz-Kersting N, Kristensen SR, Niazi IK, Farina D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J Physiol. 2012;590(7):1669–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niazi IK, Mrachacz-Kersting N, Jiang N, Dremstrup K, Farina D. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):595–604.
Article
PubMed
Google Scholar
Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332.
Article
PubMed
PubMed Central
Google Scholar
Hagura N, Oouchida Y, Aramaki Y, Okada T, Matsumura M, Sadato N, et al. Visuokinesthetic perception of hand movement is mediated by cerebrocerebellar interaction between the left cerebellum and right parietal cortex. Cereb Corte. 2009;19(1):176–86.
Article
Google Scholar
Ríos-Lago M, Alonso R, Periáñez J, Paúl N, Oliva P, Álvarez-Linera J. Tensor de difusión por resonancia magnética y velocidad de procesamiento: estudio de la sustancia blanca en pacientes con traumatismo craneoencefálico. Trauma Fund Mapfre. 2008;19(2):102–12.
Google Scholar
Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melero H, Ríos-Lago M, Peña-Melián A, Álvarez-Linera J. Achromatic synesthesias—a functional magnetic resonance imaging study. Neuroimage. 2014;98:416–24.
Article
CAS
PubMed
Google Scholar
Fermin AS, Yoshida T, Yoshimoto J, Ito M, Tanaka SC, Doya K. Model-based action planning involves cortico-cerebellar and basal ganglia networks. Sci Rep. 2016;6:31378.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gooijers J, Beets IA, Albouy G, Beeckmans K, Michiels K, Sunaert S, et al. Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain. 2016;139(9):2469–85.
Article
PubMed
Google Scholar
Chung YG, Han SW, Kim H, Chung S, Park J, Wallraven C, et al. Intra-and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation. BMC Neurosci. 2014;15(1):43.
Article
PubMed
PubMed Central
Google Scholar
Chung YG, Han SW, Kim H, Chung S, Park J, Wallraven C, et al. Adaptation of cortical activity to sustained pressure stimulation on the fingertip. BMC Neurosci. 2015;16(1):71.
Article
PubMed
PubMed Central
Google Scholar
El VV. principio Vojta. Barcelona: Springer; 1995.
Google Scholar
Vojta V, Schweitzer E. El descubrimiento de la motricidad ideal. Madrid: Ediciones Morata; 2011.
Google Scholar
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.
Article
PubMed
Google Scholar
Chang C, Hsu S, Pion-Tonachini L, Jung T. Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-channel EEG Recordings. IEEE Trans Biomed Eng. 2019;67(4):1114–21.
Article
PubMed
Google Scholar
Winkler I, Brandl S, Horn F, Waldburger E, Allefeld C, Tangermann M. Robust artifactual independent component classification for BCI practitioners. J Neural Eng. 2014;11(3):035013.
Article
PubMed
Google Scholar
Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24:5–12.
PubMed
Google Scholar
Helwig NE. Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Comput Stat. 2019;11(2):e1457.
Article
Google Scholar
Passingham RE, Bengtsson SL, Lau HC. Medial frontal cortex: from self-generated action to reflection on one’s own performance. Trends Cogn Sci. 2009;2010(14):16–21.
Google Scholar
Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J. Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp. 2003;19(1):47–62.
Article
PubMed
PubMed Central
Google Scholar
Picard N, Strick PL. Imaging the premotor areas. Curr Opin Neurobiol. 2001;11:663–72.
Article
CAS
PubMed
Google Scholar
Nachev P, Kennard C, Husain M. Functional role of the supplementary andpre-supplementary motor areas. Nat Rev Neurosci. 2008;9:856–69.
Article
CAS
PubMed
Google Scholar
Tanji J. New concepts of the supplementary motor area. Curr Opin Neurobiol. 1996;6:782–7.
Article
CAS
PubMed
Google Scholar
Cona G, Semenza C. Motor area as key structure for domain-generalsequence processing: a unified account. Neurosci Biobehav Rev. 2017;72:28–42.
Article
PubMed
Google Scholar
Akkal D, Dum RP. Strick PL Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27:10659–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1983;9:357–81.
Article
Google Scholar
Ruan J, Bludau S, Palomero-Gallagher N, Caspers S, Mohlberg H, Eickhoff SB, Seitz RJ. Cytoarchitecture, prob-ability maps, and functions of the human supplementary and pre-supplementary motor areas. Brain Struct Funct. 2018;223(9):4169–86.
Article
PubMed
PubMed Central
Google Scholar
Naito E, Morita T, Amemiya K. Body representations in thehuman brain revealed by kinesthetic illusions and their essentialcontributions to motor control and corporeal awareness. NeurosciRes. 2016;104:16–30.
Google Scholar
Lehericy S, Benali H, Van de Moortele PF, Pelegrini-Issac M, Waechter T, Ugurbil K, et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA. 2005;102(35):12566–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.
Article
CAS
PubMed
Google Scholar
Naito E, Matsumoto R, Hagura N, Oouchida Y, Tomimoto H, Hanakawa T. Importance of precentral motor regions inhuman kinesthesia: a single case study. Neurocase. 2010;17(2):133–47.
Article
PubMed
Google Scholar
Naito E, Scheperjans F, Eickhoff SB, Amunts K, Roland PE, Zilles K, Ehrsson HH. Human superior parietal lobule is involved in somatic perception of bimanual interaction with an external object. J Neurophysiol. 2008;99:695–703.
Article
PubMed
Google Scholar
Whitlock JR. Posterior parietal cortex. Curr Biol. 2017;27:691–5.
Article
CAS
Google Scholar
Balser N, Lorey B, Pilgramm S, et al. The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves. Front Hum Neurosci. 2014;8:568.
Article
PubMed
PubMed Central
Google Scholar
Smith DM. Neurophysiology of action anticipation in athletes: a systematic review. Neurosci Biobehav Rev. 2015;60:115–20.
Article
PubMed
Google Scholar
Vogt C, Vogt O. Design of topical brain research and its promotion by brain construction and its anomalies. J Hirnforschung. 1954;1:1–46.
Google Scholar
Foerster O. Motorized fields and tracks. 6th ed. Berlin: Sonderdruck aus Handbuch der Neurologie; 1936.
Google Scholar
Kleist K. Gehirnpathologie : vornehmlich auf Grund der Kriegserfahrungen. Leipzig: Barth; 1934.
Google Scholar
Wright KP, Badia P, Wauquier A. Topographical and temporal patterns of brain activity during the transition from wakefulness to sleep. Sleep. 1995;18(10):880–9.
Article
PubMed
Google Scholar
De Gennaro L, Ferrara M, Curcio G, Cristiani R. Antero-posterior EEG changes during the wakefulness-sleep transition. Clin Neurophysiol. 2001;112(10):1901–11.
Article
PubMed
Google Scholar
Li Y, Tang X, Xu Z, Liu W, Li J. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages. Australas Phys Eng Sci. 2016;39(1):147–55.
Article
Google Scholar
Song J, Davey C, Poulsen C, Luu P, Turovets S, Anderson E, et al. EEG source localization: sensor density and head surface coverage. J Neurosci Methods. 2015;256:9–21.
Article
PubMed
Google Scholar