Iosa M, Paradisi F, Brunelli S, Delussu AS, Pellegrini R, Zenardi D, et al. Assessment of gait stability, harmony, and symmetry in subjects with lower-limb amputation evaluated by trunk accelerations. J Rehabil Res Dev. 2014;51(4):623–34.
Article
Google Scholar
Jarvis HL, Bennett AN, Twiste M, Phillip RD, Etherington J, Baker R. Temporal spatial and metabolic measures of walking in highly functional individuals with lower limb amputations. Arch Phys Med Rehabil. 2017;98(7):1389–99.
Article
Google Scholar
Morgan SJ, Hafner BJ, Kelly VE. The effects of a concurrent task on walking in persons with transfemoral amputation compared to persons without limb loss. Prosthet Orthot Int. 2016;40(4):490–6.
Article
Google Scholar
Morgan SJ, Hafner BJ, Kelly VE. Dual-task walking over a compliant foam surface: a comparison of people with transfemoral amputation and controls. Gait Posture. 2017;58:41–5.
Article
Google Scholar
Russell Esposito E, Rábago CA, Wilken J. The influence of traumatic transfemoral amputation on metabolic cost across walking speeds. Prosthet Orthot Int. 2018;42(2):214–22.
Article
Google Scholar
Sheehan RC, Rábago CA, Rylander JH, Dingwell JB, Wilken JM. Use of perturbation-based gait training in a virtual environment to address mediolateral instability in an individual with unilateral transfemoral amputation. Phys Ther. 2016;96(12):1896–904.
Article
Google Scholar
Sinitski EH, Lemaire ED, Baddour N, Besemann M, Dudek N, Hebert JS. Maintaining stable transtibial amputee gait on level and simulated uneven conditions in a virtual environment. Disabil Rehabil Assist Technol. 2021;16(1):40–8.
Article
Google Scholar
Czerniecki JM, Morgenroth DC. Metabolic energy expenditure of ambulation in lower extremity amputees: what have we learned and what are the next steps? Disabil Rehabil. 2017;39(2):143–51.
Article
Google Scholar
Devan H, Carman A, Hendrick P, Hale L, Ribeiro DC. Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: systematic review. J Rehabil Res Dev. 2015;52(1):1–20.
Article
Google Scholar
Hendershot BD, Wolf EJ. Three-dimensional joint reaction forces and moments at the low back during over-ground walking in persons with unilateral lower-extremity amputation. Clin Biomech. 2014;29(3):235–42.
Article
Google Scholar
Ghillebert J, De Bock S, Flynn L, Geeroms J, Tassignon B, Roelands B, et al. Guidelines and recommendations to investigate the efficacy of a lower-limb prosthetic device: a systematic review. IEEE Trans Med Robot Bionics. 2019;1(4):279–96.
Article
Google Scholar
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.
Article
Google Scholar
Ambrozic L, Gorsic M, Geeroms J, Flynn L, Molino Lova R, Kamnik R, et al. CYBERLEGs: a user-oriented robotic transfemoral prosthesis with whole-body awareness control. Ieee Robot Autom Mag. 2014;21(4):82–93.
Article
Google Scholar
Andrysek J, Klejman S, Torres-Moreno R, Heim W, Steinnagel B, Glasford S. Mobility function of a prosthetic knee joint with an automatic stance phase lock. Prosthet Orthot Int. 2011;35(2):163–70.
Article
Google Scholar
Andrysek J, Liang T, Steinnagel B. Evaluation of a prosthetic swing-phase controller with electrical power generation. IEEE Trans Neural Syst Rehabil Eng. 2009;17(4):390–6.
Article
Google Scholar
Arelekatti VNM, Winter AG, editors. Design of a fully passive prosthetic knee mechanism for transfemoral amputees in India. IEEE International Conference on Rehabilitation Robotics; 2015.
Arelekatti VNM, Winter AG, editors. Design of mechanism and preliminary field validation of low-cost, passive prosthetic knee for users with transfemoral amputation in India. Proceedings of the ASME Design Engineering Technical Conference; 2015.
Awad MI, Abouhossein A, Dehghani-Sanij AA, Richardson R, Moser D, Zahedi S, et al. Towards a smart semi-active prosthetic leg: preliminary assessment and testing. Ifac Papersonline. 2016;49(21):170–6.
Article
Google Scholar
Baimyshev A, Lawson B, Goldfarb M. Design and preliminary assessment of lightweight swing-assist knee prosthesis. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:3198–201.
Google Scholar
Bhakta K, Camargo J, Young AJ, editors. Control and experimental validation of a powered knee and ankle prosthetic device. ASME 2018 Dynamic Systems and Control Conference, DSCC 2018; 2018.
Cao W, Yu H, Meng Q, Chen W, Li S. Plantar pressure analysis of above-knee amputee with a developed microprocessor-controlled prosthetic knee. Acta Bioeng Biomech. 2018;20(4):33–40.
Google Scholar
Cao W, Yu H, Zhao W, Meng Q, Chen W. The comparison of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knee under different walking speeds: a randomized cross-over trial. Technol Health Care. 2018;26(4):581–92.
Article
Google Scholar
Endo K, Takeshima H, Tawara T, editors. Development of powered knee prosthesis with small-scale, light-weight, and affordable series-elastic actuator, and its preliminary walking test. Proceedings of the IEEE 2019 9th international conference on cybernetics and intelligent systems and robotics, automation and mechatronics, CIS and RAM 2019; 2019.
Flynn L, Geeroms J, Jimenez-Fabian R, Heins S, Vanderborght B, Munih M, et al. The challenges and achievements of experimental implementation of an active transfemoral prosthesis based on biological quasi-stiffness: the CYBERLEGs beta-prosthesis. Front Neurorobot. 2018;12:80.
Article
Google Scholar
Flynn L, Geeroms J, Jimenez-Fabian R, Vanderborght B, Lefeber D, editors. CYBERLEGS beta-prosthesis active knee system. IEEE international conference on rehabilitation robotics; 2015.
Flynn L, Geeroms J, Jimenez-Fabian R, Vanderborght B, Vitiello N, Lefeber D. Ankle-knee prosthesis with active ankle and energy transfer: development of the CYBERLEGs alpha-prosthesis. Robot Auton Syst. 2015;73:4–15.
Article
Google Scholar
Furse A, Cleghorn W, Andrysek J. Development of a low-technology prosthetic swing-phase mechanism. J Med Biol Eng. 2011;31(2):145–50.
Article
Google Scholar
Furse A, Cleghorn W, Andrysek J. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses. IEEE Trans Biomed Eng. 2011. https://doi.org/10.1109/TBME.2011.2155059.
Article
Google Scholar
Gao S, Wang C, Zhu J, Mai J, Wang Q, editors. Hydraulic damping and swing assistance control of a robotic electrohydraulic transfemoral prosthesis: preliminary results. Proceedings of IEEE workshop on advanced robotics and its social impacts, ARSO; 2019.
Hasenoehrl T, Schmalz T, Windhager R, Domayer S, Dana S, Ambrozy C, et al. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study. Disabil Rehabil Assist Technol. 2018;13(2):157–65.
Article
Google Scholar
Hood SA, Lenzi T. Preliminary analysis of positive knee energy injection in a transfemoral amputee walking with a powered prosthesis. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:1821–4.
Google Scholar
Hoover CD, Fulk GD, Fite KB. The design and initial experimental validation of an active myoelectric transfemoral prosthesis. J Med Devices. 2012. https://doi.org/10.1115/1.4005784.
Article
Google Scholar
Jayaraman C, Hoppe-Ludwig S, Deems-Dluhy S, McGuire M, Mummidisetty C, Siegal R, et al. Impact of powered knee-ankle prosthesis on low back muscle mechanics in transfemoral amputees: a case series. Front Neurosci. 2018;12:134.
Article
Google Scholar
Khalaf P, Warner H, Hardin E, Richter H, Simon D, editors. Development and experimental validation of an energy regenerative prosthetic knee controller and prototype. ASME 2018 dynamic systems and control conference, DSCC 2018; 2018.
Lambrecht BGA, Kazerooni H, editors. Design of a semi-active knee prosthesis. Proceedings—IEEE international conference on robotics and automation; 2009.
Lawson BE, Mitchell J, Truex D, Shultz A, Ledoux E, Goldfarb M. A robotic leg prosthesis: design, control, and implementation. Ieee Robot Autom Mag. 2014;21(4):70–81.
Article
Google Scholar
Lee JT, Bartlett HL, Goldfarb M. Design of a semipowered stance-control swing-assist transfemoral prosthesis. Ieee-Asme T Mech. 2020;25(1):175–84.
Article
CAS
Google Scholar
Lee S, Hong J. The effect of prosthetic ankle mobility in the sagittal plane on the gait of transfemoral amputees wearing a stance phase controlled knee prosthesis. Proc Inst Mech Eng H. 2009;223(2):263–71.
Article
CAS
Google Scholar
Lenzi T, Cempini M, Hargrove L, Kuiken T. Design, development, and testing of a lightweight hybrid robotic knee prosthesis. Int J Robot Res. 2018;37(8):953–76.
Article
Google Scholar
Li Q, Chen S, Xu C, Chu X, Li Z, editors. Design, control and implementation of a powered prosthetic leg. 2018 11th international workshop on human friendly robotics, HFR 2018; 2019.
Li S, Cao W, Yu H, Meng Q, Chen W. Physiological parameters analysis of transfemoral amputees with different prosthetic knees. Acta Bioeng Biomech. 2019;21(3):135–42.
Google Scholar
Martinez-Villalpando EC, Mooney L, Elliott G, Herr H. Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8519–22.
Google Scholar
Murthy Arelekatti VN, Winter VAG. Design and preliminary field validation of a fully passive prosthetic knee mechanism for users with transfemoral amputation in India. J Mech Robot. 2018. https://doi.org/10.1115/1.4039222.
Article
Google Scholar
Ochoa-Diaz C, Rocha TS, De Levy Oliveira L, Paredes MG, Lima R, Padilha A, et al., editors. An above-knee prosthesis with magnetorheological variable-damping. Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics; 2014.
Pandit S, Godiyal AK, Vimal AK, Singh U, Joshi D, Kalyanasundaram D. An affordable insole-sensor-based trans-femoral prosthesis for normal gait. Sensors. 2018. https://doi.org/10.3390/s18030706.
Article
Google Scholar
Pfeifer S, Pagel A, Riener R, Vallery H. Actuator with angle-dependent elasticity for biomimetic transfemoral prostheses. Ieee-Asme T Mech. 2015;20(3):1384–94.
Article
Google Scholar
Ramakrishnan T, Schlafly M, Reed KB. Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee. IEEE Int Conf Rehabil Robot. 2017;2017:1160–4.
Google Scholar
Rouse EJ, Mooney LM, Herr HM. Clutchable series-elastic actuator: implications for prosthetic knee design. Int J Robot Res. 2014;33(13):1611–25.
Article
Google Scholar
Sharma R, Singh D, Tiwari A, Joshi D. User-feedback based robust and simplified damping control for affordable transfemoral prosthesis. Electron Lett. 2020;56(8):366–7.
Article
Google Scholar
Sun X, Sugai F, Okada K, Inaba M, editors. Design and control of a novel robotic knee-ankle prosthesis system. Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics; 2018.
Sun X, Sugai F, Okada K, Inaba M, editors. Variable transmission series elastic actuator for robotic prosthesis. Proceedings—IEEE international conference on robotics and automation; 2018.
Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M. Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE ASME Trans Mechatron. 2009;14(6):667–76.
Article
Google Scholar
Torrealba RR, Pérez-D'Arpino C, Cappelletto J, Fermín-León L, Fernández-López G, Grieco JC, editors. Through the development of a biomechatronic knee prosthesis for transfemoral amputees: mechanical design and manufacture, human gait characterization, intelligent control strategies and tests. Proceedings—IEEE international conference on robotics and automation; 2010.
Torrealba RR, Zambrano LA, Andara E, Fernández-López G, Grieco JC, editors. Medium-cost electronic prosthetic knee for transfemoral amputees: a medical solution for developing countries. IFMBE proceedings; 2009.
Unal R, Klijnstra F, Burkink B, Behrens SM, Hekman EE, Stramigioli S, et al. Modeling of WalkMECH: a fully-passive energy-efficient transfemoral prosthesis prototype. IEEE Int Conf Rehabil Robot. 2013;2013:6650406.
CAS
Google Scholar
Valencia F, Ortiz D, Ojeda D, editors. Design and testing of low-cost knee prosthesis. 2017 IEEE 2nd Ecuador technical chapters meeting, ETCM 2017; 2018.
Williams MR, D’Andrea S, Herr HM. Impact on gait biomechanics of using an active variable impedance prosthetic knee. J Neuroeng Rehabil. 2016;13(1):54.
Article
CAS
Google Scholar
Williams MR, Herr H, D’Andrea S. Metabolic effects of using a variable impedance prosthetic knee. J Rehabil Res Dev. 2016;53(6):1079–88.
Article
Google Scholar
Xavier B, Mayra C, Johanna T, De La Cruz D, Loza D, Corella J, editors. Low cost mechatronics prototype prosthesis for transfemoral amputation controled by myolectric signals. Lecture notes in engineering and computer science; 2017.
Yokogushi K, Narita H, Uchiyama E, Chiba S, Nosaka T, Yamakoshi K. Biomechanical and clinical evaluation of a newly designed polycentric knee of transfemoral prosthesis. J Rehabil Res Dev. 2004;41(5):675–82.
Article
Google Scholar
Fortington LV, Rommers GM, Postema K, van Netten JJ, Geertzen JH, Dijkstra PU. Lower limb amputation in Northern Netherlands: unchanged incidence from 1991–1992 to 2003–2004. Prosthet Orthot Int. 2013;37(4):305–10.
Article
Google Scholar
Dillingham TR, Pezzin LE, MacKenzie EJ. Limb amputation and limb deficiency: epidemiology and recent trends in the United States. South Med J. 2002;95(8):875–84.
Google Scholar
Trewartha KM, Garcia A, Wolpert DM, Flanagan JR. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline. J Neurosci. 2014;34(40):13411–21.
Article
CAS
Google Scholar
van Dijsseldonk RB, Rijken H, van Nes IJ, van de Meent H, Keijsers NL. Predictors of exoskeleton motor learning in spinal cord injured patients. Disabil Rehabil. 2021;43(14):1982–8.
Article
Google Scholar
Kilkens OJ, Dallmeijer AJ, Angenot E, Twisk JW, Post MW, van der Woude LH. Subject-and injury-related factors influencing the course of manual wheelchair skill performance during initial inpatient rehabilitation of persons with spinal cord injury. Arch Phys Med Rehabil. 2005;86(11):2119–25.
Article
Google Scholar
Flynn LL, Geeroms J, van der Hoeven T, Vanderborght B, Lefeber D. VUB-CYBERLEGs CYBATHLON 2016 beta-prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis. J Neuroeng Rehabil. 2018;15(1):3.
Article
Google Scholar