Christensen K, Doblhammer G, Rau R, Vaupel JW: Ageing populations: the challenges ahead. Lancet 2009,374(9696):1196-1208.
Article
PubMed
PubMed Central
Google Scholar
Tanaka K, Parker J, Baradoy G, Sheehan D, Holash JR, Katz L: A comparison of exergaming interfaces for use in rehabilitation programs and research. Loading... 2012,6(9):69-81.
Google Scholar
World Health Organization: International Classification of Functioning, Disability and Health (ICF). Geneva: WHO; 2002.
Google Scholar
Berg K, Wood-Dauphinee S, Williams J: The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med 1995, 27: 27-36.
CAS
PubMed
Google Scholar
Tinetti ME: Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 1986,34(2):119-126.
Article
CAS
PubMed
Google Scholar
Rossier P, Wade DT: Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch Phys Med Rehabil 2001, 82: 9-13.
Article
CAS
PubMed
Google Scholar
Tinetti ME, Speechley M, Ginter SF: Risk factors for falls among elderly persons living in the community. N Engl J Med 1988,319(26):1701-1707.
Article
CAS
PubMed
Google Scholar
O’Loughlin JL, Robitaille Y, Boivin JF, Suissa S: Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly. Am J Epidemiol 1993,137(3):342-354.
PubMed
Google Scholar
Arfken CL, Lach HW, Birge SJ, Miller JP: The prevalence and correlates of fear of falling in elderly persons living in the community. Am J Public Health 1994,84(4):565-570.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubenstein LZ: Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing 2006,35(suppl 2):ii37-ii41.
PubMed
Google Scholar
Fuller GF: Falls in the elderly. Am Fam Physician 2000,61(7):2159-2168.
CAS
PubMed
Google Scholar
Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J: Prevention of falls and consequent injuries in elderly people. Lancet 2005,366(9500):1885-1893.
Article
PubMed
Google Scholar
Tinetti ME: Preventing falls in elderly persons. N Engl J Med 2003, 348: 42-49.
Article
PubMed
Google Scholar
Chang JT, Morton SC, Rubenstein LZ, Mojica WA, Maglione M, Suttorp MJ, Roth EA, Shekelle PG: Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. Br Med J 2004,328(7441):680.
Article
Google Scholar
Stevens JA, Corso PS, Finkelstein EA, Miller TR: The costs of fatal and non-fatal falls among older adults. Inj Prev 2006,12(5):290-295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedman SM, Munoz B, West SK, Rubin GS, Fried LP: Falls and fear of falling: which comes first? A longitudinal prediction model suggests strategies for primary and secondary prevention. J Am Geriatr Soc 2002,50(8):1329-1335.
Article
PubMed
Google Scholar
Alexander B, Rivara FP, Wolf ME: The cost and frequency of hospitalization for fall-related injuries in older adults. Am J Public Health 1992,82(7):1020-1023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Planinc R, Kampel M: Introducing the use of depth data for fall detection. Pers Ubiquitous Comput 2013,17(6):1063-1072.
Article
Google Scholar
Zhang C, Tian Y, Capezuti E: Privacy preserving automatic fall detection for elderly using RGBD cameras. In Computers Helping People with Special Needs. Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg; 2012:625-633.
Chapter
Google Scholar
Lee YS, Chung WY: Visual sensor based abnormal event detection with moving shadow removal in home healthcare applications. Sensors 2012, 12: 573-584.
Article
PubMed
PubMed Central
Google Scholar
Mastorakis G, Makris D: Fall detection system using Kinect’s infrared sensor. J Real-Time Image Process 2012, 1-12. Springer
Google Scholar
Rougier C, Auvinet E, Rousseau J, Mignotte M, Meunier J: Fall detection from depth map video sequences. In Toward Useful Services for Elderly and People with Disabilities. Springer-Verlag Berlin Heidelberg; 2011:121-128.
Chapter
Google Scholar
Stone EE: Skubic M: Passive, in-home gait measurement using an inexpensive depth camera: initial results. In 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth). IEEE; 2012:183-186.
Google Scholar
Stone E, Skubic M: Evaluation of an inexpensive depth camera for in-home gait assessment. J Ambient Intell Smart Environ 2011,3(4):349-361.
Google Scholar
Gabel M, Gilad-Bachrach R, Renshaw E, Schuster A: Full body gait analysis with Kinect. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. IEEE; 2012:1964-1967.
Chapter
Google Scholar
Parajuli M, Tran D, Ma W, Sharma D: Senior health monitoring using Kinect. In Communications and Electronics (ICCE), 2012 Fourth International Conference on. IEEE; 2012:309-312.
Chapter
Google Scholar
Chang CY, Lange B, Zhang M, Koenig S, Requejo P, Somboon N, Sawchuk AA, Rizzo AA: Towards pervasive physical rehabilitation using Microsoft Kinect. In Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2012 6th International Conference on. IEEE; 2012:159-162.
Google Scholar
Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL: Validity of the Microsoft Kinect for assessment of postural control. Gait Posture 2012,36(3):372-377.
Article
PubMed
Google Scholar
Obdrzalek S, Kurillo G, Ofli F, Bajcsy R, Seto E, Jimison H, Pavel M: Accuracy and robustness of Kinect pose estimation in the context of coaching of elderly population. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. IEEE; 2012:1188-1193.
Chapter
Google Scholar
Loconsole C, Banno F, Frisoli A, Bergamasco M: A new Kinect-based guidance mode for upper limb robot-aided neurorehabilitation. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE; 2012:1037-1042.
Chapter
Google Scholar
Fernandez-Baena A, Susin A, Lligadas X: Biomechanical validation of upper-body and lower-body joint movements of kinect motion capture data for rehabilitation treatments. In Intelligent Networking and Collaborative Systems (INCoS), 2012 4th International Conference on. IEEE; 2012:656-661.
Chapter
Google Scholar
Pedro LM, de Paula Caurin GA: Kinect evaluation for human body movement analysis. In Biomedical Robotics and Biomechatronics (BioRob) 2012 4th IEEE RAS & EMBS International Conference on. IEEE; 2012:1856-1861.
Chapter
Google Scholar
John M, Klose S, Kock G, Jendreck M, Feichtinger R, Hennig B, Reithinger N, Kiselev J, Gövercin M, Steinhagen-Thiessen E, Kausch S, Polak M, Irmscher B: Smartsenior’s interactive trainer-development of an interactive system for a home-based fall-prevention training for elderly people. In Ambient Assisted Living. Springer; 2012:305-316.
Chapter
Google Scholar
Borghese NA, Pirovano M, Mainetti R, Lanzi PL: An integrated low-cost system for at-home rehabilitation. In Virtual Systems and Multimedia (VSMM), 2012 18th International Conference on. IEEE; 2012:553-556.
Chapter
Google Scholar
Pirovano M, Mainetti R, Baud-Bovy G, Lanzi PL, Borghese NA: Self-adaptive games for rehabilitation at home. In Computational Intelligence and Games (CIG), 2012 IEEE Conference on. IEEE; 2012:179-186.
Chapter
Google Scholar
Wiemeyer J, Kliem A: Serious games in prevention and rehabilitation—a new panacea for elderly people? Eur Rev Aging Phys Activ 2012, 9: 41-50.
Article
Google Scholar
Province MA, Hadley EC, Hornbrook MC, Lipsitz LA, Miller JP, Mulrow CD, Ory MG, Sattin RW, Tinetti ME, Wolf SL, Schechtman KB, Arfken CL, Rossiter-Fornoff J, Stevens VJ, Wingfield DJ, Greenlick MR, Baker DI, Claus EB, Horwitz RI, Buchner DM, Wagner EH, de Lateur BJ, Cress ME, Price R, Abrass IB, Esselman P, Marguerita T, Cynthia D, Mulrow MB, Gerety JE, et al.: The effects of exercise on falls in elderly patients a preplanned meta-analysis of the FICSIT trials. JAMA 1995,273(17):1341-1347.
Article
CAS
PubMed
Google Scholar
Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JC: Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc 2008,56(12):2234-2243.
Article
PubMed
Google Scholar
Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wójcicki TR, McAuley E, Kramer AF: Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009,19(10):1030-1039.
Article
PubMed
PubMed Central
Google Scholar
Gardner MM, Robertson MC, Campbell AJ: Exercise in preventing falls and fall related injuries in older people: a review of randomised controlled trials. Br J Sports Med 2000, 34: 7-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heyn P, Abreu BC, Ottenbacher KJ: The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil 2004,85(10):1694-1704.
Article
PubMed
Google Scholar
Taddei S, Galetta F, Virdis A, Ghiadoni L, Salvetti G, Franzoni F, Giusti C, Salvetti A: Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes. Circulation 2000,101(25):2896-2901.
Article
CAS
PubMed
Google Scholar
Geffken DF, Cushman M, Burke GL, Polak JF, Sakkinen PA, Tracy RP: Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 2001,153(3):242-250.
Article
CAS
PubMed
Google Scholar
Wannamethee SG, Lowe GD, Whincup PH, Rumley A, Walker M, Lennon L: Physical activity and hemostatic and inflammatory variables in elderly men. Circulation 2002,105(15):1785-1790.
Article
PubMed
Google Scholar
Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B: Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 1990, 140: 41-54.
Article
CAS
PubMed
Google Scholar
Duncan P, Richards L, Wallace D, Stoker-Yates J, Pohl P, Luchies C, Ogle A, Studenski S: A randomized, controlled pilot study of a home-based exercise program for individuals with mild and moderate stroke. Stroke 1998,29(10):2055-2060.
Article
CAS
PubMed
Google Scholar
Downs SH, Black N: The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 1998,52(6):377-384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golby C, Raja V, Lewando Hundt G, Badiyani S: A low cost ‘activities of daily living’ assessment system for the continual assessment of post-stroke patients, from inpatient/outpatient rehabilitation through to telerehabilitation. Successes and Failures in Telehealth 2011.
Google Scholar
Deandrea S, Lucenteforte E, Bravi F, Foschi R, La Vecchia C, Negri E: Risk factors for falls in community-dwelling older people: a systematic review and meta-analysis. Epidemiology 2010,21(5):658-668.
Article
PubMed
Google Scholar
Kepski M, Kwolek B: Fall detection on embedded platform using kinect and wireless accelerometer. In Computers Helping People with Special Needs. Springer; 2012:407-414.
Chapter
Google Scholar
Friedman JH: Stochastic gradient boosting. Comput Stat Data Anal 2002,38(4):367-378.
Article
Google Scholar
Friedman JH: Greedy function approximation: a gradient boosting machine. Ann Stat 2001, 29: 1189-1232.
Article
Google Scholar
Burges CJ: A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998,2(2):121-167.
Article
Google Scholar
Maggiorini D, Ripamonti LA, Zanon E: Supporting seniors rehabilitation through videogame technology: A distributed approach. In Games and Software Engineering (GAS), 2012 2nd International Workshop on. IEEE; 2012:16-22.
Google Scholar
Coughlin JF, D’Ambrosio LA, Reimer B, Pratt MR: Older adult perceptions of smart home technologies: implications for research, policy & market innovations in healthcare. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. IEEE; 2007:1810-1815.
Chapter
Google Scholar
Choe EK, Consolvo S, Jung J, Harrison B, Kientz JA: Living in a glass house: a survey of private moments in the home. In Proceedings of the 13th international conference on Ubiquitous computing. ACM; 2011:41-44.
Google Scholar
Pirapinthan M, Moulton B, Lal S: Trends in home-based safety and health alert support systems for older people. Broadband and Biomedical Communications (IB2Com), 2011 6th International Conference on 2011, 206-212.
Google Scholar
Dobkin BH: Rehabilitation after stroke. N Engl J Med 2005,352(16):1677-1684.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lange B, Chang CY, Suma E, Newman B, Rizzo AS, Bolas M: Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE; 2011:1831-1834.
Chapter
Google Scholar
Crosbie J, Lennon S, Basford J, McDonough S: Virtual reality in stroke rehabilitation: still more virtual than real. Disabil Rehabil 2007,29(14):1139-1146.
Article
CAS
PubMed
Google Scholar
Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality–augmented rehabilitation for patients following stroke. Phys Ther 2002,82(9):898-915.
PubMed
Google Scholar
Stone RJ: Haptic feedback: a brief history from telepresence to virtual reality. In Haptic Human-Computer Interaction. Springer; 2001:1-16.
Chapter
Google Scholar
Hussain A, Roach N, Balasubramanian S, Burdet E: A modular sensor-based system for the rehabilitation and assessment of manipulation. In Haptics Symposium (HAPTICS), 2012 IEEE. IEEE; 2012:247-254.
Chapter
Google Scholar
Croarkin E, Danoff J, Barnes C: Evidence-based rating of upper-extremity motor function tests used for people following a stroke. Physical Therapy 2004, 84: 62-74. [http://ptjournal.apta.org/content/84/1/62] []
PubMed
Google Scholar
Bó APL, Hayashibe M, Poignet P: Joint angle estimation in rehabilitation with inertial sensors and its integration with Kinect. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE; 2011:3479-3483.
Chapter
Google Scholar
Saposnik G, Levin M: Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians. Stroke 2011,42(5):1380-1386.
Article
PubMed
Google Scholar
Da Gama A, Chaves T, Figueiredo L, Teichrieb V: Poster: improving motor rehabilitation process through a natural interaction based system using kinect sensor. In 3D User Interfaces (3DUI), 2012 IEEE Symposium on. IEEE; 2012:145-146.
Chapter
Google Scholar
Pastor I, Hayes HA, Bamberg SJ: A feasibility study of an upper limb rehabilitation system using kinect and computer games. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. IEEE; 2012:1286-1289.
Chapter
Google Scholar
Yeh SC, Hwang WY, Huang TC, Liu WK, Chen YT, Hung YP: A study for the application of body sensing in assisted rehabilitation training. In Computer, Consumer and Control (IS3C), 2012 International Symposium on. IEEE; 2012:922-925.
Chapter
Google Scholar
Shiratuddin MF, Hajnal A, Farkas A, Wong KW, Legradi G: A proposed framework for an interactive visuotactile 3D virtual environment system for visuomotor rehabilitation of stroke patients. In Computer & Information Science (ICCIS), 2012 International Conference on. IEEE; 2012:1052-1057.
Chapter
Google Scholar
Frisoli A, Loconsole C, Leonardis D, Banno F, Barsotti M, Chisari C, Bergamasco M: A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Trans Syst Man Cybern C Appl Rev 2012,42(6):1169-1179.
Article
Google Scholar
Legg L, Langhorne P: Rehabilitation therapy services for stroke patients living at home: systematic review of randomised trials. Lancet 2004,363(9406):352-356.
Article
CAS
PubMed
Google Scholar
Holden MK: Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 2005,8(3):187-211.
Article
PubMed
Google Scholar
Staiano AE, Calvert SL: The promise of exergames as tools to measure physical health. Entertain Comput 2011, 2: 17-21.
Article
PubMed
PubMed Central
Google Scholar
Garcia JA, Navarro KF, Schoene D, Smith ST, Pisan Y: Exergames for the elderly: towards an embedded Kinect-based clinical test of falls risk. Stud Health Technol Inform 2012, 178: 51-57.
PubMed
Google Scholar
Marston HR, Smith ST: Interactive videogame technologies to support independence in the elderly: a narrative review. Game Health J 2012,1(2):139-152.
Article
Google Scholar
Smith ST, Schoene D: The use of exercise-based videogames for training and rehabilitation of physical function in older adults: current practice and guidelines for future research. Aging Health 2012,8(3):243-252.
Article
CAS
Google Scholar
Gerling K, Masuch M: When gaming is not suitable for everyone: playtesting wii games with frail elderly. In 1st Workshop on Game Accessibility: Xtreme Interaction Design (GAXID’11). ACM; 2011.
Google Scholar
Pham TP, Theng YL: Game controllers for older adults: experimental study on gameplay experiences and preferences. In Proceedings of the International Conference on the Foundations of Digital Games. ACM; 2012:284-285.
Google Scholar
Arntzen A: Game based learning to enhance cognitive and physical capabilities of elderly people: concepts and requirements. World Acad Sci Eng Tech 2011, 60: 63-67.
Google Scholar
Gerling KM, Schulte FP, Masuch M: Designing and evaluating digital games for frail elderly persons. In Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology. ACM; 2011:62-62.
Google Scholar
McNeill M, Charles D, Burke J, Crosbie J, McDonough S: Evaluating user experiences in rehabilitation games. J Assistive Technol 2012,6(3):173-181.
Article
Google Scholar
Jiang H, Duerstock BS, Wachs JP: Integrated gesture recognition based interface for people with upper extremity mobility impairments. In Advances in Human Aspects of Healthcare. Edited by: Duffy VG. CRC Press; 2012:546-555.
Google Scholar
Hassani AZ, van Dijk B, Ludden G, Eertink H: Touch versus in-air hand gestures: evaluating the acceptance by seniors of human-robot interaction. In Ambient Intelligence. Springer; 2011:309-313.
Chapter
Google Scholar
Gerling K, Livingston I, Nacke L, Mandryk R: Full-body motion-based game interaction for older adults. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems. ACM; 2012:1873-1882.
Chapter
Google Scholar
Sun TL, Lee CH: An impact study of the design of exergaming parameters on body intensity from objective and gameplay-based player experience perspectives, based on balance training exergame. PloS one 2013,8(7):e69471.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang IT, Tsai JC, Chen ST: Using Xbox 360 kinect games on enhancing visual performance skills on institutionalized older adults with wheelchairs. In Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), 2012 IEEE Fourth International Conference on. IEEE; 2012:263-267.
Chapter
Google Scholar
Chen ST, Huang YG, Chiang IT: Using somatosensory video games to promote quality of life for the elderly with disabilities. In Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), 2012 IEEE Fourth International Conference on. IEEE; 2012:258-262.
Chapter
Google Scholar
Ijsselsteijn W, Nap HH, de Kort Y, Poels K: Digital game design for elderly users. In Proceedings of the 2007 conference on Future Play. ACM; 2007:17-22.
Chapter
Google Scholar
Berg KO, Wood-Dauphinee SL, Williams JI, Maki B: Measuring balance in the elderly: validation of an instrument. Can J Public Health 1991, 83: S7—S11.
Google Scholar
Lange B, Rizzo S, Chang C-Y, Suma EA, Bolas M: Markerless full body tracking: depth-sensing technology within virtual environments. In The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), No. 11363. NTSA; 2011:1-8.
Google Scholar
Huang MC, Chen E, Xu W, Sarrafzadeh M: Gaming for upper extremities rehabilitation. In Proceedings of the 2nd Conference on Wireless Health. ACM; 2011:27-27.
Google Scholar
Sadihov D, Migge B, Gassert R, Kim Y: Prototype of a VR upper-limb rehabilitation system enhanced with motion-based tactile feedback. In World Haptics Conference (WHC), 2013. IEEE; 2013:449-454.
Chapter
Google Scholar
Saini S, Rambli DRA, Sulaiman S, Zakaria MN, Shukri M, Rohkmah S: A low-cost game framework for a home-based stroke rehabilitation system. In Computer & Information Science (ICCIS), 2012 International Conference on, Volume 1. IEEE; 2012:55-60.
Chapter
Google Scholar
Lloréns R, Alcañiz M, Colomer C, Navarro MD: Balance recovery through virtual stepping exercises using Kinect skeleton tracking: a follow-up study with chronic stroke patients. In Annual Review of Cybertherapy and Telemedicine 2012: Advanced Technologies in the Behavioral, Social and Neurosciences. Edited by: Wiederhold BK, Riva G. IOS Press; 2012:108-112.
Google Scholar
Liston RA, Brouwer BJ: Reliability and validity of measures obtained from stroke patients using the balance master. Arch Phys Med Rehabil 1996,77(5):425-430.
Article
CAS
PubMed
Google Scholar