Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB. Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001–2004. Arch Intern Med. 2009;169(10):938–44.
Article
PubMed
Google Scholar
Horak FB, Nashner LM, Diener HC. Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res. 1990;82(1):167–77. https://doi.org/10.1007/BF00230848.
Article
CAS
PubMed
Google Scholar
Ekvall Hansson E, Magnusson M. Vestibular asymmetry predicts falls among elderly patients with multi- sensory dizziness. BMC Geriatr. 2013;13:77.
Article
PubMed
PubMed Central
Google Scholar
Ganança FF, Gazzola JM, Aratani MC, Perracini MR, Ganança MM. Circumstances and consequences of falls in elderly people with vestibular disorder. Rev Bras Otorrinolaringol. 2006;72:388–93.
Article
Google Scholar
Agrawal Y, Ward BK, Minor LB. Vestibular dysfunction: prevalence, impact and need for targeted treatment. J Vestib Res. 2013;23(3):113–7.
Article
PubMed
PubMed Central
Google Scholar
Figtree WVC, Menant JC, Chau AT, Hübner PP, Lord SR, Migliaccio AA. Prevalence of vestibular disorders in independent people over 50 that experience dizziness. Front Neurol. 2021. https://doi.org/10.3389/fneur.2021.658053.
Article
PubMed
PubMed Central
Google Scholar
Polensek SH, Tusa RJ, Sterk CE. The challenges of managing vestibular disorders: a qualitative study of clinicians’ experiences associated with low referral rates for vestibular rehabilitation. Int J Clin Pract. 2009;63(11):1604–12.
Article
CAS
PubMed
Google Scholar
Halmagyi GM, Curthoys IS. A clinical sign of canal paresis. Arch Neurol. 1988;45(7):737–9. https://doi.org/10.1001/archneur.1988.00520310043015.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wang W. Reliability of the fukuda stepping test to determine the side of vestibular dysfunction. J Int Med Res. 2011;39(4):1432–7. https://doi.org/10.1177/147323001103900431.
Article
CAS
PubMed
Google Scholar
Cohen HS. A review on screening tests for vestibular disorders. J Neurophysiol. 2019;122(1):81–92. https://doi.org/10.1152/jn.00819.2018.
Article
PubMed
PubMed Central
Google Scholar
Bhattacharyya N, Gubbels SP, Schwartz SR, Edlow JA, El-Kashlan H, Fife T, et al. Clinical practice guideline: benign paroxysmal positional vertigo (Update). Otolaryngol Head Neck Surg. 2017;156(3 suppl):S1–47.
Article
PubMed
Google Scholar
Wrisley DM, Marchetti GF, Kuharsky DK, Whitney SL. Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys Ther. 2004;84(10):906–18. https://doi.org/10.1093/ptj/84.10.906.
Article
PubMed
Google Scholar
Wrisley DM, Walker ML, Echternach JL, Strasnick B. Reliability of the dynamic gait index in people with vestibular disorders1. Arch Phys Med Rehabil. 2003;84(10):1528–33.
Article
PubMed
Google Scholar
Fritz S, Lusardi M. Walking speed: the sixth vital sign. J Geriatr Phys Ther. 2009;32(2):2–5.
Article
Google Scholar
Kear BM, Guck TP, McGaha AL. Timed up and go (TUG) test. J Prim Care Community Health. 2017;8(1):9–13.
Article
PubMed
Google Scholar
Borel L, Harlay F, Lopez C, Magnan J, Chays A, Lacour M. Walking performance of vestibular-defective patients before and after unilateral vestibular neurotomy. Behav Brain Res. 2004;150(1):191–200.
Article
PubMed
Google Scholar
Cohen HS. Vestibular disorders and impaired path integration along a linear trajectory. J Vestib Res. 2000;10(1):7–15.
Article
CAS
PubMed
Google Scholar
Crane BT, Demer JL. Effects of vestibular and cerebellar deficits on gaze and torso stability during ambulation. Otolaryngol Head Neck Surg. 2000;123(1):22–9.
Article
CAS
PubMed
Google Scholar
Teufl W, Lorenz M, Miezal M, Taetz B, Fröhlich M, Bleser G. Towards inertial sensor based mobile gait analysis: event-detection and spatio-temporal parameters. Sensors. 2019;19(1):38.
Article
Google Scholar
Morrow M, Lowndes B, Fortune E, Kaufman K, Hallbeck S. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227–32.
Article
PubMed
PubMed Central
Google Scholar
Grove CR, Whitney SL, Pyle GM, Heiderscheit BC. Instrumented gait analysis to identify persistent deficits in gait stability in adults with chronic vestibular loss. JAMA Otolaryngol Head Neck Surg. 2021;147(8):729–38. https://doi.org/10.1001/jamaoto.2021.1276.
Article
PubMed
PubMed Central
Google Scholar
Grove CR, Heiderscheit BC, Pyle GM, Loyd BJ, Whitney SL. The gait disorientation test: a new method for screening adults with dizziness and imbalance. Arch Phys Med Rehabil. 2021;102(4):582–90.
Article
PubMed
Google Scholar
Kim KJ, Gimmon Y, Millar J, Brewer K, Serrador J, Schubert MC. The instrumented timed “Up & Go” test distinguishes turning characteristics in vestibular hypofunction. Phys Ther. 2021;101(7):pzab103.
Article
PubMed
Google Scholar
Caramia C, Torricelli D, Schmid M, Muñoz-Gonzalez A, Gonzalez-Vargas J, Grandas F, et al. IMU-based classification of Parkinson’s disease from Gait: a sensitivity analysis on sensor location and feature selection. IEEE J Biomed Health Informatics. 2018;22(6):1765–74.
Article
Google Scholar
Naghavi N, Wade E. Prediction of freezing of Gait in Parkinson’s disease using statistical inference and lower-limb acceleration data. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):947–55.
Article
PubMed
Google Scholar
Mirelman A, Ben Or Frank M, Melamed M, Granovsky L, Nieuwboer A, Rochester L, et al. Detecting sensitive mobility features for parkinson’s disease stages via machine learning. Mov Disord. 2021;36(9):2144–55.
Article
PubMed
Google Scholar
Trabassi D, Serrao M, Varrecchia T, Ranavolo A, Coppola G, De Icco R, et al. Machine learning approach to support the detection of Parkinson’s disease in IMU-based Gait analysis. Sensors. 2022;22(10):3700.
Article
PubMed
PubMed Central
Google Scholar
Nallapuraju A, Ye CR, Gupta P, Tay A.Analysing Gait patterns of Parkinsons’ disease patients to predict Freezing of Gait (FoG) using machine learning algorithms. In: Guo H, Ren H, Wang V, Chekole EG, Lakshmanan U, editors. IRC-SET 2021. Singapore: Springer Nature; 2022. p. 269–81.
Chapter
Google Scholar
Lee J, Oubre B, Daneault JF, Stephen CD, Schmahmann JD, Gupta AS, et al. Analysis of Gait sub-movements to estimate ataxia severity using ankle inertial data. IEEE Trans Biomed Eng. 2022. https://doi.org/10.1109/TBME.2022.3142504.
Article
PubMed
PubMed Central
Google Scholar
Prochazka A, Dostal O, Cejnar P, Mohamed HI, Pavelek Z, Valis M, et al. Deep learning for accelerometric data assessment and ataxic Gait monitoring. IEEE Trans Neural Syst Rehabil Eng. 2021;29:360–7.
Article
PubMed
Google Scholar
Ngo T, Pathirana PN, Horne MK, Power L, Szmulewicz DJ, Milne SC, et al. Balance deficits due to cerebellar ataxia: a machine learning and cloud-based approach. IEEE trans Biomed Eng. 2021;68(5):1507–17.
Article
PubMed
Google Scholar
Zhao H, Wang Z, Qiu S, Shen Y, Wang J. IMU-based gait analysis for rehabilitation assessment of patients with gait disorders. In: 2017 4th International Conference on Systems and Informatics (ICSAI); 2017. p. 622–626.
İkizoğlu S, Heydarov S. Accuracy comparison of dimensionality reduction techniques to determine significant features from IMU sensor-based data to diagnose vestibular system disorders. Biomed Signal Process Control. 2020;61: 101963.
Article
Google Scholar
Nguyen TQ, Young JH, Rodriguez A, Zupancic S, Lie DYC. Differentiation of patients with balance insufficiency (vestibular hypofunction) versus normal subjects using a low-cost small wireless wearable Gait sensor. Biosensors. 2019;9(1):29.
Article
PubMed
PubMed Central
Google Scholar
Cohen HS, Sangi-Haghpeykar H. Walking speed and vestibular disorders in a path integration task. Gait Posture. 2011;33(2):211–3.
Article
PubMed
Google Scholar
Hsu WC, Sugiarto T, Lin YJ, Yang FC, Lin ZY, Sun CT, et al. Multiple-wearable-sensor-based Gait classification and analysis in patients with neurological disorders. Sensors. 2018;18(10):3397.
Article
PubMed
PubMed Central
Google Scholar
Niswander W, Wang W, Kontson K. Optimization of IMU sensor placement for the measurement of lower limb joint kinematics. Sensors. 2020;20(21):5993.
Article
PubMed
PubMed Central
Google Scholar
Prasanth H, Caban M, Keller U, Courtine G, Ijspeert A, Vallery H, et al. Wearable sensor-based real-time gait detection: a systematic review. Sensors. 2021;21(8):2727.
Article
PubMed
PubMed Central
Google Scholar
Bo Yu n, Tian Bao n, Dingguo Zhang n, Carender W, Sienko KH, Shull PB. Determining inertial measurement unit placement for estimating human trunk sway while standing, walking and running. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2015;2015:4651–4654.
Routhier F, Duclos NC, Lacroix M, Lettre J, Turcotte E, Hamel N, et al. Clinicians’ perspectives on inertial measurement units in clinical practice. PLOS ONE. 2020;15(11):e0241922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sulway S, Whitney SL. Advances in vestibular rehabilitation. Vestibular Disord. 2019;82:164–9.
Article
Google Scholar
Han BI, Song HS, Kim JS. Vestibular rehabilitation therapy: review of indications, mechanisms, and key exercises. J Clin Neurol. 2011;7(4):184–96.
Article
PubMed
PubMed Central
Google Scholar
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatry Res. 1975;12(3):189–98.
Article
CAS
Google Scholar
McCrum C, Lucieer F, van de Berg R, Willems P, Pérez Fornos A, Guinand N, et al. The walking speed-dependency of gait variability in bilateral vestibulopathy and its association with clinical tests of vestibular function. Sci Rep. 2019;9(1):18392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herdman SJ. Role of vestibular adaptation in vestibular rehabilitation. Otolaryngol Head Neck Surg. 1998;119(1):49–54.
Article
CAS
PubMed
Google Scholar
Hall CD, Herdman SJ, Whitney SL, Cass SP, Clendaniel RA, Fife TD, et al. Vestibular rehabilitation for peripheral vestibular hypofunction: an evidence-based clinical practice guideline. J Neurol Phys Ther. 2016;40(2):124–55.
Article
PubMed
PubMed Central
Google Scholar
Falbriard M, Meyer F, Mariani B, Millet GP, Aminian K. Accurate estimation of running temporal parameters using foot-worn inertial sensors. Front Physiol. 2018. https://doi.org/10.3389/fphys.2018.00610.
Article
PubMed
PubMed Central
Google Scholar
Vitali RV, Perkins NC. Determining anatomical frames via inertial motion capture: a survey of methods. J Biomech. 2020;106: 109832.
Article
PubMed
Google Scholar
Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861–74.
Article
Google Scholar
Wei SH, Chen PY, Chen HJ, Kao CL, Schubert MC. Visual afference mediates head and trunk stability in vestibular hypofunction. J Clin Neurosci. 2016;29:139–44.
Article
PubMed
Google Scholar
Marchetti GF, Whitney SL, Blatt PJ, Morris LO, Vance JM. Temporal and spatial characteristics of Gait during performance of the dynamic Gait index in people with and people without balance or vestibular disorders. Phys Ther. 2008;88(5):640–51.
Article
PubMed
PubMed Central
Google Scholar
Brandt T, Strupp M, Benson J. You are better off running than walking with acute vestibulopathy. Lancet. 1999;354(9180):746.
Article
CAS
PubMed
Google Scholar
Nutt JG, Marsden CD, Thompson PD. Human walking and higher-level gait disorders, particularly in the elderly. Neurology. 1993;43(2):268–268.
Article
CAS
PubMed
Google Scholar
Mirelman A, Bernad-Elazari H, Nobel T, Thaler A, Peruzzi A, Plotnik M, et al. Effects of aging on arm swing during Gait: the role of Gait speed and dual tasking. PLoS ONE. 2015;10(8): e0136043.
Article
PubMed
PubMed Central
Google Scholar
Killeen T, Elshehabi M, Filli L, Hobert MA, Hansen C, Rieger D, et al. Arm swing asymmetry in overground walking. Sci Rep. 2018;8(1):12803.
Article
PubMed
PubMed Central
Google Scholar
Angunsri N, Ishikawa K, Yin M, Omi E, Shibata Y, Saito T, et al. Gait instability caused by vestibular disorders - analysis by tactile sensor. Auris Nasus Larynx. 2011;38(4):462–8.
Article
PubMed
Google Scholar
Yin M, Ishikawa K, Omi E, Saito T, Itasaka Y, Angunsuri N. Small vestibular schwannomas can cause gait instability. Gait Posture. 2011;34(1):25–8.
Article
CAS
PubMed
Google Scholar
Killeen T, Easthope CS, Filli L, Lőrincz L, Schrafl-Altermatt M, Brugger P, et al. Increasing cognitive load attenuates right arm swing in healthy human walking. R Soc Open Sci. 2017;4(1): 160993.
Article
PubMed
PubMed Central
Google Scholar
Mirelman A, Bernad-Elazari H, Thaler A, Giladi-Yacobi E, Gurevich T, Gana-Weisz M, et al. Arm swing as a potential new prodromal marker of Parkinson’s disease. Mov Disord. 2016;31(10):1527–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker G, Müller A, Braune S, Büttner T, Benecke R, Greulich W, et al. Early diagnosis of Parkinson’s disease. Journal of Neurology. 2002 Oct;249 Suppl 3:III/40–48.
Lewek MD, Poole R, Johnson J, Halawa O, Huang X. Arm swing magnitude and asymmetry during Gait in the early stages of Parkinson’s disease. Gait Posture. 2010;31(2):256.
Article
PubMed
Google Scholar
Zobeiri OA, Mischler GM, King SA, Lewis RF, Cullen KE. Effects of vestibular neurectomy and neural compensation on head movements in patients undergoing vestibular schwannoma resection. Sci Rep. 2021;11(1):517.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shupert CL, Horak FB. Effects of vestibular loss on head stabilization in response to head and body perturbations. J Vestib Res. 1996;6(6):423–37.
Article
CAS
PubMed
Google Scholar
Bril B, Ledebt A. Head coordination as a means to assist sensory integration in learning to walk. Neurosci Biobehav Rev. 1998;22(4):555–63.
Article
CAS
PubMed
Google Scholar
Laudani L, Casabona A, Perciavalle V, Macaluso A. Control of head stability during gait initiation in young and older women. J Electromyogr Kinesiol. 2006;16(6):603–10.
Article
CAS
PubMed
Google Scholar
Bloomberg JJ, Peters BT, Smith SL, Huebner WP, Reschke MF. Locomotor head-trunk coordination strategies following space flight. J Vestib Res. 1997;7(3):161–77.
Article
CAS
PubMed
Google Scholar
Klatt BN, Anson ER. Navigating through a COVID-19 world: avoiding obstacles. J Neurol Phys Ther. 2021;45(1):36–40.
Article
PubMed
Google Scholar