Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–303. https://doi.org/10.1016/S0140-6736(21)00218-X.
Article
CAS
Google Scholar
Foki T, Vanbellingen T, Lungu C, Pirker W, Bohlhalter S, Nyffeler T, et al. Limb-kinetic apraxia affects activities of daily living in Parkinson’s disease: a multi-center study. Eur J Neurol. 2016;23:89.
Article
Google Scholar
Vanbellingen T, Nyffeler T, Nef T, Kwakkel G, Bohlhalter S, van Wegen EEH. Reliability and validity of a new dexterity questionnaire (DextQ-24) in Parkinson’s disease. Park Relat Disord. 2016;33:78.
Article
Google Scholar
Vanbellingen T, Kersten B, Bellion M, Temperli P, Baronti F, Müri R, et al. Impaired finger dexterity in Parkinson’s disease is associated with praxis function. Brain Cogn. 2011;77:48.
Article
CAS
Google Scholar
Vanbellingen T, Hofmänner D, Kübel S, Bohlhalter S. Limb Kinetic Apraxia Is an Independent Predictor for Quality of Life in Parkinson’s Disease. Mov Disord Clin Pract. 2018;5:156.
Article
Google Scholar
Zare M, Özdemir H, Tavşan MY, Tuna F, Süt N, Güler S, et al. Effect of activity-based training versus strengthening exercises on upper extremity functions in Parkinson’s patients; A randomized controlled, single blind, superiority trial. Clin Neurol Neurosurg. 2022;218:107261.
Article
Google Scholar
Csikszentmihalyi M, Nakamura J. Effortless attention in everyday life: A systematic phenomenology. In: Bruya B, editor. Effortless Atten A new Perspect Cogn Sci Atten action. New York: MIT Press; 2010. p. 179–89.
Google Scholar
Ottiger B, Van Wegen E, Keller K, Nef T, Nyffeler T, Kwakkel G, et al. Getting into a “Flow” state: a systematic review of flow experience in neurological diseases. J Neuroeng Rehabil. 2021;18:8.
Article
Google Scholar
Gold J, Ciorciari J. A review on the role of the neuroscience of flow states in the modern world. Behav Sci (Basel). 2020;10:89.
Google Scholar
Garcia-Agundez A, Folkerts A-K, Konrad R, Caserman P, Tregel T, Goosses M, et al. Recent advances in rehabilitation for Parkinson’s Disease with Exergames. J NeuroEngineering Rehabil. 2019;16:1–17. https://doi.org/10.1186/s12984-019-0492-1.
Article
Google Scholar
Papamichael E, Solou D, Michailidou C, Papamichail M. Differences between exergaming rehabilitation and conventional physiotherapy on quality of life in Parkinson’s disease: a systematic review and meta-analysis. Front Neurol. 2021;12:1–14.
Google Scholar
Gallou-Guyot M, Nuic D, Mandigout S, Compagnat M, Welter ML, Daviet JC, et al. Effectiveness of home-based rehabilitation using active video games on quality of life, cognitive and motor functions in people with Parkinson’s disease: a systematic review. Disabil Rehabil. 2022;8:7.
Google Scholar
van Beek J, van Wegen E, Bohlhalter S, Vanbellingen T. Exergaming-based dexterity training in persons with Parkinson disease: a pilot feasibility study. J Neurol Phys Ther. 2019;43:168–74.
Article
Google Scholar
Fernández-González P, Carratalá-Tejada M, Monge-Pereira E, Collado-Vázquez S, Sánchez-Herrera Baeza P, Cuesta-Gómez A, et al. Leap motion controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson’s disease: a feasibility study. J Neuroeng Rehabil. 2019;16:8.
Article
Google Scholar
Roberts HC, Syddall HE, Butchart JW, Stack EL, Cooper C, Sayer AA. The association of grip strength with severity and duration of Parkinson’s: A cross-sectional study. Neurorehabil Neural Repair. 2015;29:889–96.
Article
Google Scholar
Fellows SJ, Noth J, Schwarz M. Precision grip and Parkinson’s disease. Brain. 1998;121:1771–84.
Article
Google Scholar
Basalp E, Wolf P, Marchal-Crespo L. Haptic Training: Which Types Facilitate (re)Learning of Which Motor Task and for Whom? Answers by a Review. IEEE Trans Haptics. 2021;89:9.
Google Scholar
Broderick M, Almedom L, Burdet E, Burridge J, Bentley P. Self-Directed Exergaming for Stroke Upper Limb Impairment Increases Exercise Dose Compared to Standard Care. Neurorehabil Neural Repair. 2021;35:974–85.
Article
Google Scholar
Mutalib SA, Mace M, Seager C, Burdet E, Mathiowetz V, Goldsmith N. Modernising grip dynamometry: Inter-instrument reliability between GripAble and Jamar. BMC Musculoskelet Disord. 2022;23:78.
Article
Google Scholar
Di Lazzaro V, Pilato F, Dileone M, Profice P, Oliviero A, Mazzone P, et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol. 2008;586:3871.
Article
Google Scholar
Huang Y-Z, Rothwell JC, Chen R-S, Lu C-S, Chuang JC. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2011;122:1011–8.
Article
Google Scholar
Chen YJ, Huang YZ, Chen CY, Chen CL, Chen HC, Wu CY, et al. Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: a pilot randomized controlled trial. BMC Neurol BMC Neurology. 2019;19:1–10.
Google Scholar
Kübel S, Stegmayer K, Vanbellingen T, Walther S, Bohlhalter S. Deficient supplementary motor area at rest: Neural basis of limb kinetic deficits in Parkinson’s disease. Hum Brain Mapp. 2018;39:8.
Article
Google Scholar
Randhawa BK, Farley BG, Boyd LA. Repetitive transcranial magnetic stimulation improves handwriting in parkinson’s disease. Parkinsons Dis. 2013. https://doi.org/10.1155/2013/751925.
Article
Google Scholar
Butler AJ, Wolf SL. Putting the brain on the map: Use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther. 2007;8:778.
Google Scholar
Pastore-Wapp M, Lehnick D, Nef T, Bohlhalter S, Vanbellingen T. Combining repetitive transcranial magnetic stimulation and video game-based training to improve dexterity in Parkinson’s disease: study protocol of a randomized controlled trial. Front Rehabil Sci. 2021;2:1–8.
Article
Google Scholar
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181.
Article
CAS
Google Scholar
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert Guidelines. Clin Neurophysiol. 2021;132:269–306.
Article
Google Scholar
Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9:97–113.
Article
CAS
Google Scholar
Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov Disord. 2004;19:1020–8.
Article
Google Scholar
Nasreddine Z, Phillips N, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.
Article
Google Scholar
Yoshida K, Asakawa K, Yamauchi T, Sakuraba S, Sawamura D, Murakami Y, et al. The flow state scale for occupational tasks: development, reliability, and validity. Hong Kong J Occup Ther. 2013;23:54–61.
Article
Google Scholar
Brooke J. System Usability Scale (SUS): A Quick-and-Dirty Method of System Evaluation User Information. Usability Eval Ind. 1996;8:90.
Google Scholar
Borsci S, Federici S, Lauriola M. On the dimensionality of the System Usability Scale: A test of alternative measurement models. Cogn Process. 2009;10:193–7.
Article
Google Scholar
Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201.
Article
CAS
Google Scholar
Weichert F, Bachmann D, Rudak B, Fisseler D. Analysis of the accuracy and robustness of the Leap Motion Controller. Sensors. 2013;13:6980.
Article
Google Scholar
Smeragliuolo AH, Hill NJ, Disla L, Putrino D. Validation of the Leap Motion Controller using markered motion capture technology. J Biomech. 2016;49:1742.
Article
Google Scholar
Mace M, Rinne P, Liardon JL, Bentley P, Burdet E. Comparison of flexible and rigid hand-grip control during a feed-forward visual tracking task. IEEE Int Conf Rehabil Robot. 2015;89:67.
Google Scholar
Robiner WN. Enhancing adherence in clinical research. Contemp Clin Trials. 2005;26:59.
Article
Google Scholar
Van Roie E, Bautmans I, Coudyzer W, Boen F, Delecluse C. Low- and high-resistance exercise: long-term adherence and motivation among older adults. Gerontology. 2015;61:89.
Google Scholar
Finley JM, Gotsis M, Lympouridis V, Jain S, Kim A, Fisher BE. Design and development of a virtual reality-based mobility training game for people with Parkinson’s Disease. Front Neurol. 2021;11:713.
Article
Google Scholar
Lahude AB, Souza Corrêa P, Maria ME, Cechetti F. The impact of virtual reality on manual dexterity of Parkinson’s disease subjects: a systematic review. Disabil Rehabil Assist Technol. 2022;89:8.
Google Scholar
Vanbellingen T, van Beek J, Nyffeler T, Urwyler P, Nef T, Bohlhalter S. Tablet app-based dexterity-training in patients with Parkinson’s disease: pilot feasibility study. Ann Phys Rehabil Med. 2021;45:9.
Google Scholar
Chu HT, Cheng CM, Liang CS, Chang WH, Juan CH, Huang YZ, et al. Efficacy and tolerability of theta-burst stimulation for major depression: A systematic review and meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;106:110168.
Article
Google Scholar
Knippenberg E, Verbrugghe J, Lamers I, Palmaers S, Timmermans A, Spooren A. Markerless motion capture systems as training device in neurological rehabilitation: A systematic review of their use, application, target population and efficacy. J Neuroeng Rehabil. 2017;14:1.
Article
Google Scholar
Hung C-L, Chou JC-L, Ding C-M. Enhancing mobile satisfaction through integration of usability and flow. Eng Manag Res. 2012. https://doi.org/10.5539/emr.v1n1p44.
Article
Google Scholar