Deuschl G, Wenzelburger R, Löffler K, Raethjen J, Stolze H. Essential tremor and cerebellar dysfunction. Clinical and kinematic analysis of intention tremor. Brain. 2000;123(8):1568–80.
PubMed
Google Scholar
Fishman PS. Paradoxical aspects of parkinsonian tremor. Mov Disord. 2008;23:168–73.
PubMed
Google Scholar
Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, et al. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8(12):1128–39.
CAS
PubMed
Google Scholar
Cagnan H, Denison T, McIntyre C, Brown P. Emerging technologies for improved deep brain stimulation. Nat Biotechnol. 2019;37:1024–33.
CAS
PubMed
PubMed Central
Google Scholar
Pollak P. Deep brain stimulation for Parkinson’s disease—patient selection. In: Handbook of clinical neurology, vol. 116. 1st ed. Amsterdam: Elsevier B.V.; 2013. p. 97–105.
Google Scholar
Brittain JS, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013;23(5):436–40.
CAS
PubMed
PubMed Central
Google Scholar
Saifee TA, Edwards MJ, Kassavetis P, Gilbertson T. Estimation of the phase response curve from Parkinsonian tremor. J Neurophysiol. 2016;115(1):310–23.
PubMed
Google Scholar
Javidan M, Elek J, Prochazka A. Attenuation of pathological tremors by functional electrical stimulation II: clinical evaluation. Ann Biomed Eng. 1992;20:225–36.
CAS
PubMed
Google Scholar
Prochazka A, Elek J, Javidan M. Attenuation of pathological tremors by functional electrical stimulation I: method. Ann Biomed Eng. 1992;20(2):205–24.
CAS
PubMed
Google Scholar
Maneski LP, Jorgovanović N, Ilić V, Došen S, Keller T, Popović MB, et al. Electrical stimulation for the suppression of pathological tremor. Med Biol Eng Comput. 2011;49(10):1187–93.
Google Scholar
Dosen S, Muceli S, Dideriksen JL, Romero JP, Rocon E, Pons J, et al. Online tremor suppression using electromyography and low-level electrical stimulation. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):385–95.
PubMed
Google Scholar
Dideriksen JL, Laine CM, Dosen S, Muceli S, Rocon E, Pons JL, et al. Electrical stimulation of afferent pathways for the suppression of pathological tremor. Front Neurosci. 2017;11:178.
PubMed
PubMed Central
Google Scholar
Hao MZ, Xu SQ, Hu ZX, Xu FL, Niu CXM, Xiao Q, et al. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation. J Neuroeng Rehabil. 2017;14:75.
PubMed
PubMed Central
Google Scholar
MacErollo A, Holz C, Cletheror D, Vega J, Moody J, Saul G, et al. Non-invasive intervention for motor signs of Parkinson’s disease: the effect of vibratory stimuli. J Neurol Neurosurg Psychiatry. 2020;92(1):109–10.
Google Scholar
Holt AB, Kormann E, Gulberti A, Pötter-Nerger M, McNamara CG, Cagnan H, et al. Phase-dependent suppression of beta oscillations in Parkinson’s disease patients. J Neurosci. 2019;39(6):1119–34.
PubMed
PubMed Central
Google Scholar
Peles O, Werner-Reiss U, Bergman H, Israel Z, Vaadia E. Phase-specific microstimulation differentially modulates beta oscillations and affects behavior. Cell Rep. 2020;30(8):2555-2566.e3.
CAS
PubMed
Google Scholar
Holt AB, Wilson D, Shinn M, Moehlis J, Netoff TI. Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease. PLoS Comput Biol. 2016;12(7):e1005011.
PubMed
PubMed Central
Google Scholar
Escobar Sanabria D, Johnson LA, Yu Y, Busby Z, Nebeck S, Zhang J, et al. Real-time suppression and amplification of frequency-specific neural activity using stimulation evoked oscillations. Brain Stimul. 2020;13(6):1732–42.
PubMed
Google Scholar
McNamara C, Rothwell M, Sharott A. Phase-dependent closed-loop modulation of neural oscillations in vivo. bioRxiv. 2020. https://doi.org/10.1101/2020.05.21.102335.
Moll CKE, Engel AK. Phase matters: cancelling pathological tremor by adaptive deep brain stimulation. Brain. 2017;140(1):5–8.
PubMed
Google Scholar
Vitek JL, Ashe J, Kaneoke Y. Spontaneous neuronal activity in the motor thalamus: alteration in pattern and rate in Parkinsonism. Soc Neurosci Abstr. 1994;20:1498–513.
Google Scholar
Hanajima R, Chen R, Ashby P, Lozano AM, Hutchison WD, Davis KD, et al. Very fast oscillations evoked by median nerve stimulation in the human thalamus and subthalamic nucleus. J Neurophysiol. 2004;92(6):3171–82.
PubMed
Google Scholar
Milosevic L, Kalia SK, Hodaie M, Lozano AM, Popovic MR, Hutchison WD. Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain. 2018;141(7):2142–55.
PubMed
PubMed Central
Google Scholar
Ohye C, Narabayashi H. Physiological study of presumed ventralis intermedius neurons in the human thalamus. J Neurosurg. 1979;50(3):290–7.
CAS
PubMed
Google Scholar
Maendly R, Ruegg DG, Wiesendanger M, Lagowska J, Hess B. Thalamic relay for group I muscle afferents of forelimb nerves in the monkey. J Neurophysiol. 1981;46(5):901–17.
CAS
PubMed
Google Scholar
Brodkey JA, Tasker RR, Hamani C, McAndrews MP, Dostrovsky JO, Lozano AM. Tremor cells in the human thalamus: differences among neurological disorders. J Neurosurg. 2004;101(1):43–7.
PubMed
Google Scholar
Alberts WW, Wright EW, Feinstein B. Cortical potentials and parkinsonian tremor. Nature. 1969;221(5181):670–2.
CAS
PubMed
Google Scholar
Ben-Pazi H, Bergman H, Goldberg JA, Giladi N, Hansel D, Reches A, et al. Synchrony of rest tremor in multiple limbs in Parkinson’s disease: evidence for multiple oscillators. J Neural Transm. 2001;108:287–96.
CAS
PubMed
Google Scholar
Hurtado JM, Lachaux JP, Beckley DJ, Gray CM, Sigvardt KA. Inter- and intralimb oscillator coupling in Parkinsonian tremor. Mov Disord. 2000;15:683–91.
CAS
PubMed
Google Scholar
O’Suilleabhain PE, Matsumoto JY. Time-frequency analysis of tremors. Brain. 1998;121(11):2127–34.
PubMed
Google Scholar
Raethjen J, Lindemann M, Schmaljohann H, Wenzelburger R, Pfister G, Deuschl G. Multiple oscillators are causing parkinsonian and essential tremor. Mov Disord. 2000;15(1):84–94.
CAS
PubMed
Google Scholar
He X, Hao MZ, Wei M, Xiao Q, Lan N. Contribution of inter-muscular synchronization in the modulation of tremor intensity in Parkinson’s disease. J Neuroeng Rehabil. 2015;12(1):1–14.
Google Scholar
van der Stouwe AMM, Conway BA, Elting JW, Tijssen MAJ, Maurits NM. Usefulness of intermuscular coherence and cumulant analysis in the diagnosis of postural tremor. Clin Neurophysiol. 2015;126(8):1564–9.
PubMed
Google Scholar
Hurtado JM, Gray CM, Tamas LB, Sigvardt KA. Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci USA. 1999;96(4):1674–9.
CAS
PubMed
PubMed Central
Google Scholar
Hurtado JM, Rubchinsky LL, Sigvardt KA, Wheelock VL, Pappas CTE. Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson’s disease. J Neurophysiol. 2005;93(3):1569–84.
PubMed
Google Scholar
Dideriksen JL, Gallego JA, Holobar A, Rocon E, Pons JL, Farina D. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor. J Neural Eng. 2015. https://doi.org/10.1088/1741-2560/12/4/046019.
Article
PubMed
Google Scholar
Pedrosa DJ, Reck C, Florin E, Pauls KAM, Maarouf M, Wojtecki L, et al. Essential tremor and tremor in Parkinson’s disease are associated with distinct “tremor clusters” in the ventral thalamus. Exp Neurol. 2012;237(2):435–43.
PubMed
Google Scholar
Reck C, Florin E, Wojtecki L, Krause H, Groiss S, Voges J, et al. Characterisation of tremor-associated local field potentials in the subthalamic nucleus in Parkinson’s disease. Eur J Neurosci. 2009;29(3):599–612.
PubMed
Google Scholar
Cagnan H, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain. 2017;140(1):132–45.
PubMed
Google Scholar
Reis C, Arruda BS, Pogosyan A, Brown P, Cagnan H. Essential tremor amplitude modulation by median nerve stimulation. Sci Rep. 2021;11(1):1–10.
Google Scholar
Crutcher MD, DeLong MR. Single cell studies of the primate putamen—II. Relations to direction of movement and pattern of muscular activity. Exp Brain Res. 1984;53:244–58.
CAS
PubMed
Google Scholar
DeLong MR, Crutcher MD, Georgopoulos AP. Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol. 1985;53(2):530–43.
CAS
PubMed
Google Scholar
Kaneda K, Nambu A, Tokuno H, Takada M. Differential processing patterns of motor information via striatopallidal and striatonigral projections. J Neurophysiol. 2002;88(3):1420–32.
PubMed
Google Scholar
Theodosopoulos PV, Marks WJ, Christine C, Starr PA. Locations of movement-related cells in the human subthalamic nucleus in Parkinson’s disease. Mov Disord. 2003;18(7):791–8.
PubMed
Google Scholar
Romanelli P, Heit G, Hill BC, Kraus A, Hastie T, Brontë-Stewart HM. Microelectrode recording revealing a somatotopic body map in the subthalamic nucleus in humans with Parkinson disease. J Neurosurg. 2004;100(4):611–8.
PubMed
Google Scholar
Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20(C):53–65.
Google Scholar
Moran A, Bergman H, Israel Z, Bar-Gad I. Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony. Brain. 2008;131(12):3395–409.
CAS
PubMed
Google Scholar
Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126(1):199–212.
PubMed
Google Scholar
Hirschmann J, Hartmann CJ, Butz M, Hoogenboom N, Özkurt TE, Elben S, et al. A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson’s disease. Brain. 2013;136(12):3659–70.
PubMed
Google Scholar
Gilron R, Little S, Perrone R, Wilt R, de Hemptinne C, Yaroshinsky MS, et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat Biotechnol. 2021;39(9):1078–85.
CAS
PubMed
PubMed Central
Google Scholar
Grado LL, Johnson MD, Netoff TI. Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease. PLoS Comput Biol. 2018;14(12):1–23.
Google Scholar