Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006;5:708–12.
PubMed
Google Scholar
Lang AE, Lozano AM. Parkinson’s disease. N Engl J Med. 1998;339:1130–43.
PubMed
CAS
Google Scholar
Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344:1688–700.
PubMed
CAS
Google Scholar
Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res. 2007;182:281–7.
PubMed
Google Scholar
Dmochowski JP, Datta A, Huang Y, Richardson JD, Bikson M, Fridriksson J, Parra LC. Targeted transcranial direct current stimulation for rehabilitation after stroke. Neuroimage. 2013;75:12–9.
PubMed
Google Scholar
Claflin ES, Krishnan C, Khot SP. Emerging treatments for motor rehabilitation after stroke. Neurohospitalist. 2015;5:77–88.
PubMed
PubMed Central
Google Scholar
Klomjai W, Lackmy-Vallée A, Roche N, Pradat-Diehl P, Marchand-Pauvert V, Katz R. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after stroke: an update. Ann Phys Rehabil Med. 2015;58:220–4.
PubMed
CAS
Google Scholar
Koh CL, Lin JH, Jeng JS, Huang SL, Hsieh CL. Effects of transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: a randomized controlled trial. Arch Phys Med Rehabil. 2017;98:2477–84.
PubMed
Google Scholar
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633–9.
PubMed
PubMed Central
CAS
Google Scholar
Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1:97–105.
PubMed
Google Scholar
Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, Johansen-Berg H. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med. 2016;8:330re1.
Del Felice A, Castiglia L, Formaggio E, Cattelan M, Scarpa B, Manganotti P, Masiero S. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson's disease: a randomized cross-over trial. NeuroImage Clin. 2019;22:101768.
Bolognini N, Vallar G, Casati C, Latif LA, El-Nazer R, Williams J, Fregni F. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil Neural Repair. 2011;25:819–29.
PubMed
Google Scholar
Waters-Metenier S, Husain M, Wiestler T, Diedrichsen J. Bihemispheric transcranial direct current stimulation enhances effector-independent representations of motor synergy and sequence learning. J Neurosci. 2014;34:1037–50.
PubMed
PubMed Central
CAS
Google Scholar
Ferreira IS, Costa BT, Ramos CL, Lucena P, Thibaut A, Fregni F. Searching for the optimal tDCS target for motor rehabilitation. J NeuroEng Rehabil. 2019;16:90.
Google Scholar
Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, Fregni F. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neuroscience. 2006;404:232–6.
CAS
Google Scholar
Wade S, Hammond G. Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence. Eur J Neurosci. 2015;41:1597–602.
PubMed
Google Scholar
Ferrucci R, Vergari M, Cogiamanian F, Bocci T, Ciocca M, Tomasini E, de Riz M, Scarpini E, Priori A. Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation. 2014;34:121–7.
PubMed
Google Scholar
Volpe JJ. Brain injury in the premature infant—from pathogenesis to prevention. Brain Dev. 1997;19:519–34.
PubMed
CAS
Google Scholar
Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain. 1997;120:141–57.
PubMed
Google Scholar
Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Töpper R. Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol. 1999;110:699–704.
PubMed
CAS
Google Scholar
Weise K, Numssen O, Thielscher A, Hartwigsen G, Knösche TR. A novel approach to localize cortical TMS effects. NeuroImage. 2020;209:116486.
Choi GY, Han CH, Lim H, Lim, Ku J, Kim WS, Hwang HJ. Electroencephalography-based motor hotspot detection. In: Proceedings of the 13th international joint conference on biomedical engineering systems and technologies. vol 4. 2020; p. 195–8.
Szubski C, Burtscher M, Loscher WN. The effects of short-term hypoxia on motor cortex excitability and neuromuscular activation. J Appl Physiol. 2006;101:1673–7.
PubMed
Google Scholar
Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;7:468–75.
PubMed
Google Scholar
Hannah R, Iacovou A, Rothwell JC. Direction of TDCS current flow in human sensorimotor cortex influences behavioural learning. Brain Stimul. 2019;12:684–92.
PubMed
PubMed Central
Google Scholar
https://eeglab.org/tutorials/06_RejectArtifacts/.
Ball T, Demandt E, Mutschler I, Neitzel E, Mehring C, Vogt K, Schulze-Bonhage A. Movement related activity in the high gamma range of the human EEG. NeuroImage. 2008;41:302–10.
PubMed
Google Scholar
Amo C, Boquete L, de Santiago L, Barea Navarro R, Cavaliere C. Induced gamma-band activity during actual and imaginary movements: EEG analysis. Sensors. 2020;20:1545.
Google Scholar
Amo C, De Santiago L, Zarza Luciáñez D, León Alonso-Cortés JM, Alonso-Alonso M, Barea R, Boquete L. Induced gamma band activity from EEG as a possible index of training-related brain plasticity in motor tasks. PLoS ONE. 2017;12:e0186008.
Ginter J Jr, Blinowska KJ, Kamiński M, Durka PJ, Pfurtscheller G, Neuper C. Propagation of EEG activity in the beta and gamma band during movement imagery in humans. Methods Inf Med. 2005;44:106–13.
PubMed
Google Scholar
Yao L, Chen ML, Sheng X, Mrachacz-Kersting N, Zhu X, Farina D, Jiang N. Influence of spontaneous rhythm on movement-related cortical potential—a preliminary neurofeedback study. In: Proceedings of the international conference on augmented cognition. vol 1; 2017. p. 90–8.
Shibasaki H, Hallett M. What is the Bereitschaftspotential? Clin Neurophysiol. 2006;117:2341–56. https://doi.org/10.1016/j.clinph.2006.04.025.
Article
PubMed
Google Scholar
Jochumsen M, Niazi IK, Mrachacz-Kersting N, Farina D, Dremstrup K. Detection and classification of movement-related cortical potentials associated with task force and speed. J Neural Eng. 2013;10: 056015. https://doi.org/10.1088/1741-2560/10/5/056015.
Article
PubMed
Google Scholar
Meincke J, Hewitt M, Batsikadze G, Liebetanz D. Automated TMS hotspot-hunting using a closed loop threshold-based algorithm. NeuroImage. 2016;124:509–17.
PubMed
Google Scholar
Sollmann N, Hauck T, Obermüller T, Hapfelmeier A, Meyer B, Ringel F, Krieg SM. Inter-and intraobserver variability in motor mapping of the hotspot for the abductor policis brevis muscle. BMC Neurosci. 2013;14:1–7.
Google Scholar
Malcolm MP, Triggs WJ, Light KE, Shechtman O, Khandekar G, Rothi LG. Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clin Neurophysiol. 2006;117:1037–46. https://doi.org/10.1016/j.clinph.2006.02.005.
Article
PubMed
CAS
Google Scholar
Hwang HJ, Kim KH, Jung YJ, Kim DW, Lee YH, Im CH. An EEG-based real-time cortical functional connectivity imaging system. Med Biol Eng Comput. 2011;49:985–95.
PubMed
Google Scholar
Lee NG, Kang SK, Lee DR, Hwang HJ, Jung JH, You JSH, Im CH, Kim DA, Jung A, Lee PT, Ki S, Kim KS. Feasibility and test-retest reliability of an electroencephalography-based brain mapping system in children with cerebral palsy: a preliminary investigation. Arch Phys Med Rehabil. 2012;93:882–8.
PubMed
Google Scholar
Murta T, Chaudhary UJ, Tierney TM, Dias A, Leite M, Carmichael DW, Carmichael P, Lemieux L. Phase–amplitude coupling and the BOLD signal: a simultaneous intracranial EEG (icEEG)-fMRI study in humans performing a finger-tapping task. NeuroImage. 2017;146:438–51.
PubMed
CAS
Google Scholar
Stavrinou ML, Moraru L, Cimponeriu L, Della Penna S, Bezerianos A. Evaluation of cortical connectivity during real and imagined rhythmic finger tapping. Brain Topogr. 2007;19:137–45.
PubMed
Google Scholar
Volkova K, Lebedev MA, Kaplan A, Ossadtchi A. Decoding movement from electrocorticographic activity: a review. Front Neuroinform. 2019;13:74.
PubMed
PubMed Central
Google Scholar
Shim M, Choi GY, Paik NJ, Lim C, Hwang HJ, Kim WS. Altered functional networks of alpha and low-beta bands during upper limb movement and association with motor impairment in chronic stroke. Brain Connect. 2021. https://doi.org/10.1089/brain.2021.0070.
Article
PubMed
Google Scholar
Gerloff C, Bushara K, Sailer A, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129:791–808.
PubMed
Google Scholar
Stępień M, Conradi J, Waterstraat G, et al. Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neurosci Lett. 2011;488:17–21.
PubMed
Google Scholar
Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng. 2019;16:051001.
Dallmer-Zerbe I, Popp F, Lam AP, Philipsen A, Herrmann CS. Transcranial alternating current stimulation (tACS) as a tool to modulate P300 amplitude in attention deficit hyperactivity disorder (ADHD): preliminary findings. Brain Topogr. 2020;33:191–207.
PubMed
PubMed Central
Google Scholar
Breitling C, Zaehle T, Dannhauer M, Bonath B, Tegelbeckers J, Flechtner HH, Krauel K. Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS). Front Cell Neurosci. 2016;10:72.
PubMed
PubMed Central
Google Scholar
Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, Suaud-Chagny MF, Poulet E, et al. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry. 2012;169:719–24.
PubMed
Google Scholar
George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, Li XB, Ballenger JC, et al. A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol Psychiatry. 2000;48:962–70.
PubMed
CAS
Google Scholar
Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009;219:14–9.
PubMed
Google Scholar
Fregni F, Boggio PS, Nitsche MA, Rigonatti SP, Pascual-Leone A. Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress Anxiety. 2006;23:482–4.
PubMed
Google Scholar
Padberg F, Kumpf U, Mansmann U, Palm U, Plewnia C, Langguth B, Keeser D, et al. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC). Eur Arch Psychiatry Clin Neurosci. 2017;267:751–66.
PubMed
Google Scholar