Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30:1591–601.
Article
PubMed
Google Scholar
Gigante AF, Pellicciari R, Iliceto G, Liuzzi D, Mancino PV, Custodero GE, Guido M, Livrea P, Defazio G. Rest tremor in Parkinson’s disease: body distribution and time of appearance. J Neurol Sci. 2017;375:215–9.
Article
PubMed
Google Scholar
Liu K, Gu Z, Dong L, Shen L, Sun Y, Zhang T, Shi N, Zhang Q, Zhang W, Zhao M, Sun X. Clinical profile of Parkinson's disease in the Gumei community of Minhang district, Shanghai. Clinics (Sao Paulo). 2014;69:457–63.
Article
Google Scholar
Belvisi D, Conte A, Bologna M, Bloise MC, Suppa A, Formica A, Costanzo M, Cardone P, Fabbrini G, Berardelli A. Re-emergent tremor in Parkinson’s disease. Parkinsonism Relat Disord. 2017;36:41–6.
Article
PubMed
Google Scholar
Ayturk Z, Yilmaz R, Akbostanci MC. Re-emergent tremor in Parkinson’s disease: clinical and accelerometric properties. J Clin Neurosci. 2017;37:31–3.
Article
PubMed
Google Scholar
Mailankody P, Thennarasu K, Nagaraju BC, Yadav R, Pal PK. Re-emergent tremor in Parkinson’s disease: a clinical and electromyographic study. J Neurol Sci. 2016;366:33–6.
Article
PubMed
Google Scholar
Zach H, Dirkx M, Bloem BR, Helmich RC. The clinical evaluation of Parkinson's tremor. J Parkinsons Dis. 2015;5:471–4.
Article
PubMed
PubMed Central
Google Scholar
Lee HJ, Lee WW, Kim SK, Park H, Jeon HS, Kim HB, Jeon BS, Park KS. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions. J Neurol Sci. 2016;362:272–7.
Article
PubMed
Google Scholar
Zach H, Dirkx MF, Pasman JW, Bloem BR, Helmich RC. Cognitive stress reduces the effect of levodopa on Parkinson's resting tremor. CNS Neurosci Ther. 2017;23:209–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fishman PS. Paradoxical aspects of parkinsonian tremor. Mov Disord. 2008;23:168–73.
Article
PubMed
Google Scholar
Cox BC, Cincotta M, Espay AJ. Mirror movements in movement disorders. Tremor Other Hyperkinet Mov. 2012;2. http://tremorjournal.org/article/view/59.
van Wijk BC, Beek PJ, Daffertshofer A. Neural synchrony within the motor system: what have we learned so far? Front Hum Neurosci. 2012;6:252.
PubMed
PubMed Central
Google Scholar
Chatterjee P, Banerjee R, Choudhury S, Mondal B, Kulsum MU, Chatterjee K, Kumar H. Mirror movements in Parkinson’s disease: an under-appreciated clinical sign. J Neurol Sci. 2016;366:171–6.
Article
PubMed
Google Scholar
van den Berg C, Beek PJ, Wagenaar RC, van Wieringen PC. Coordination disorders in patients with Parkinson’s disease: a study of paced rhythmic forearm movements. Exp Brain Res. 2000;134:174–86.
Article
PubMed
Google Scholar
Byblow WD, Summers JJ, Lewis GN, Thomas J. Bimanual coordination in Parkinson's disease: deficits in movement frequency, amplitude, and pattern switching. Mov Disord. 2002;17:20–9.
Article
PubMed
Google Scholar
Johnson KA, Cunnington R, Bradshaw JL, Phillips JG, Iansek R, Rogers MA. Bimanual co-ordination in Parkinson's disease. Brain. 1998;121(Pt 4):743–53.
Article
PubMed
Google Scholar
Disbrow EA, Sigvardt KA, Franz EA, Turner RS, Russo KA, Hinkley LB, Herron TJ, Ventura MI, Zhang L, Malhado-Chang N. Movement activation and inhibition in Parkinson's disease: a functional imaging study. J Parkinsons Dis. 2013;3:181–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hei WH, Byun SH, Kim JS, Kim S, Seo YK, Park JC, Kim SM, Jahng JW, Lee JH. Effects of electromagnetic field (PEMF) exposure at different frequency and duration on the peripheral nerve regeneration: in vitro and in vivo study. Int J Neurosci. 2016;126:739–48.
CAS
PubMed
Google Scholar
Urnukhsaikhan E, Cho H, Mishig-Ochir T, Seo YK, Park JK. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130–8.
Article
CAS
PubMed
Google Scholar
Zhang Y, Ding J, Duan W. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells. J Biol Phys. 2006;32:1–9.
Article
PubMed
PubMed Central
Google Scholar
Longo FM, Yang T, Hamilton S, Hyde JF, Walker J, Jennes L, Stach R, Sisken BF. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. JNeurosciRes. 1999;55:230–7.
Article
CAS
Google Scholar
Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, Gan J, Simon B, Hopper RA, Levine JP, Gurtner GC. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. 2004;18:1231–3.
Article
CAS
PubMed
Google Scholar
Bragin DE, Statom GL, Hagberg S, Nemoto EM. Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain. J Neurosurg. 2015;122:1239–47.
Article
PubMed
Google Scholar
Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, Ripoli C, Azzena GB, Grassi C. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol. 2010;226:173–82.
Article
PubMed
Google Scholar
Arias-Carrion O, Verdugo-Diaz L, Feria-Velasco A, Millan-Aldaco D, Gutierrez AA, Hernandez-Cruz A, Drucker-Colin R. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J Neurosci Res. 2004;78:16–28.
Article
CAS
PubMed
Google Scholar
Di Lazzaro V, Capone F, Apollonio F, Borea PA, Cadossi R, Fassina L, Grassi C, Liberti M, Paffi A, Parazzini M, et al. A consensus panel review of central nervous system effects of the exposure to low-intensity extremely low-frequency magnetic fields. Brain Stimul. 2013;6:469–76.
Article
PubMed
Google Scholar
Malling ASB, Morberg BM, Wermuth L, Gredal O, Bech P, Jensen BR. Effect of transcranial pulsed electromagnetic fields (T-PEMF) on functional rate of force development and movement speed in persons with Parkinson's disease: a randomized clinical trial. PLoS One. 2018;13:e0204478.
Article
PubMed
PubMed Central
Google Scholar
Sandyk R. Weak magnetic fields in the treatment of Parkinson’s disease with the “on-off” phenomenon. Int J Neurosci. 1992;66:97–106.
Article
CAS
PubMed
Google Scholar
Legros A, Beuter A. Effect of a low intensity magnetic field on human motor behavior. Bioelectromagnetics. 2005;26:657–69.
Article
PubMed
Google Scholar
Morberg BM, Malling AS, Jensen BR, Gredal O, Bech P, Wermuth L. Parkinson's disease and transcranial pulsed electromagnetic fields: a randomized clinical trial. Mov Disord. 2017;32:625–6.
Article
PubMed
Google Scholar
Morberg BM, Malling AS, Jensen BR, Gredal O, Bech P, Wermuth L. Effects of transcranial pulsed electromagnetic field stimulation on quality of life in Parkinson's disease. Eur J Neurol. 2018;25:963–e974.
Article
CAS
PubMed
Google Scholar
Fahn S, Elton RL, Committee. MotUD: Unified Parkinson's Disease Rating Scale. In Recent development in Parkinson's disease. Volume 2. Edited by Fahn S, Marsden CD, Calne DB, Goldstein M. Florham Park, NJ: Macmillan Health Care Information; 1987: 153–164.
Spedden ME, Malling ASB, Andersen KK, Jensen BR. Association between gross-motor and executive function depends on age and motor task complexity. Dev Neuropsychol. 2017;42:495–506.
Article
PubMed
Google Scholar
Rahbek UL, Tritsaris K, Dissing S. Interaction of low-frequency, pulsed electromagnetic fields with living tissue: biochemical responses and clinical results. Oral Bioscience Med. 2005;2:1–12.
Google Scholar
Terry K, Griffin L. How computational technique and spike train properties affect coherence detection. J Neurosci Methods. 2008;168:212–23.
Article
CAS
PubMed
Google Scholar
Terry K, Griffin L. Corrigendum to “how computational technique and spike train properties affect coherence detection” [J. Neurosci. Methods 168 (2008) 212–223]. J Neurosci Methods. 2008;171:180.
Article
Google Scholar
Hsieh TH, Huang YZ, Rotenberg A, Pascual-Leone A, Chiang YH, Wang JY, Chen JJ. Functional dopaminergic neurons in substantia Nigra are required for transcranial magnetic stimulation-induced motor plasticity. Cereb Cortex. 2015;25:1806–14.
Article
PubMed
Google Scholar
Barbagallo G, Nistico R, Vescio B, Cerasa A, Olivadese G, Nigro S, Crasa M, Quattrone A, Bianco MG, Morelli M, et al. The placebo effect on resting tremor in Parkinson's disease: an electrophysiological study. Parkinsonism Relat Disord. 2018.
Morrison S, Newell KM, Kavanagh JJ. Differences in postural tremor dynamics with age and neurological disease. Exp Brain Res. 2017;235:1719–29.
Article
PubMed
Google Scholar
Hurtado JM, Lachaux JP, Beckley DJ, Gray CM, Sigvardt KA. Inter- and intralimb oscillator coupling in parkinsonian tremor. Mov Disord. 2000;15:683–91.
Article
CAS
PubMed
Google Scholar
Cruz-Montecinos C, Calatayud J, Iturriaga C, Bustos C, Mena B, Espana-Romero V, Carpes FP. Influence of a self-regulated cognitive dual task on time to failure and complexity of submaximal isometric force control. Eur J Appl Physiol. 2018.
Serrien DJ. Verbal-manual interactions during dual task performance: an EEG study. Neuropsychologia. 2009;47:139–44.
Article
PubMed
Google Scholar
Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov Disord. 2010;25:2649–53.
Article
PubMed
Google Scholar