Nelson KB. Perinatal Ischemic Stroke. Stroke. 2007;38:742–5.
Article
PubMed
Google Scholar
Raju TN, Nelson KB, Ferriero D, Lynch JK. Ischemic perinatal stroke: summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics. 2007;120:609–16.
Article
PubMed
Google Scholar
Auld ML, Boyd R, Moseley GL, Ware R, Johnston LM. Tactile function in children with unilateral cerebral palsy compared to typically developing children. Disabil Rehabil. 2012;34:1488–94.
Article
PubMed
Google Scholar
Auld ML, Boyd RN, Moseley GL, Ware RS, Johnston LM. Impact of tactile dysfunction on upper-limb motor performance in children with unilateral cerebral palsy. Arch Phys Med Rehabil. 2012;93:696–702.
Article
PubMed
Google Scholar
Klingels K, De CP, Molenaers G, Desloovere K, Huenaerts C, Jaspers E, et al. Upper limb motor and sensory impairments in children with hemiplegic cerebral palsy. Can they be measured reliably? Disabil Rehabil. 2010;32:409–16.
Article
PubMed
Google Scholar
Tomhave WA, Van Heest AE, Bagley A, James MA. Affected and contralateral hand strength and dexterity measures in children with hemiplegic cerebral palsy. J Hand Surg. 2015;40:900–7.
Article
Google Scholar
Van Heest AE, House J, Putnam M. Sensibility deficiencies in the hands of children with spastic hemiplegia. JHand SurgAm. 1993;18:278–81.
Google Scholar
Wingert JR, Burton H, Sinclair RJ, Brunstrom JE, Damiano DL. Tactile sensory abilities in cerebral palsy: deficits in roughness and object discrimination. Dev Med Child Neurol. 2008;50:832–8.
Article
PubMed
PubMed Central
Google Scholar
Yekutiel M, Jariwala M, Stretch P. Sensory deficit in the hands of children with cerebral palsy: a new look at assessment and prevalence. DevMedChild Neurol. 1994;36:619–24.
CAS
Google Scholar
Cooper J, Majnemer A, Rosenblatt B, Birnbaum R. The determination of sensory deficits in children with hemiplegic cerebral palsy. J Child Neurol. 1995;10:300–9.
Article
CAS
PubMed
Google Scholar
Tizard JP, Paine RS, Crothers B. Disturbances of sensation in children with hemiplegia. J Am Med Assoc. 1954;155:628–32.
Article
CAS
PubMed
Google Scholar
Tachdjian MO, Minear WL. Sensory disturbances in the hands of children with cerebral palsy. J Bone Joint Surg Am. 1958;40-A:85–90.
Article
CAS
PubMed
Google Scholar
Wingert JR, Burton H, Sinclair RJ, Brunstrom JE, Damiano DL. Joint-position sense and kinesthesia in cerebral palsy. Arch Phys Med Rehabil. 2009;90:447–53.
Article
PubMed
PubMed Central
Google Scholar
Brown JK, van Rensburg F, Walsh G, Lakie M, Wright GW. A neurological study of hand function of hemiplegic children. Dev Med Child Neurol. 1987;29:287–304.
Article
CAS
PubMed
Google Scholar
Kirton A. Modeling developmental plasticity after perinatal stroke: defining central therapeutic targets in cerebral palsy. Pediatr Neurol. 2013;48:81–94.
Article
PubMed
Google Scholar
Eliasson AC, Gordon AM. Impaired force coordination during object release in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2000;42:228–34.
Article
CAS
PubMed
Google Scholar
Gordon AM, Charles J, Duff SV. Fingertip forces during object manipulation in children with hemiplegic cerebral palsy. II: bilateral coordination. Dev Med Child Neurol. 1999;41:176–85.
Article
CAS
PubMed
Google Scholar
Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C. Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care Off J Eur Soc Eng Med. 1999;7:419–23.
CAS
Google Scholar
Scott SH, Dukelow SP. Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. J Rehabil Res Dev. 2011;48:335–53.
Article
PubMed
Google Scholar
Liu Y, Song Q, Li C, Guan X, Ji L. Quantitative assessment of motor function for patients with a stroke by an end-effector upper limb rehabilitation robot. BioMed Res Int. 2020;2020:5425741.
PubMed
PubMed Central
Google Scholar
Brihmat N, Loubinoux I, Castel-Lacanal E, Marque P, Gasq D. Kinematic parameters obtained with the ArmeoSpring for upper-limb assessment after stroke: a reliability and learning effect study for guiding parameter use. J Neuroengineering Rehabil. 2020;17:130.
Article
Google Scholar
Schwarz A, Kanzler CM, Lambercy O, Luft AR, Veerbeek JM. Systematic review on kinematic assessments of upper limb movements after stroke. Stroke. 2019;50:718–27.
Article
PubMed
Google Scholar
Ellis MD, Lan Y, Yao J, Dewald JPA. Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading. J Neuroeng Rehabil. 2016;13:95.
Article
PubMed
PubMed Central
Google Scholar
Lincoln N. The unreliability of sensory assessments. 1991;5.
Kuczynski AM, Dukelow SP, Semrau JA, Kirton A. Robotic quantification of position sense in children with perinatal stroke. Neurorehabil Neural Repair. 2016;30:762–72.
Article
PubMed
Google Scholar
Kuczynski AM, Semrau JA, Kirton A, Dukelow SP. Kinesthetic deficits after perinatal stroke: robotic measurement in hemiparetic children. J Neuroengineering Rehabil. 2017;14:13.
Article
Google Scholar
Coderre AM, Zeid AA, Dukelow SP, Demmer MJ, Moore KD, Demers MJ, et al. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabil Neural Repair. 2010.
Semrau JA, Herter TM, Scott SH, Dukelow SP. Examining differences in patterns of sensory and motor recovery after stroke with robotics. Stroke J Cereb Circ. 2015;46:3459–69.
Article
Google Scholar
Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke J Cereb Circ. 2013;44:3414–21.
Article
Google Scholar
Semrau JA, Herter TM, Scott SH, Dukelow SP. Vision of the upper limb fails to compensate for kinesthetic impairments in subacute stroke. Cortex J Devoted Study Nerv Syst Behav. 2018;109:245–59.
Article
Google Scholar
Dukelow SP, Herter TM, Moore KD, Demers MJ, Glasgow JI, Bagg SD, et al. Quantitative assessment of limb position sense following stroke. Neurorehabil Neural Repair. 2010;24:178–87.
Article
PubMed
Google Scholar
Debert CT, Herter TM, Scott SH, Dukelow S. Robotic assessment of sensorimotor deficits after traumatic brain injury. J Neurol Phys Ther JNPT. 2012;36:58–67.
Article
PubMed
Google Scholar
Kuczynski AM, Carlson HL, Lebel C, Hodge JA, Dukelow SP, Semrau JA, et al. Sensory tractography and robot-quantified proprioception in hemiparetic children with perinatal stroke. Hum Brain Mapp. 2017;38:2424–40.
Article
PubMed
PubMed Central
Google Scholar
Kuczynski AM, Kirton A, Semrau JA, Dukelow SP. Bilateral reaching deficits after unilateral perinatal ischemic stroke: a population-based case-control study. J Neuroeng Rehabil. 2018;15:77.
Article
PubMed
PubMed Central
Google Scholar
Kuczynski AM, Dukelow SP, Hodge JA, Carlson HL, Lebel C, Semrau JA, et al. Corticospinal tract diffusion properties and robotic visually guided reaching in children with hemiparetic cerebral palsy. Hum Brain Mapp. 2018;39:1130–44.
Article
PubMed
Google Scholar
Broeks JG, Lankhorst GJ, Rumping K, Prevo AJ. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil. 1999;21:357–64.
Article
CAS
PubMed
Google Scholar
Feys H, De WW, Nuyens G, van de WA, Selz B, Kiekens C. Predicting motor recovery of the upper limb after stroke rehabilitation: value of a clinical examination. Physiother Res Int. 2000;5:1–18.
Reding MJ, Potes E. Rehabilitation outcome following initial unilateral hemispheric stroke. Life table analysis approach. Stroke. 1988;19:1354–8.
Article
CAS
PubMed
Google Scholar
Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73:820–35.
Article
CAS
PubMed
Google Scholar
Gordon J, Ghilardi MF, Ghez C. Impairments of reaching movements in patients without proprioception I Spatial errors. J Neurophysiol. 1995;73:347–60.
Article
CAS
PubMed
Google Scholar
Bleyenheuft Y, Gordon AM. Precision grip control, sensory impairments and their interactions in children with hemiplegic cerebral palsy: a systematic review. Res Dev Disabil. 2013;34:3014–28.
Article
PubMed
Google Scholar
Gordon AM, Duff SV. Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 1999;41:586–91.
Article
CAS
PubMed
Google Scholar
Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visually guided reaching following stroke. J Neuroengineering Rehabil. 2012;9:72.
Article
Google Scholar
Cole L, Dewey D, Letourneau N, Kaplan BJ, Chaput K, Gallagher C, et al. Clinical characteristics, risk factors, and outcomes associated with neonatal hemorrhagic stroke: a population-based case-control study. JAMA Pediatr. 2017.
Kitchen L, Westmacott R, Friefeld S, MacGregor D, Curtis R, Allen A, et al. The pediatric stroke outcome measure: a validation and reliability study. Stroke. 2012;43:1602–8.
Article
PubMed
Google Scholar
Eliasson AC, Krumlinde-sundholm L, Rosblad B, Beckung E, Arner M, Ohrvall AM, et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48:549–54.
Article
PubMed
Google Scholar
Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.
Article
CAS
PubMed
Google Scholar
Hirayama K, Fukutake T, Kawamura M. “Thumb localizing test” for detecting a lesion in the posterior column-medial lemniscal system. J Neurol Sci. 1999;167:45–9.
Article
CAS
PubMed
Google Scholar
Wilson B, Cockburn J, Halligan P. Development of a behavioral test of visuospatial neglect. Arch Phys Med Rehabil. 1998;68:98–102.
Google Scholar
James MA. Use of the Medical Research Council muscle strength grading system in the upper extremity. J Hand Surg. 2007;32:154–6.
Article
Google Scholar
Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke. 1993;24:58–63.
Article
CAS
PubMed
Google Scholar
Krumlinde-sundholm L, Eliasson A-C. Development of the assisting hand assessment: A Rasch-built measure intended for children with unilateral upper limb impairments. Scand J Occup Ther. 2003;10:16–26.
Article
Google Scholar
Randall M, Johnson LM, Reddihough D. The Melbourne Assessment of Unilateral Upper Limb Function. Melbourne: Royal Children’s Hospital, Melbourne; 1999.
Google Scholar
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.
Article
CAS
PubMed
Google Scholar
BKIN Technologies. Dexterit-E 3.6 User Guide. https://kinarm.com/support/user-guides-documentation/.
Kinnucan E, Van Heest A, Tomhave W. Correlation of motor function and stereognosis impairment in upper limb cerebral palsy. J Hand Surg. 2010;35:1317–22.
Article
Google Scholar
Yoshida S, Hayakawa K, Yamamoto A, Okano S, Kanda T, Yamori Y, et al. Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol. 2010;52:935–40.
Article
PubMed
Google Scholar
Trivedi R, Agarwal S, Shah V, Goyel P, Paliwal VK, Rathore RK, et al. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy. Neuroradiology. 2010;52:759–65.
Article
PubMed
Google Scholar
Rose S, Guzzetta A, Pannek K, Boyd R. MRI structural connectivity, disruption of primary sensorimotor pathways, and hand function in cerebral palsy. Brain Connect. 2011;1:309–16.
Article
PubMed
Google Scholar
Gupta D, Barachant A, Gordon AM, Ferre C, Kuo H-C, Carmel JB, et al. Effect of sensory and motor connectivity on hand function in pediatric hemiplegia. Ann Neurol. 2017;82:766–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott SH. Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci. 2004;5:532–46.
Article
CAS
PubMed
Google Scholar
Sarlegna FR, Sainburg RL. The roles of vision and proprioception in the planning of reaching movements. Adv Exp Med Biol. 2009;629:317–35.
Article
PubMed
PubMed Central
Google Scholar
Herter TM, Scott SH, Dukelow SP. Vision does not always help stroke survivors compensate for impaired limb position sense. J NeuroEng Rehabil. 2019;16:1.
Article
Google Scholar
Bellan V, Gilpin HR, Stanton TR, Newport R, Gallace A, Moseley GL. Untangling visual and proprioceptive contributions to hand localisation over time. Exp Brain Res. 2015;233:1689–701.
Article
PubMed
Google Scholar
Moseley GL. Why do people with complex regional pain syndrome take longer to recognize their affected hand? Neurology. 2004;62:2182–6.
Article
PubMed
Google Scholar
Lotze M, Moseley GL. Role of distorted body image in pain. Curr Rheumatol Rep. 2007;9:488–96.
Article
PubMed
Google Scholar
Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20–5.
Article
CAS
PubMed
Google Scholar
Garraway WM, Akhtar AJ, Gore SM, Prescott RJ, Smith RG. Observer variation in the clinical assessment of stroke. Age Ageing. 1976;5:233–40.
Article
CAS
PubMed
Google Scholar
Kitago T, Goldsmith J, Harran M, Kane L, Berard J, Huang S, et al. Robotic therapy for chronic stroke: general recovery of impairment or improved task-specific skill? J Neurophysiol. 2015;114:1885–94.
Article
PubMed
PubMed Central
Google Scholar
Tran VD, Dario P, Mazzoleni S. Kinematic measures for upper limb robot-assisted therapy following stroke and correlations with clinical outcome measures: A review. Med Eng Phys. 2018;53:13–31.
Article
PubMed
Google Scholar
Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84:915–20.
Article
PubMed
Google Scholar
Bishop L, Gordon AM, Kim H. Hand Robotic Therapy in Children with Hemiparesis: A Pilot Study. Am J Phys Med Rehabil. 2017;96:1–7.
Article
PubMed
Google Scholar
Frascarelli F, Masia L, Di Rosa G, Cappa P, Petrarca M, Castelli E, et al. The impact of robotic rehabilitation in children with acquired or congenital movement disorders. Eur J Phys Rehabil Med. 2009;45:135–41.
CAS
PubMed
Google Scholar
Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362:1772–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo DH, Kim SY. Effects of upper limb robot-assisted therapy in the rehabilitation of stroke patients. J Phys Ther Sci. 2015;27:677–9.
Article
PubMed
PubMed Central
Google Scholar
Franceschini M, Mazzoleni S, Goffredo M, Pournajaf S, Galafate D, Criscuolo S, et al. Upper limb robot-assisted rehabilitation versus physical therapy on subacute stroke patients: a follow-up study. J Bodyw Mov Ther. 2020;24:194–8.
Article
PubMed
Google Scholar
Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EEH, Meskers CGM, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31:107–21.
Article
PubMed
Google Scholar
Gandevia SC, Refshauge KM, Collins DF. Proprioception: peripheral inputs and perceptual interactions. Adv Exp Med Biol. 2002;508:61–8.
Article
PubMed
Google Scholar