Spinal cord injury statistics in Australia. https://scia.org.au/sci-statistics. Accessed 18 Feb 2021
Post MW, de Witte LP, van Asbeck FW, van Dijk AJ, Schrijvers AJ. Predictors of health status and life satisfaction in spinal cord injury. Arch Physical Med Rehab. 1998;79(4):395–401.
CAS
Google Scholar
Dietz V. Neuronal plasticity after a human spinal cord injury: positive and negative effects. Exp Neurol. 2012;235(1):110–5.
PubMed
Google Scholar
Behrman AL, Bowden MG, Nair PM. Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther. 2006;86(10):1406–25.
PubMed
Google Scholar
Neto FR, Lopes GH. Body composition modifications in people with chronic spinal cord injury after supervised physical activity. J Spinal Cord Med. 2011;34(6):586–93.
PubMed
PubMed Central
Google Scholar
Choi HJ, Kim GS, Chai JH, Koh CY. Effect of gait training program with mechanical exoskeleton on body composition of paraplegics. J Multidiscip Health. 2020;13:1879–86.
Google Scholar
Hartigan C, Farris R. The future promise of lower limb robotic exoskeletons. J Nurse Life Care Plan. 2015;15(2):854–9.
Google Scholar
Gorgey AS. Robotic exoskeletons: the current pros and cons. World J Orthop. 2018;9(9):112–9.
PubMed
PubMed Central
Google Scholar
Fritz H, Patzer D, Galen SS. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities. Disabil Rehabil. 2019;41(5):560–3.
PubMed
Google Scholar
ReWalk. https://rewalk.com. Accessed 18 Sept 2019.
EksoBionics. https://eksobionics.com. Accessed 18 Sept 2019.
Indego. http://www.indego.com/indego/us/en/home. Accessed 18 Sept 2019.
Tefertiller C, Hays K, Jones J, Jayaraman A, Hartigan C, Bushnik T, Forrest GF. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury. TSCIR. 2018;24(1):78–85.
Google Scholar
Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. 2012. p. 911–21.
Juszczak M, Gallo E, Bushnik T. Examining the effects of a powered exoskeleton on quality of life and secondary impairments in people living with spinal cord injury. TSCIR. 2018;24(4):336–42.
Google Scholar
Birch N, Graham J, Priestley T, Heywood C, Sakel M, Gall A, Nunn A, Signal N. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid. JNER. 2017;14:1–10.
Google Scholar
McIntosh K, Charbonneau R, Bensaada Y, Bhatiya U, Ho C. The safety and feasibility of exoskeletal-assisted walking in acute rehabilitation after spinal cord injury. Arch Physical Med Rehab. 2020;101(1):113–20.
Google Scholar
Lam T, Williams A, Deegan E, Walter M, Stothers L. Can exoskeleton gait training improve lower urinary tract function in people with spinal cord injury? Preliminary findings from a randomized pilot trial. Neurourol Urodyn. 2019;38(Suppl 3):S342–3.
Google Scholar
Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices. 2016;9:455–66.
Google Scholar
Stampacchia G, Rustici A, Bigazzi S, Gerini A, Tombini T, Mazzoleni S. Walking with a powered robotic exoskeleton: subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation. 2016;39(2):277–83.
PubMed
Google Scholar
Tatla SK, Shirzad N, Lohse KR, Virji-Babul N, Hoens AM, Holsti L, Li LC, Miller KJ, Lam MY, Van der Loos HFM. Therapists’ perceptions of social media and video game technologies in upper limb rehabilitation. JMIR Serious Games. 2015;3(1):e2.
PubMed
PubMed Central
Google Scholar
Wu CH, Mao HF, Hu JS, Wang TY, Tsai YJ, Hsu WL. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. JNER. 2018;15(1):1.
Google Scholar
Karelis A, Carvahlho L, Castillo M, Gagnon D, Aubertin-Leheudre M. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 2017;49:84–7.
PubMed
Google Scholar
Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med. 2012;35(2):96–101.
PubMed
PubMed Central
Google Scholar
Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury. TSCIR. 2015;21(2):100–9.
Google Scholar
van Herpen FHM, van Dijsseldonk RB, Rijken H, Keijsers NLW, Louwerens JWK, van Nes IJW. Case report: description of two fractures during the use of a powered exoskeleton. Spinal Cord Ser Cases. 2019;5:99.
PubMed
PubMed Central
Google Scholar
Heinemann AW, Jayaraman A, Mummidisetty CK, Spraggins J, Pinto D, Charlifue S, Tefertiller C, Taylor HB, Chang SH, Stampas A, Furbish CL, Field-Fote EC. Experience of robotic exoskeleton use at four spinal cord injury model systems centers. JNPT. 2018;42(4):256–67.
PubMed
Google Scholar
Xiang XN, Ding MF, Zong HY, Liu Y, Cheng H, He CQ, He HC. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study. Spinal Cord. 2020;58:787–94.
PubMed
Google Scholar
Lajeunesse V, Lettre J, Routhier F, Vincent C, Michaud F. Perspectives of individuals with incomplete spinal cord injury concerning the usability of lower limb exoskeletons: an exploratory study. Technol Disabil. 2018;30:63–76.
Google Scholar
Smith AJJ, Fournier BN, Nantel J, Lemaire ED. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches. J Biomech. 2020;107:109835.
PubMed
Google Scholar
Rex Bionics. https://www.rexbionics.com/. Accessed 24 Jan 2019.
Almeida C, Coelho JN, Riberto M. Applicability, validation and reproducibility of the spinal cord independence measure version III (SCIM III) in patients with non-traumatic spinal cord lesions. Disabil Rehabil. 2016;38(22):2229–34.
PubMed
Google Scholar
Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.
Google Scholar
Barbareschi G, Richards R, Thornton M, Carlson T, Holloway C. Statically vs dynamically balanced gait: analysis of a robotic exoskeleton compared with a human. Conf Proc Annual Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annual Conf. 2015;2015:6728–31.
Google Scholar
ASIA Scale: American Spinal Injury Association. https://asia-spinalinjury.org/international-standards-neurological-classification-sci-isncsci-worksheet/. Accessed 18 Feb 2021.
Bluvshtein V, Front L, Itzkovich M, Aidinoff E, Gelernter I, Hart J, Biering-Soerensen F, Weeks C, Laramee MT, Craven C, Hitzig SL, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, Masry WSE, Osman A, Glass CA, Silva P, Soni BM, Gardner BP, Savic G, Bergstrom EM, Catz A. SCIM III is reliable and valid in a separate analysis for traumatic spinal cord lesions. Spinal Cord. 2011;49(2):292–6.
CAS
PubMed
Google Scholar
Shin JC, Yoo JH, Jung TH, Goo HR. Comparison of lower extremity motor score parameters for patients with motor incomplete spinal cord injury using gait parameters. Spinal Cord. 2011;49(4):529–33.
CAS
PubMed
Google Scholar
Glinsky J. Tardieu scale. J Physiother. 2016;62(4):229.
PubMed
Google Scholar
Bohannon RW, Shove ME, Barreca SR, Masters LM, Sigouin CS. Five-repetition sit-to-stand test performance by community-dwelling adults: a preliminary investigation of times, determinants, and relationship with self-reported physical performance. Isokinet Exerc Sci. 2007;15(2):77–81.
Google Scholar
Weiner DK, Duncan PW, Chandler J, Studenski SA. Functional reach: a marker of physical frailty. J Am Geriatr Soc. 1992;40(3):203–7.
CAS
PubMed
Google Scholar
Biodynamics Corporation. https://www.biodyncorp.com/product/products_bio.html. Accessed 18 Feb 2021.
Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the hospital anxiety and depression scale: an updated literature review. J Psychosom Res. 2002;52(2):69–77.
PubMed
Google Scholar
Michielsen HJ, De Vries J, van Heck GL. Psychometric qualities of a brief self-rated fatigue measure: the fatigue assessment scale. J Psychosom Res. 2003;54(4):345–52.
PubMed
Google Scholar
Wang P, Luo N, Tai ES, Lee J, Wee HL, Thumboo J. Relative efficiency of the SF-8, SF-12, and SF-36 in the general population. Value Health. 2012;15(7):A651.
Google Scholar
Wu X, Liu J, Tanadini LG, Lammertse DP, Blight AR, Kramer JLK, Scivoletto G, Jones L, Kirshblum S, Abel R, Fawcett J, Field-Fote E, Guest J, Levinson B, Maier D, Tansey K, Weidner N, Tetzlaff WG, Hothorn T, Curt A, Steeves JD. Challenges for defining minimal clinically important difference (MCID) after spinal cord injury. Spinal Cord. 2015;53(2):84–91.
CAS
PubMed
Google Scholar
Pi-Sunyer FX. Medical hazards of obesity. Ann Intern Med. 1993;119(7 Pt 2):655–60.
CAS
PubMed
Google Scholar
Sadowsky C, Bae SH, Quintana JO. Testosterone, lean muscle and bone mass and SCIM scores in males with spinal cord related paralysis. Arch Phys Med Rehab. 2019;100(10):e127.
Google Scholar
Gagnon DH, Vermette M, Duclos C, Aubertin-Leheudre M, Ahmed S, Kairy D. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton. Disabil Rehabil Assist Technol. 2019;14(2):138–45.
PubMed
Google Scholar
Gauthier C, Arel J, Brosseau R, Ménard P, Hicks AL, Gagnon D. Reliability and minimal detectable change of a task-specific treadmill wheelchair propulsion test to measure cardiorespiratory fitness in manual wheelchair users. Physiotherapy. 2015;101:e448.
Google Scholar
Thomassen GKK, Jorgensen V, Normann B. “Back at the same level as everyone else”-user perspectives on walking with an exoskeleton, a qualitative study. Spinal Cord Ser Cases. 2019;5(1):103.
PubMed
PubMed Central
Google Scholar
Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016;30(1):73–84.
PubMed
Google Scholar
Wolff J, Parker C, Borisoff J, Mortenson WB, Mattie J. A survey of stakeholder perspectives on exoskeleton technology. JNER. 2014;11(1):208–29.
Google Scholar
Manns PJ, Hurd C, Yang JF. Perspectives of people with spinal cord injury learning to walk using a powered exoskeleton. JNER. 2019. https://doi.org/10.1186/s12984-019-0565-1.
Article
PubMed
PubMed Central
Google Scholar
Postol N, Lamond S, Galloway M, Palazzi K, Bivard A, Spratt NJ, Marquez J. The metabolic cost of exercising with a robotic exoskeleton: a comparison of healthy and neurologically impaired people. IEEE Trans Neural Syst Rehabil Eng. 2020;12:3031–9.
Google Scholar