Stagg CJ, Antal A, Nitsche MA. Physiology of transcranial direct current stimulation. J ECT. 2018;34(3):144–52. https://doi.org/10.1097/YCT.0000000000000510.
Article
PubMed
Google Scholar
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broeder S, Nackaerts E, Heremans E, et al. Transcranial direct current stimulation in Parkinson’s disease: neurophysiological mechanisms and behavioral effects. Neurosci Biobehav Rev. 2015;57:105–17. https://doi.org/10.1016/j.neubiorev.2015.08.010.
Article
PubMed
Google Scholar
Kang N, Summers JJ, Cauraugh JH. Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(4):345–55. https://doi.org/10.1136/jnnp-2015-311242.
Article
PubMed
Google Scholar
Patel R, Ashcroft J, Patel A, et al. The impact of transcranial direct current stimulation on upper-limb motor performance in healthy adults: a systematic review and meta-analysis. Front Neurosci. 2019;13:1213. https://doi.org/10.3389/fnins.2019.01213.
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Kuhn A, Pérez-Fernández C, Cánovas R, Flores P, Sanchez-Santed F. Transcranial direct current stimulation as a motor neurorehabilitation tool: an empirical review. Biomed Eng Online. 2017;16(1):76. https://doi.org/10.1186/s12938-017-0361-8.
Article
PubMed
PubMed Central
Google Scholar
Elsner B, Kwakkel G, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. J Neuroeng Rehabil. 2017;14(1):95. https://doi.org/10.1186/s12984-017-0301-7.
Article
PubMed
PubMed Central
Google Scholar
Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56–92. https://doi.org/10.1016/j.clinph.2016.10.087.
Article
PubMed
Google Scholar
Esmaeilpour Z, Marangolo P, Hampstead BM, et al. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul. 2018;11(2):310–21. https://doi.org/10.1016/j.brs.2017.12.002.
Article
PubMed
Google Scholar
Ammann C, Lindquist MA, Celnik PA. Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions. Brain Stimul. 2017;10(4):757–63. https://doi.org/10.1016/j.brs.2017.04.003.
Article
PubMed
PubMed Central
Google Scholar
Bastani A, Jaberzadeh S. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation. PLoS ONE. 2013;8(8): e72254. https://doi.org/10.1371/journal.pone.0072254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agboada D, Samani MM, Jamil A, Kuo MF, Nitsche MA. Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep. 2019;9(1):18185. https://doi.org/10.1038/s41598-019-54621-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000. https://doi.org/10.1113/jphysiol.2012.249730.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chew T, Ho KA, Loo CK. Inter-and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimul. 2015;8(6):1130–7. https://doi.org/10.1016/j.brs.2015.07.031.
Article
PubMed
Google Scholar
Ho KA, Taylor JL, Chew T, et al. The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions. Brain Stimul. 2016;9(1):1–7. https://doi.org/10.1016/j.brs.2015.08.003.
Article
CAS
PubMed
Google Scholar
Jamil A, Batsikadze G, Kuo HI, et al. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol. 2017;595(4):1273–88. https://doi.org/10.1113/JP272738.
Article
CAS
PubMed
Google Scholar
Kidgell DJ, Daly RM, Young K, et al. Different current intensities of anodal transcranial direct current stimulation do not differentially modulate motor cortex plasticity. Neural Plast. 2013;2013: 603502. https://doi.org/10.1155/2013/603502.
Article
PubMed
PubMed Central
Google Scholar
Moliadze V, Schmanke T, Andreas S, et al. Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents. Clin Neurophysiol. 2015;126(7):1392–9. https://doi.org/10.1016/j.clinph.2014.10.142.
Article
PubMed
Google Scholar
Strube W, Bunse T, Nitsche MA, et al. Bidirectional variability in motor cortex excitability modulation following 1 mA transcranial direct current stimulation in healthy participants. Physiol Rep. 2016;4(15): e12884. https://doi.org/10.14814/phy2.12884.
Article
PubMed
PubMed Central
Google Scholar
Boggio PS, Ferrucci R, Rigonatti SP, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci. 2006;249(1):31–8. https://doi.org/10.1016/j.jns.2006.05.062.
Article
PubMed
Google Scholar
Cuypers K, Leenus DJ, van den Berg FE, et al. Is motor learning mediated by tDCS intensity? PLoS ONE. 2013;8(6): e67344. https://doi.org/10.1371/journal.pone.0067344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyer MB, Mattu U, Grafman J, et al. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005;64(5):872–5. https://doi.org/10.1212/01.WNL.0000152986.07469.E9.
Article
CAS
PubMed
Google Scholar
Mitroi J, Burroughs LP, Moussa-Tooks AB, et al. Polarity-and intensity-independent modulation of timing during delay eyeblink conditioning using cerebellar transcranial direct current stimulation. Cerebellum. 2020;19(3):383–91. https://doi.org/10.1007/s12311-020-01114-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shekhawat GS, Sundram F, Bikson M, et al. Intensity, duration, and location of high-definition transcranial direct current stimulation for tinnitus relief. Neurorehabil Neural Repair. 2016;30(4):349–59. https://doi.org/10.1177/1545968315595286.
Article
PubMed
Google Scholar
Ehrhardt SE, Filmer HL, Wards Y, Mattingley JB, Dux PE. The influence of tDCS intensity on decision-making training and transfer outcomes. J Neurophysiol. 2021;125(2):385–97. https://doi.org/10.1152/jn.00423.2020.
Article
PubMed
Google Scholar
Horvath JC, Carter O, Forte JD. No significant effect of transcranial direct current stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation protocols. Neuropsychologia. 2016;91:544–52. https://doi.org/10.1016/j.neuropsychologia.2016.09.017.
Article
PubMed
Google Scholar
Caparelli-Daquer EM, Zimmermann TJ, Mooshagian E, et al. A pilot study on effects of 4× 1 high-definition tDCS on motor cortex excitability. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:7356–8. https://doi.org/10.1109/EMBC.2012.6346036.
Article
Google Scholar
Datta A, Zhou X, Su Y, Parra LC, Bikson M. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose. J Neural Eng. 2013;10(3):036018. https://doi.org/10.1088/1741-2560/10/3/036018.
Article
PubMed
Google Scholar
Datta A, Bansal V, Diaz J, et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7. https://doi.org/10.1016/j.brs.2009.03.005.
Article
PubMed
PubMed Central
Google Scholar
Kuo HI, Bikson M, Datta A, et al. Comparing cortical plasticity induced by conventional and high-definition 4× 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6(4):644–8. https://doi.org/10.1016/j.brs.2012.09.010.
Article
PubMed
Google Scholar
Cole L, Dukelow SP, Giuffre A, et al. Sensorimotor Robotic Measures of tDCS-and HD-tDCS-Enhanced Motor Learning in Children. Neural Plast. 2018;2018:5317405. https://doi.org/10.1155/2018/5317405.
Article
PubMed
PubMed Central
Google Scholar
Cole L, Giuffre A, Ciechanski P, et al. Effects of high-definition and conventional transcranial direct-current stimulation on motor learning in children. Front Neurosci. 2018;12:787. https://doi.org/10.3389/fnins.2018.00787.
Article
PubMed
PubMed Central
Google Scholar
Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi- electrode stimulation increases focality and intensity at target. J Neural Eng. 2011;8(4): 046011. https://doi.org/10.1088/1741-2560/8/4/046011.
Article
PubMed
Google Scholar
Charvet LE, Dobbs B, Shaw MT, Bikson M, Datta A, Krupp LB. Remotely supervised transcranial direct current stimulation for the treatment of fatigue in multiple sclerosis: Results from a randomized, sham-controlled trial. Mult Scler. 2018;24(13):1760–9. https://doi.org/10.1177/1352458517732842.
Article
PubMed
Google Scholar
Greeley B, Barnhoorn JS, Verwey WB, Seidler RD. Multi-session transcranial direct current stimulation over primary motor cortex facilitates sequence learning, chunking, and one year retention. Front Hum Neurosci. 2020;14:75. https://doi.org/10.3389/fnhum.2020.00075.
Article
PubMed
PubMed Central
Google Scholar
Ljubisavljevic M, Maxood K, Bjekic J, Oommen J, Nagelkerke N. Long-term effects of repeated prefrontal cortex transcranial direct current stimulation (tDCS) on food craving in normal and overweight young adults. Brain Stimul. 2016;9(6):826–33. https://doi.org/10.1016/j.brs.2016.07.002.
Article
CAS
PubMed
Google Scholar
Meeker TJ, Keaser ML, Khan SA, Gullapalli RP, Seminowicz DA, Greenspan JD. Non-invasive motor cortex neuromodulation reduces secondary hyperalgesia and enhances activation of the descending pain modulatory network. Front Neurosci. 2019;13:467. https://doi.org/10.3389/fnins.2019.00467.
Article
PubMed
PubMed Central
Google Scholar
Ghilardi M, Ghez C, Dhawan V, et al. Patterns of regional brain activation associated with different forms of motor learning. Brain Res. 2000;871(1):127–45. https://doi.org/10.1016/s0006-8993(00)02365-9.
Article
CAS
PubMed
Google Scholar
Ghilardi MF, Moisello C, Silvestri G, Ghez C, Krakauer JW. Learning of a sequential motor skill comprises explicit and implicit components that consolidate differently. J Neurophysiol. 2009;101(5):2218–29. https://doi.org/10.1152/jn.01138.2007.
Article
PubMed
Google Scholar
Moisello C, Crupi D, Tunik E, et al. The serial reaction time task revisited: A study on motor sequence learning with an arm-reaching task. Exp Brain Res. 2009;194(1):143–55. https://doi.org/10.1007/s00221-008-1681-5.
Article
PubMed
Google Scholar
Karni A, Meyer G, Rey-Hipolito C, et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci U S A. 1998;95(3):861–8. https://doi.org/10.1073/pnas.95.3.861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robertson EM, Press DZ, Pascual-Leone A. Off-line learning and the primary motor cortex. J Neurosci. 2005;25(27):6372–8. https://doi.org/10.1523/JNEUROSCI.1851-05.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ambrus GG, Al-Moyed H, Chaieb L, Sarp L, Antal A, Paulus W. The fade-in–short stimulation–fade out approach to sham tDCS–reliable at 1 mA for naïve and experienced subjects, but not investigators. Brain Stimul. 2012;5(4):499–504. https://doi.org/10.1016/j.brs.2011.12.001.
Article
PubMed
Google Scholar
Palm U, Reisinger E, Keeser D. Evaluation of sham transcranial direct current stimulation for randomized, placebo-controlled clinical trials. Brain Stimul. 2013;6(4):690–5. https://doi.org/10.1016/j.brs.2013.01.005.
Article
PubMed
Google Scholar
Fan J, Voisin J, Milot MH, Higgins J, Boudrias MH. Transcranial direct current stimulation over multiple days enhances motor performance of a grip task. Ann Phys Rehabil Med. 2017;60(5):329–33. https://doi.org/10.1016/j.rehab.2017.07.001.
Article
PubMed
Google Scholar
Hashemirad F, Zoghi M, Fitzgerald PB, Jaberzadeh S. The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: a systematic review and meta-analysis. Brain Cogn. 2016;102:1–12. https://doi.org/10.1016/j.bandc.2015.11.005.
Article
PubMed
Google Scholar
Nitsche MA, Schauenburg A, Lang N, et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15(4):619–26. https://doi.org/10.1162/089892903321662994.
Article
PubMed
Google Scholar
Reis J, Fischer JT, Prichard G, et al. Time-butnotsleep-dependent consolidation of tDCS-enhanced visuomotor skills. CerebCortex. 2015;25(1):109–17. https://doi.org/10.1093/cercor/bht208.
Article
Google Scholar
Peterchev AV, Wagner TA, Miranda PC, et al. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 2012;5(4):435–53.
Article
Google Scholar
Laakso I, Tanaka S, Koyama S, De Santis V, Hirata A. Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul. 2015;8(5):906–13. https://doi.org/10.1016/j.brs.2015.05.002.
Article
PubMed
Google Scholar
Monte-Silva K, Kuo MF, Hessenthaler S, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6(3):424–32. https://doi.org/10.1016/j.brs.2012.04.011.
Article
PubMed
Google Scholar
Shilo G, Lavidor M. Non-linear effects of cathodal transcranial direct current stimulation (tDCS) of the primary motor cortex on implicit motor learning. Exp Brain Res. 2019;237(4):919–25. https://doi.org/10.1007/s00221-019-05477-3.
Article
PubMed
Google Scholar
Parkin BL, Bhandari M, Glen JC, Walsh V. The physiological effects of transcranial electrical stimulation do not apply to parameters commonly used in studies of cognitive neuromodulation. Neuropsychologia. 2019;128:332–9. https://doi.org/10.1016/j.neuropsychologia.2018.03.030.
Article
PubMed
Google Scholar
Mosayebi-Samani M, Melo L, Agboada D, Nitsche MA, Kuo MF. Ca2+ channel dynamics explain the nonlinear neuroplasticity induction by cathodal transcranial direct current stimulation over the primary motor cortex. Eur Neuropsychopharmacol. 2020;38:63–72. https://doi.org/10.1016/j.euroneuro.2020.07.011.
Article
CAS
PubMed
Google Scholar
Chen J, McCulloch A, Kim H, et al. Application of anodal tDCS at primary motorcortex immediately after practice of a motor sequence does not improve offlinegain. Exp Brain Res. 2020;238(1):29–37. https://doi.org/10.1007/s00221-019-05697-7.
Article
PubMed
Google Scholar
Galea JM, Vazquez A, Pasricha N, et al. Dissociating the roles of the cerebellumand motor cortex during adaptive learning: the motor cortex retains what thecerebellum learns. Cereb cortex. 2011;21(8):1761–70. https://doi.org/10.1093/cercor/bhq246.
Article
PubMed
Google Scholar
Jalali R, Miall RC, Galea JM. No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation. J Neurophysiol. 2017;118(2):655–65. https://doi.org/10.1152/jn.00896.2016.
Article
PubMed
PubMed Central
Google Scholar
King BR, Rumpf JJ, Heise KF, et al. Lateralized effects of post-learningtranscranial direct current stimulation on motor memory consolidation in older adults: An fMRI investigation. Neuroimage. 2020;223: 117323. https://doi.org/10.1016/j.neuroimage.2020.117323.
Article
PubMed
Google Scholar
Rumpf JJ, Wegscheider M, Hinselmann K, et al. Enhancement of motorconsolidation by post-training transcranial direct current stimulation in older people. Neurobiol Aging. 2017;49:1–8. https://doi.org/10.1016/j.neurobiolaging.2016.09.003.
Article
PubMed
Google Scholar
Tecchio F, Zappasodi F, Assenza G, et al. Anodal transcranial direct currentStimulation ebhances procedural condolidation. J Neurophysiol. 2010;104(2):1134–40. https://doi.org/10.1152/jn.00661.2009.
Article
PubMed
Google Scholar
Stagg CJ, Jayaram G, Pastor D, et al. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 2011;49(5):800–4.
Article
CAS
Google Scholar
Churchland MM, Byron MY, Ryu SI, Santhanam G, Shenoy KV. Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci. 2006;26(14):3697–712. https://doi.org/10.1523/JNEUROSCI.3762-05.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crammond DJ, Kalaska JF. Differential relation of discharge in primary motor cortex and premotor cortex to movements versus actively maintained postures during a reaching task. Exp Brain Res. 1996;108(1):45–61.
Article
CAS
Google Scholar
Schluter ND, Rushworth MF, Passingham RE, Mills KR. Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain. 1998;121(5):785–99. https://doi.org/10.1093/brain/121.5.785.
Article
PubMed
Google Scholar
Wong AL, Lindquist MA, Haith AM, Krakauer JW. Explicit knowledge enhances motor vigor and performance: motivation versus practice in sequence tasks. J Neurophysiol. 2015;114(1):219–32. https://doi.org/10.1152/jn.00218.2015.
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Alonso V, Cheeran B, Río-Rodríguez D, Fernández-del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 2014;7(3):372–80. https://doi.org/10.1016/j.brs.2014.02.004.
Article
PubMed
Google Scholar
López-Alonso V, Fernández-del-Olmo M, Costantini A, Gonzalez-Henriquez JJ, Cheeran B. Intra-individual variability in the response to anodal transcranial direct current stimulation. Clin Neurophysiol. 2015;126(12):2342–7. https://doi.org/10.1016/j.clinph.2015.03.022.
Article
PubMed
Google Scholar
Nuzum ND, Hendy AM, Russell AP, Teo WP. Measures to predict the individual variability of corticospinal responses following transcranial direct current stimulation. Front Hum Neurosci. 2016;10:487. https://doi.org/10.3389/fnhum.2016.00487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strube W, Bunse T, Malchow B, Hasan A. Efficacy and interindividual variability in motor-cortex plasticity following anodal tDCS and paired-associative stimulation. Neural Plast. 2015;2015:530423. https://doi.org/10.1155/2015/530423.
Article
PubMed
PubMed Central
Google Scholar
Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;7(3):468–75. https://doi.org/10.1016/j.brs.2014.02.003.
Article
PubMed
Google Scholar
Tremblay S, Larochelle-Brunet F, Lafleur LP, et al. Systematic assessment of duration and intensity of anodal tDCS on primary motor cortex excitability. Eur J Neurosci. 2016;44(5):2184–90. https://doi.org/10.1111/ejn.13321.
Article
PubMed
Google Scholar
Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage. 2014;99(100):237–43. https://doi.org/10.1016/j.neuroimage.2014.05.070.
Article
CAS
PubMed
Google Scholar
Stagg CJ, Bachtiar V, Johansen-Berg H. The role of GABA in human motor learning. Curr Biol. 2011;21(6):480–4. https://doi.org/10.1016/j.cub.2011.01.069.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Boekholdt L, Kerstens S, Khatoun A, Asamoah B, Mc LM. tDCS peripheral nerve stimulation: a neglected mode of action? Mol Psychiatry. 2021;26(2):456–61. https://doi.org/10.1038/s41380-020-00962-6.
Article
PubMed
Google Scholar
Rampersad SM, Janssen AM, Lucka F. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):441–52. https://doi.org/10.1109/TNSRE.2014.2308997.
Article
PubMed
Google Scholar
So PP, Stuchly MA, Nyenhuis JA. Peripheral nerve stimulation by gradient switching fields in magnetic resonance imaging. IEEE Trans Biomed Eng. 2004;51(11):1907–14. https://doi.org/10.1109/TBME.2004.834251.
Article
PubMed
Google Scholar
Kessler SK, Turkeltaub PE, Benson JG, Hamilton RH. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul. 2012;5(2):155–62. https://doi.org/10.1016/j.brs.2011.02.007.
Article
PubMed
Google Scholar
Datta A, Elwassif M, Battaglia F, Bikson M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng. 2008;5(2):163–74. https://doi.org/10.1088/1741-2560/5/2/007.
Article
PubMed
Google Scholar