Seymour R: Prosthetics and orthotics: lower limb And spinal. Philadelphia: Lippincott, Williams & Wilkins; 2002.
Google Scholar
Au SK, Weber J, Herr H: Powered ankle–foot prosthesis improves walking metabolic economy.
Robot IEEE Trans. 2009,25(1):51–66. doi:10.1109/TRO.2008.2008747
Google Scholar
Martinez-Villalpando EC, Mooney L, Elliott G, Herr H: Antagonistic active knee prosthesis. a metabolic cost of walking comparison with a variable-damping prosthetic knee.
Engineering in medicine and biology society (EMBS), 2011 Annual international conference of the IEEE, 2011. doi:10.1109/IEMBS.2011.6092102
Google Scholar
Farris RJ, Quintero HA, Murray SA, Ha KH, Hartigan C, Goldfarb M: A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia.
Neural Syst Rehabil Eng IEEE Trans. 2014,22(3):482–90. doi:10.1109/TNSRE.2013.2268320
Google Scholar
Cohen JE: Human population: the next half century.
Science 2003,302(5648):1172–5. doi:10.1126/science.1088665 10.1126/science.1088665
CAS
PubMed
Google Scholar
The European Registers of Stroke (EROS) Investigators: Incidence of stroke in europe at the beginning of the 21st century.
Stroke 2009,40(5):1557–63. doi:10.1161/STROKEAHA.108.535088
Google Scholar
National Spinal Cord Injury Statistical Center (United States): 2012 Annual Report - Complete Public Version.
Annual Report - Available Online 2012. https://www.nscisc.uab.edu/
Google Scholar
Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA,: Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity.
Am J Epidemiol. 2003,157(11):1015–22. doi:10.1093/aje/kwg068
PubMed
Google Scholar
Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R: Estimating the prevalence of limb loss in the United States: 2005 to 2050.
Arch Phys Med Rehabil. 2008,89(3):422–9. doi:10.1016/j.apmr.2007.11.005 10.1016/j.apmr.2007.11.005
PubMed
Google Scholar
Herr H: Exoskeletons and orthoses: classification, design challenges and future directions.
J Neuroeng Rehabil. 2009,6(1):21. doi:10.1186/1743–0003–6-21 10.1186/1743-0003-6-21
PubMed Central
PubMed
Google Scholar
Guizzo E, Goldstein H: The rise of the body bots.
Spectrum IEEE. 2005,42(10):50–56. doi:10.1109/MSPEC.2005.1515961
Google Scholar
Dollar AM, Herr H: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art.
Robot IEEE Trans. 2008,24(1):144–58. doi:10.1109/TRO.2008.915453
Google Scholar
Bogue R: Exoskeletons and robotic prosthetics: a review of recent developments.
Ind Robot: Int J. 2009,36(5):421–7. 10.1108/01439910910980141
Google Scholar
Shorter KA, Xia J, Hsiao-Wecksler ET, Durfee WK, Kogler GF: Technologies for powered ankle-foot orthotic systems: Possibilities and challenges.
Mechatronics IEEE/ASME Trans. 2013, 1:337–47. doi:10.1109/TMECH.2011.2174799
Google Scholar
Goldfarb M, Lawson BE, Shultz AH: Realizing the promise of robotic leg prostheses.
Sci Transl Med 2013,5(210):210–15. doi:10.1126/scitranslmed.3007312
Google Scholar
Pons JL: Wearable Robots: Biomechatronic Exoskeletons. Chichester, UK: John Wiley & Sons, Ltd; 2008. doi:10.1002/9780470987667
Google Scholar
Jimenez-Fabian R, Verlinden O: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons.
Med Eng Phys. 2012,34(4):397–408. 10.1016/j.medengphy.2011.11.018
CAS
PubMed
Google Scholar
Riener R, Rabuffetti M, Frigo C: Stair ascent and descent at different inclinations.
Gait Posture 2002,15(1):32–44. doi:10.1016/S0966–6362(01)00162-X 10.1016/S0966-6362(01)00162-X
PubMed
Google Scholar
Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H: Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation.
Neural Syst Rehabil Eng IEEE Trans. 2007,15(3):379–86. doi:10.1109/TNSRE.2007.903919
Google Scholar
Marchal-Crespo L, Reinkensmeyer D: Review of control strategies for robotic movement training after neurologic injury.
J Neuroeng Rehabil. 2009,6(1):20. doi:10.1186/1743–0003–6-20 10.1186/1743-0003-6-20
PubMed Central
PubMed
Google Scholar
Borton D, Micera S, Courtine G, Millán JdR: Personalized neuroprosthetics.
Sci Transl Med. 2013,5(210):210–2. doi:10.1126/scitranslmed.3005968
Google Scholar
Peckham PH, Kilgore KL: Challenges and opportunities in restoring function after paralysis.
Biomed Eng IEEE Trans. 2013,60(3):602–9. doi:10.1109/TBME.2013.2245128
Google Scholar
Triolo RJ, Bailey SN, Miller ME, Rohde LM, Anderson JS, Jr JAD,: Longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury.
Arch Phys Med Rehabil. 2012,93(5):896–904. doi:10.1016/j.apmr.2012.01.001 10.1016/j.apmr.2012.01.001
PubMed Central
PubMed
Google Scholar
Varol HA, Sup F, Goldfarb M: Multiclass real-time intent recognition of a powered lower limb prosthesis.
Biomed Eng IEEE Trans. 2010,57(3):542–51. doi:10.1109/TBME.2009.2034734
Google Scholar
Loeb GE: Neural control of locomotion.
BioScience 1989, 39:800–4. 10.2307/1311186
Google Scholar
Stein PSG, Stuart DG, Grillner S, Selverston AI: Neurons, networks, and motor behavior. Cambridge, MA: MIT Press; 1999.
Google Scholar
Van de Crommert HW, Mulder T, Duysens J: Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training.
Gait Posture 1998,7(3):251–63. 10.1016/S0966-6362(98)00010-1
PubMed
Google Scholar
Duysens J, Van de Crommert: Neural control of locomotion; Part 1: The central pattern generator from cats to humans.
Gait Posture 1998,7(2):131–41. doi:10.1016/S0966–6362(97)00042–8 10.1016/S0966-6362(97)00042-8
PubMed
Google Scholar
Zehr EP: Neural control of rhythmic human movement: the common core hypothesis.
Exerc Sport Sci Rev. 2005,33(1):54–60.
PubMed
Google Scholar
Dimitrijevic MR, Persy I, Forstner C, Kern H, Dimitrijevic MM: Motor control in the human spinal cord.
Artif Organs. 2005,29(3):216–19. 10.1111/j.1525-1594.2005.29038.x
PubMed
Google Scholar
Pons JL, Moreno JC, Torricelli D, Taylor JS: Principles of human locomotion: a review. In Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. Piscataway, NJ: IEEE; 2013. doi:10.1109/EMBC.2013.6611154
Google Scholar
Dietz V: Proprioception and locomotor disorders.
Nat Rev Neurosci. 2002,3(10):781–90. 10.1038/nrn939
CAS
PubMed
Google Scholar
Prochazka A, Gritsenko V, Yakovenko S: Sensory control of locomotion: Reflexes versus higher-level control. In Sensorimotor control of movement and posture. Advances in experimental medicine and biology, vol. 508. Edited by: Stuart DG, Gandevia SC, Proske U, Stuart DG. New York: Springer; 2002.
Google Scholar
Capaday C: The special nature of human walking and its neural control.
Trends Neurosci. 2002, 25:370–6. 10.1016/S0166-2236(02)02173-2
CAS
PubMed
Google Scholar
Nielsen JB, Sinkjær T: Afferent feedback in the control of human gait.
J Electromyogr Kinesiol. 2002,12(3):213–17. 10.1016/S1050-6411(02)00023-8
CAS
PubMed
Google Scholar
St-Onge N, Feldman AG: Interjoint coordination in lower limbs during different movements in humans.
Exp Brain Res. 2003,148(2):139–49. doi:10.1007/s00221–002–1212–8
PubMed
Google Scholar
Waters RL, Mulroy S: The energy expenditure of normal and pathologic gait.
Gait Posture 1999,9(3):207–31. doi:10.1016/S0966–6362(99)00009–0 10.1016/S0966-6362(99)00009-0
CAS
PubMed
Google Scholar
Miller WC, Speechley M, Deathe B: The prevalence and risk factors of falling and fear of falling among lower extremity amputees.
Arch Phys Med Rehabil. 2001,82(8):1031–37. doi:10.1053/apmr.2001.24295 10.1053/apmr.2001.24295
CAS
PubMed
Google Scholar
Rubenstein LZ: Falls in older people: epidemiology, risk factors and strategies for prevention.
Age Ageing. 2006,35(Suppl 2):37–41. doi:10.1093/ageing/afl084
Google Scholar
Gailey R, Allen K, Castles J, Kucharik J, Roeder M: Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use.
J Rehabil Res Dev 2008,45(1):15–30. 10.1682/JRRD.2006.11.0147
PubMed
Google Scholar
Herr H, Wilkenfeld A: User-adaptive control of a magnetorheological prosthetic knee.
Ind Robot: Int J. 2003,30(1):42–55. doi:10.1108/01439910310457706 10.1108/01439910310457706
Google Scholar
Belda-Lois J-M, Mena-del Horno S, Bermejo-Bosch I, Moreno J, Pons J, Farina D,: Rehabilitation of gait after stroke: a review towards a top-down approach.
J Neuroeng Rehabil 2011,8(1):66. doi:10.1186/1743–0003–8-66 10.1186/1743-0003-8-66
PubMed Central
PubMed
Google Scholar
Einarsdottir H: Intelligent motor powered prosthetic knee joint.
J Med Devices 2011,5(2):027528. doi:10.1115/1.3590866
Google Scholar
Kobetic R, To C, Schnellenberger J, Audu M, Bulea T, Gaudio R,: Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury.
J Rehabil Res Dev. 2009,46(3):447–62. 10.1682/JRRD.2008.07.0087
PubMed
Google Scholar
Rupp R, Mueller-Putz G, Murray-Smith R, Giugliemma C, Tangermann M,, Millán JdR: Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges.
Frontiers Neurosci. 2010,4(161):1–15. doi:10.3389/fnins.2010.00161
Google Scholar
Renkens F, Mourino J, Gerstner W, Millán JdR: Noninvasive brain-actuated control of a mobile robot by human eeg.
Biomed Eng IEEE Trans 2004,51(6):1026–33. doi:10.1109/TBME.2004.827086 10.1109/TBME.2004.827086
Google Scholar
Carlson T, del R Millán J: Brain-controlled wheelchairs: a robotic architecture.
Robot Automation Mag IEEE. 2013,20(1):65–73. doi:10.1109/MRA.2012.2229936
Google Scholar
Contreras-Vidal JL, Grossman RG: NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. In Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. Piscataway, NJ: IEEE; 2013. doi:10.1109/EMBC.2013.6609816
Google Scholar
Kilicarslan A, Prasad S, Grossman RG, Contreras-Vidal JL: High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. In Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. Piscataway, NJ: IEEE; 2013. doi:10.1109/EMBC.2013.6610821
Google Scholar
Rea M, Rana M, Lugato N, Terekhin P, Gizzi L, Brötz D,: Lower limb movement preparation in chronic stroke: a pilot study toward an fNIRS-BCI for gait rehabilitation.
Neurorehabil Neural Repair 2014,28(6):564–75. doi:10.1177/1545968313520410 10.1177/1545968313520410
PubMed
Google Scholar
Pfurtscheller G, Allison BZ, Bauernfeind G, Brunner C, Solis Escalante T, Scherer R,: The hybrid BCI.
Frontiers in neuroscience 2010,4(3):1–11. doi:10.3389/fnpro.2010.00003
Google Scholar
Mueller-Putz GR, Breitwieser C, Cincotti F, Leeb R, Schreuder M, Leotta F,: Tools for brain-computer interaction: a general concept for a hybrid bci (hbci).
Frontiers Neuroinformatics 2011;.,5(30): doi:10.3389/fninf.2011.00030
Nicolelis MAL: Mind in motion.
Sci Am 2012,307(3):58–63. doi:10.1038/scientificamerican0912–58 10.1038/scientificamerican0912-58
PubMed
Google Scholar
Bensmaia SJ, Miller LE: Restoring sensorimotor function through intracortical interfaces: progress and looming challenges.
Nat Rev Neurosci 2014,15(5):313–25. doi:10.1038/nrn3724 10.1038/nrn3724
CAS
PubMed
Google Scholar
Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ,: High-performance neuroprosthetic control by an individual with tetraplegia.
The Lancet 2013,381(9866):557–64. doi:10.1016/S0140–6736(12)61816–9 10.1016/S0140-6736(12)61816-9
Google Scholar
Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J,: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature 2012,485(7398):372–5. doi:10.1038/nature11076 10.1038/nature11076
PubMed Central
CAS
PubMed
Google Scholar
Lebedev MA, Tate AJ, Hanson TL, Li Z, O’Doherty JE, Winans JA,: Future developments in brain-machine interface research.
Clinics 2011, 66:25–32. doi:10.1590/S1807–59322011001300004
PubMed Central
PubMed
Google Scholar
Cavanagh PR, Komi PV: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions.
Eur J Appl Physiol Occup Physiol 1979,42(3):159–63. doi:10.1007/BF00431022 10.1007/BF00431022
CAS
PubMed
Google Scholar
Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular mechanical fusion.
Biomed Eng IEEE Trans 2011,58(10):2867–75. doi:10.1109/TBME.2011.2161671
Google Scholar
Fleischer C, Hommel G: A human–exoskeleton interface utilizing electromyography.
Robot IEEE Trans 2008,24(4):872–82. doi:10.1109/TRO.2008.926860
Google Scholar
Hoover CD, Fulk GD, Fite KB: The design and initial experimental validation of an active myoelectric transfemoral prosthesis.
J Med Devices 2012,6(1):1–12.
Google Scholar
Young AJ, Simon A, Hargrove LJ: An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. In Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. Piscataway, NJ: IEEE; 2013. doi:10.1109/EMBC.2013.6609818
Google Scholar
Donath M: Proportional EMG control for above-knee prosthesis. 1974. http://hdl.handle.net/1721.1/13775
Google Scholar
Souza JM, Fey NP, Cheesborough JE, Agnew SP, Hargrove LJ, Dumanian GA: Advances in transfemoral amputee rehabilitation: early experience with targeted muscle reinnervation.
Curr Surg Rep 2014,2(5):1–9. doi:10.1007/s40137–014–0051–4
Google Scholar
Dawley JA, Fite KB, Fulk GD: EMG control of a bionic knee prosthesis: Exploiting muscle co-contractions for improved locomotor function. In Rehabilitation Robotics (ICORR), 2013 IEEE International Conference On. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650389
Google Scholar
Au SK, Bonato P, Herr H: An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study. In Rehabilitation robotics, 2005. ICORR 2005. 9th international conference on. Piscataway, NJ: IEEE; 2005. doi:10.1109/ICORR.2005.1501123
Google Scholar
Hargrove LJ, Simon AM, Young AJ, Lipschutz RD, Finucane SB, Smith DG,: Robotic leg control with EMG decoding in an amputee with nerve transfers.
N Engl J Med 2013,369(13):1237–42. doi:10.1056/NEJMoa1300126 10.1056/NEJMoa1300126
CAS
PubMed
Google Scholar
Orizio C: Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies.
Crit Rev Biomed Eng 1993,21(3):201–43.
CAS
PubMed
Google Scholar
Perry-Rana SR, Housh TJ, Johnson GO, Bull AJ, Berning JM, Cramer JT: MMG and EMG responses during fatiguing isokinetic muscle contractions at different velocities.
Muscle Nerve 2002,26(3):367–73. doi:10.1002/mus.10214 10.1002/mus.10214
PubMed
Google Scholar
Yamamoto K, Hyodo K, Ishii M, Matsuo T: Development of power assisting suit for assisting nurse labor.
JSME Int J Series C 2002, 45:703–11. doi:10.1299/jsmec.45.703 10.1299/jsmec.45.703
Google Scholar
Stančin S, Dordević S: MC sensor–a novel method for measurement of muscle tension.
Sensors 2011,11(10):9411–25.
PubMed Central
PubMed
Google Scholar
Kong K, Jeon D: Design and control of an exoskeleton for the elderly and patients.
Mechatronics IEEE/ASME Trans 2006,11(4):428–32. doi:10.1109/TMECH.2006.878550
Google Scholar
Lukowicz P, Hanser F, Szubski C, Schobersberger W: Detecting and Interpreting Muscle Activity with Wearable Force Sensors. In Pervasive computing. Lecture notes in computer science vol. 3968. Edited by: Fishkin KP, Schiele B, Nixon P, Quigley A. Springer, PERVASIVE; 2006.
Google Scholar
Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL: Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
Gait Posture 2014,40(1):11–19. doi:10.1016/j.gaitpost.2014.03.189 10.1016/j.gaitpost.2014.03.189
PubMed
Google Scholar
Abdul Razak AH, Zayegh A, Begg RK, Wahab Y: Foot plantar pressure measurement system: a review.
Sensors 2012,12(7):9884–912. doi:10.3390/s120709884
PubMed Central
PubMed
Google Scholar
Otto Bock US Healthcare: Genium and X3 microprocessor knee online training. Minneapolis, MN, USA: Otto Bock US Healthcare; 2014. . Accessed 5 Feb 2014 http://academy.ottobockus.com
Google Scholar
REX Bionics Plc: REX Personal™ Product Information. Online. 2014. . Accessed 30 May 2014 http://www.rexbionics.com
Farris RJ, Quintero HA, Goldfarb M: Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals.
Neural Syst Rehabil Eng IEEE Trans 2011,19(6):652–59. doi:10.1109/TNSRE.2011.2163083
Google Scholar
Duvinage M, Castermans T, Dutoit T: Control of a lower limb active prosthesis with eye movement sequences. In Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), 2011 IEEE Symposium On. Piscataway, NJ: IEEE; 2011. doi:10.1109/CCMB.2011.5952116
Google Scholar
Fondation Suisse pour les Tèléthèses (FST): Computer-Wheelchair Interface (CWI). Online. 2014. . Accessed 30 May 2014 http://www.fstlab.ch/
Bach-y-Rita P, Kercel SW: Sensory Substitution and the human-machine interface.
Trends Cognitive Sci 2003,7(12):541–6. 10.1016/j.tics.2003.10.013
Google Scholar
Meek SG, Jacobsen SC, Goulding PP: Extended physiologic taction: design and evaluation of a proportional force feedback system.
J Rehabil Res Dev 1989,26(3):53–62.
CAS
PubMed
Google Scholar
Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G,: Restoring natural sensory feedback in real-time bidirectional hand prostheses.
Sci Transl Med 2014,6(222):222ra19. doi:10.1126/scitranslmed.3006820 10.1126/scitranslmed.3006820
PubMed
Google Scholar
Clippinger FW, Seaber AV, McElhaney JH, Harrelson JM, Maxwell GM: Afferent Sensory Feedback for Lower Extremity Prosthesis.
Clin Orthop Relat Res 1982, 169:202–6.
PubMed
Google Scholar
Giggins OM, Persson UM, Caulfield B: Biofeedback in rehabilitation.
J Neuroeng Rehabil 2013,10(1):60. doi:10.1186/1743–0003–10–60 10.1186/1743-0003-10-60
PubMed Central
PubMed
Google Scholar
Zambarbieri D, Schmid M, Magnaghi M, Vermi G, Macellari V, Fadda A: Biofeedback techniques for rehabilitation of the lower-limb prosthetic subject. In Proc. VII Medicon. Lemesos, Cyprus: MEDICON; 1998.
Google Scholar
Zambarbieri D, Schmid M, Verni G: Sensory feedback for lower limb prostheses. Boca Raton, FL, USA: CRC Press, Inc.; 2001. p. 129–51
Google Scholar
Redd CB, Bamberg SJM: A wireless sensory feedback system for real-time gait modification. In Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE. Piscataway, NJ: IEEE; 2011. doi:10.1109/IEMBS.2011.6090344
Google Scholar
Sigrist R, Rauter G, Riener R, Wolf P: Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review.
Psychon Bull Rev 2013,20(1):21–53. doi:10.3758/s13423–012–0333–8 10.3758/s13423-012-0333-8
PubMed
Google Scholar
Bamberg SJM, Carson RJ, Stoddard G, Dyer PS, Webster JB: The lower extremity ambulation feedback system for analysis of gait asymmetries: preliminary design and validation results.
J Prosthet Orthot 2010, 22:31–36. 10.1097/JPO.0b013e3181ccc065
Google Scholar
Yang L, Dyer PS, Carson RJ, Webster JB, Foreman KB, Bamberg SJM: Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait.
Gait Posture 2012, 36:631–4. doi:10.1016/j.gaitpost.2012.04.004 10.1016/j.gaitpost.2012.04.004
CAS
PubMed
Google Scholar
Gilbert JA, Maxwell GM, George Jr RT, McElhaney JH: Technical note - auditory feedback of knee angle for amputees.
Prosthet Orthot Int 1982, 6:103–4.
CAS
PubMed
Google Scholar
Kaczmarek K, Webster J, Bach-y-Rita P, Tompkins W: Electrotactile and vibrotactile displays for sensory substitution systems.
IEEE Trans Biomed Eng 1991,38(1):1–16. 10.1109/10.68204
CAS
PubMed
Google Scholar
Kawamura J, Sueda O, Harada K, Nishihara K, Isobe S: Sensory feedback systems for the lower-limb prosthesis.
J Osaka Rosai Hospital 1981, 5:104–12.
Google Scholar
Sabolich JA, Ortega GM: Sense of feel for lower-limb amputees: a phase-one study.
J Prosthet Orthot 1994, 6:36–41. 10.1097/00008526-199400620-00003
Google Scholar
Webb G, Ewins D, Ghoussayni S: Electro-tactile sensation thresholds for an amputee gait-retraining system. In 3rd annual conference of the international functional electrical stimulation society. Birmingham, UK: International funtional electical stimulation society, UK and Ireland chapter; 2012.
Google Scholar
Izumi T, Hoshimiya N: A presentation method of a traveling image for the sensory feedback for control of the paralyzed upper extremity.
Syst Comput Japan 1988,19(8):1625–32.
Google Scholar
Seps M, Dermitzakis K, Hernandez-Arieta A: Study on lower back electrotactile stimulation characteristics for prosthetic sensory feedback. In Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on. Piscataway, NJ: IEEE; 2011. doi:10.1109/IROS.2011.6095110
Google Scholar
Lee M-Y, Soon K-S: New computer protocol with subsensory stimulation and visual/auditory biofeedback for balance assessment in amputees. In Systems, man and cybernetics, 2009. SMC, 2009. IEEE international conference on. Piscataway, NJ: IEEE; 2009. doi:10.1109/ICSMC.2009.5346337
Google Scholar
Webb G: Providing real-time biofeedback for amputee gait retraining using labview. In NI days worldwide graphical system design conference. London, UK: National Instruments; 2011.
Google Scholar
Stepp CE, An Q, Matsuoka Y: Repeated training with augmentative vibrotactile feedback increases object manipulation performance.
PloS ONE 2012,7(2):32743. doi:10.1371/journal.pone.0032743 10.1371/journal.pone.0032743
Google Scholar
Rusaw D, Hagberg K, Nolan L, Ramstrand N: Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?
J Rehabil Res Dev 2012,49(8):1239–54. doi:10.1682/JRRD.2011.05.0088 10.1682/JRRD.2011.05.0088
PubMed
Google Scholar
Fan RE, Culjat MO, Kim C-H, Franco ML, Boryk R, Bisley JW,: A haptic feedback system for lower-limb prostheses.
IEEE Trans Neural Syst Rehabil Eng 2008, 16:270–7. doi:10.1109/TNSRE.2008.920075
PubMed
Google Scholar
Pylatiuk C, Kargov A: Schulz S, Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands.
J Prosthet Orthot 2006,18(2):57–61. 10.1097/00008526-200604000-00007
Google Scholar
Blank A, Okamura AM: Kuchenbecker KJ, Identifying the role of proprioception in upper-limb prosthesis control: Studies on targeted motion.
ACM Trans Appl Perception (TAP) 2010,7(3):15. doi:10.1145/1773965.1773966
Google Scholar
Pagel A, Oes J, Pfeifer S, Riener R, Vallery H: Künstliches feedback für oberschenkelamputierte–theoretische analyse/artificial feedback for transfemoral amputees–theoretical analysis.
at-Automatisierungstechnik 2013,61(9):621–629.
Google Scholar
Sup F, Varol HA: Goldfarb M, Upslope walking with a powered knee and ankle prosthesis: Initial results with an amputee subject.
Neural Syst Rehabil Eng IEEE Trans 2011,19(1):71–78. doi:10.1109/TNSRE.2010.2087360
Google Scholar
Lawson BE, Varol HA: Goldfarb M, Standing stability enhancement with an intelligent powered transfemoral prosthesis.
Biomed Eng IEEE Trans 2011,58(9):2617–24. doi:10.1109/TBME.2011.2160173
Google Scholar
Li YD, Hsiao-Wecksler ET: Gait mode recognition and control for a portable-powered ankle-foot orthosis.
Rehabilitation robotics (ICORR), 2013 IEEE international conference on 2013. doi:10.1109/ICORR.2013.6650373
Google Scholar
Li Q, Young M, Naing V, Donelan JM: Walking speed and slope estimation using shank-mounted inertial measurement units.
Rehabilitation robotics, 2009. ICORR 2009. IEEE international conference on 2009. doi:10.1109/ICORR.2009.5209598
Google Scholar
Farrell MT: Pattern classification of terrain during amputee walking. 2013. http://hdl.handle.net/1721.1/82420
Google Scholar
Scandaroli GG, Araujo Borges G, Ishihara JY, Terra MH, da Rocha AF, de Oliveira Nascimento FA: Estimation of foot orientation with respect to ground for an above knee robotic prosthesis. In Intelligent robots and systems, 2009. IROS 2009. IEEE/RSJ international conference on. Piscataway, NJ: IEEE; 2009. doi:10.1109/IROS.2009.5354820
Google Scholar
Zhang F, Fang Z, Liu M, Huang H: Preliminary design of a terrain recognition system. In Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE. Piscataway, NJ: IEEE; 2011. doi:10.1109/IEMBS.2011.6091391
Google Scholar
Grimes DL: An active multimode above knee prosthesis controller. 1979. http://hdl.handle.net/1721.1/15998
Google Scholar
Peeraer L, Aeyels B, der Perre GV: Development of emg-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis.
J Biomed Eng 1990,12(3):178–82. doi:10.1016/0141–5425(90)90037-N 10.1016/0141-5425(90)90037-N
CAS
PubMed
Google Scholar
Popovic D, Tomovic R, Tepavac D, Schwirtlich L: Control aspects of active above-knee prosthesis.
Int J Man-Mach Stud 1991,35(6):751–67. doi:10.1016/S0020–7373(05)80159–2 10.1016/S0020-7373(05)80159-2
Google Scholar
Quintero HA, Farris RJ, Hartigan C, Clesson I, Goldfarb M: A powered lower limb orthosis for providing legged mobility in paraplegic individuals.
Topics Spinal Cord Injury Rehabil 2011,17(1):25–33. doi:10.1310/sci1701–25 10.1310/sci1701-25
Google Scholar
Zhang F, Liu M, Huang H: Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.
Neural Syst Rehabil Eng IEEE Trans. 2014. p. 1–9 doi:10.1109/TNSRE.2014.2327230. (preprint)
Google Scholar
Young AJ, Simon AM, Hargrove LJ: A training method for locomotion mode prediction using powered lower limb prostheses.
Neural Syst Rehabil Eng IEEE Trans 2014,22(3):671–7. doi:10.1109/TNSRE.2013.2285101
Google Scholar
Simon AM, Fey NP, Ingraham KA, Young A, Hargrove LJ: Powered prosthesis control during walking, sitting, standing, and non-weight bearing activities using neural and mechanical inputs. In Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference On. Piscataway, NJ: IEEE; 2013. doi:10.1109/NER.2013.6696148
Google Scholar
Zhang F, Liu M, Huang H: Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. In Engineering in medicine and biology society (EMBC), 2012 annual international conference of the IEEE. Piscataway, NJ: IEEE; 2012. doi:10.1109/EMBC.2012.6346538
Google Scholar
Novak D, Riener R: A survey of sensory fusion methods in wearable robotics.
Robot Autonomous Syst. 2014. p. 1–16. doi:10.1016/j.robot.2014.08.012. (preprint)
Google Scholar
Kamnik R, Vitiello N, Lefeber D, Pasquini G,, Goršič M: Online phase detection using wearable sensors for walking with a robotic prosthesis.
Sensors 2014,14(2):2776–94. doi:10.3390/s140202776 10.3390/s140202776
PubMed Central
PubMed
Google Scholar
Kawamoto H, Kanbe S, Sankai Y: Power assist method for HAL-3 estimating operator’s intention based on motion information. In Robot and human interactive communication, 2003. proceedings. ROMAN 2003. The 12th IEEE international workshop on. Piscataway, NJ: IEEE; 2003. doi:10.1109/ROMAN.2003.1251800
Google Scholar
Jin D, Yang J, Zhang R, Wang R, Zhang J: Terrain identification for prosthetic knees based on electromyographic signal features.
Tsinghua Sci Technol 2006,11(1):74–79. doi:10.1016/S1007–0214(06)70157–2
Google Scholar
Novak D, Reberšek P, Rossi SMMD, Donati M, Podobnik J, Beravs T,: Automated detection of gait initiation and termination using wearable sensors.
Med Eng Phys 2013,35(12):1713–20. doi:10.1016/j.medengphy.2013.07.003 10.1016/j.medengphy.2013.07.003
PubMed
Google Scholar
Young AJ, Simon AM, Fey NP, Hargrove LJ: Classifying the intent of novel users during human locomotion using powered lower limb prostheses. In Neural engineering (NER), 2013 6th international IEEE/EMBS conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/NER.2013.6695934
Google Scholar
Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA,: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
JAMA 2009,301(6):619–28. doi:10.1001/jama.2009.116 10.1001/jama.2009.116
PubMed Central
CAS
PubMed
Google Scholar
Huang H, Kuiken TA, Lipschutz RD: A strategy for identifying locomotion modes using surface electromyography.
Biomed Eng IEEE Trans 2009,56(1):65–73. doi:10.1109/TBME.2008.2003293
Google Scholar
Hargrove L, Simon A, Lipschutz R, Finucane S, Kuiken T: Non-weight-bearing neural control of a powered transfemoral prosthesis.
J Neuroeng Rehabil 2013,10(1):62. doi:10.1186/1743–0003–10–62 10.1186/1743-0003-10-62
PubMed Central
PubMed
Google Scholar
Tkach DC, Hargrove LJ: Neuromechanical sensor fusion yields highest accuracies in predicting ambulation mode transitions for trans-tibial amputees. In Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. Piscataway, NJ: IEEE; 2013. doi:10.1109/EMBC.2013.6610190
Google Scholar
Ha KH, Varol HA, Goldfarb M: Volitional control of a prosthetic knee using surface electromyography.
Biomed Eng IEEE Trans 2011,58(1):144–51. doi:10.1109/TBME.2010.2070840
Google Scholar
Young AJ, Simon AM, Fey NP, Hargrove LJ: Intent Recognition in a Powered Lower Limb Prosthesis Using Time History Information.
Ann Biomed Eng 2014,42(3):631–41. doi:10.1007/s10439–013–0909–0 10.1007/s10439-013-0909-0
PubMed
Google Scholar
Au S, Berniker M, Herr H: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
Neural Netw 2008,21(4):654–66. doi:10.1016/j.neunet.2008.03.006 10.1016/j.neunet.2008.03.006
PubMed
Google Scholar
Gancet J, Ilzkovitz M, Cheron G, Ivanenko Y, van der Kooij H, van der Helm F,: MINDWALKER: A brain controlled lower limbs exoskeleton for rehabilitation. Potential applications to space. In 11th Symposium on advanced space technologies in robotics and automation. Edited by: Workshop EA. Noordwijk, NL: European Space Agency; 2011.
Google Scholar
Össur: POWER KNEE™ Technical Manual. Reykjavik, Iceland: Össur; 2014. . Downloaded 5 Feb 2014 http://www.ossur.com/americas
Google Scholar
Shultz A, Lawson B, Goldfarb M: Running with a powered knee and ankle prosthesis.
Neural Syst Rehabil Eng IEEE Trans. 2014. p. 1–10. doi:10.1109/TNSRE.2014.2336597. (preprint)
Google Scholar
Lawson B, Varol HA, Huff A, Erdemir E, Goldfarb M: Control of stair ascent and descent with a powered transfemoral prosthesis.
Neural Syst Rehabil Eng IEEE Trans 2013,21(3):466–73. doi:10.1109/TNSRE.2012.2225640
Google Scholar
Sankai Y: HAL: Hybrid Assistive Limb based on Cybernics. In Robotics research. Springer tracts in advanced robotics. vol. 66. Edited by: Kaneko M, Nakamura Y. Berlin: Springer; 2011.
Google Scholar
Ekso Bionics: Ekso Bionics Ekso™ Product Information. Online. 2014. . Accessed 15 May 2014 http://www.eksobionics.com/
Strickland E: Good-bye, wheelchair.
Spectrum IEEE 2012,49(1):30–32. doi:10.1109/MSPEC.2012.6117830
Google Scholar
Goffer A: Enhanced safety of gait in powered exoskeletons. Dynamic walking conference abstract - available online. Argo Medical Technologies, ReWalk 2014. http://dynamicwalking.org/ocs/index.php/dw2014/dw2014/paper/viewFile/17/10
Farris RJ, Quintero HA, Goldfarb M: Performance evaluation of a lower limb exoskeleton for stair ascent and descent with paraplegia. In Engineering in medicine and biology society (EMBC), 2012 annual international conference of the IEEE. Piscataway, NJ: IEEE; 2012. doi:10.1109/EMBC.2012.6346326
Google Scholar
Gancet J, Ilzkovitz M, Motard E, Nevatia Y, Letier P, de Weerdt D,: MINDWALKER: Going one step further with assistive lower limbs exoskeleton for SCI condition subjects. In Biomedical robotics and biomechatronics (BioRob), 2012 4th IEEE RAS EMBS international conference on. Piscataway, NJ: IEEE; 2012. doi:10.1109/BioRob.2012.6290688
Google Scholar
Duvinage M, Castermans T, Jimenez-Fabian R, Hoellinger T, De Saedeleer C, Petieau M,: A five-state P300-based foot lifter orthosis: Proof of concept. In Biosignals and biorobotics conference (BRC), 2012 ISSNIP. Piscataway, NJ: IEEE; 2012. doi:10.1109/BRC.2012.6222193
Google Scholar
Tkach DC, Lipschutz RD, Finucane SB, Hargrove LJ: Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis. In Rehabilitation robotics (ICORR), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650499
Google Scholar
Baiden D, Ivlev O: Human-robot-interaction control for orthoses with pneumatic soft-actuators – concept and initial trails. In Rehabilitation robotics (ICORR), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650353
Google Scholar
Hasegawa Y, Jang J, Sankai Y: Cooperative walk control of paraplegia patient and assistive system. In Intelligent robots and systems, 2009. IROS 2009. IEEE/RSJ international conference on. Piscataway, NJ: IEEE; 2009. doi:10.1109/IROS.2009.5354192
Google Scholar
Hoover CD, Fite KB: A configuration dependent muscle model for the myoelectric control of a transfemoral prosthesis. In Rehabilitation robotics (ICORR), 2011 IEEE international conference on. Piscataway, NJ: IEEE; 2011. doi:10.1109/ICORR.2011.5975480
Google Scholar
Hoover CD, Fulk GD, Fite KB: Stair ascent with a powered transfemoral prosthesis under direct myoelectric control.
Mechatronics IEEE/ASME Trans 2013,18(3):1191–200. doi:10.1109/TMECH.2012.2200498
Google Scholar
Hargrove LJ, Simon AM, Lipschutz RD, Finucane SB, Kuiken A: Real-time myoelectric control of knee and ankle motions for transfemoral amputees.
JAMA 2011,305(15):1542–44. doi:10.1001/jama.2011.465 10.1001/jama.2011.465
CAS
PubMed
Google Scholar
Kawamoto H, Lee S, Kanbe S, Sankai Y: Power assist method for HAL-3 using EMG-based feedback controller. In Systems, man and cybernetics, 2003. IEEE international conference on vol. 2. Piscataway, NJ: IEEE; 2003. doi:10.1109/ICSMC.2003.1244649
Google Scholar
Fleischer C, Reinicke C, Hommel G: Predicting the intended motion with EMG signals for an exoskeleton orthosis controller. In Intelligent robots and systems, 2005. (IROS 2005). 2005 IEEE/RSJ international conference on. Piscataway, NJ: IEEE; 2005. doi:10.1109/IROS.2005.1545504
Google Scholar
Karavas N, Ajoudani A, Tsagarakis N, Saglia J, Bicchi A, Caldwell D: Tele-impedance based assistive control for a compliant knee exoskeleton.
Robot Autonomous Syst. 2014. p. 1–13. doi:10.1016/j.robot.2014.09.027. (preprint)
Google Scholar
Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control.
Gait Posture 2006,23(4):425–8. doi:10.1016/j.gaitpost.2005.05.004 10.1016/j.gaitpost.2005.05.004
PubMed
Google Scholar
Karavas N, Ajoudani A, Tsagarakis N, Caldwell D: Human-inspired balancing assistance: Application to a knee exoskeleton. In Robotics and biomimetics (ROBIO), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ROBIO.2013.6739474
Google Scholar
Vallery H, Burgkart R, Hartmann C, Mitternacht J, Riener R, Buss M: Complementary limb motion estimation for the control of active knee prostheses.
Biomedizinische Technik/Biomed Eng 2011,56(1):45–51. doi:10.1515/bmt.2010.057
Google Scholar
Holgate MA, Bohler AW, Sugar TG: Control algorithms for ankle robots: a reflection on the state-of-the-art and presentation of two novel algorithms. In Biomedical robotics and biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS EMBS international conference on. Piscataway, NJ: IEEE; 2008. doi:10.1109/BIOROB.2008.4762859
Google Scholar
Gregg RD, Sensinger JW: Towards biomimetic virtual constraint control of a powered prosthetic leg.
Control Syst Technol IEEE Trans 2014,22(1):246–54. doi:10.1109/TCST.2012.2236840
Google Scholar
Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ: Biologically-inspired soft exosuit. In Rehabilitation robotics (ICORR), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650455
Google Scholar
Andersen JB, Sinkjaer T: Mobile ankle and knee perturbator.
Biomed Eng IEEE Trans 2003,50(10):1208–11. doi:10.1109/TBME.2003.816073 10.1109/TBME.2003.816073
Google Scholar
Sulzer JS, Gordon KE, Hornby TG, Peshkin MA, Patton JL: Adaptation to knee flexion torque during gait. In Rehabilitation robotics, 2009. ICORR 2009. IEEE international conference on. Piscataway, NJ: IEEE; 2009. doi:10.1109/ICORR.2009.5209499
Google Scholar
Li D, Becker A, Shorter KA, Bretl T, Hsiao-Wecksler EA: Estimating system state during human walking with a powered ankle-foot orthosis.
Mechatronics IEEE/ASME Trans 2011,16(5):835–44. doi:10.1109/TMECH.2011.2161769
Google Scholar
Borghese NA, Bianchi L, Lacquaniti F: Kinematic determinants of human locomotion.
J Physiol 1996,494(Pt 3):863–79.
PubMed Central
CAS
PubMed
Google Scholar
Hansen AH, Childress DS: Investigations of roll-over shape: implications for design, alignment, and evaluation of ankle-foot prostheses and orthoses.
Disabil Rehabil 2010,32(26):2201–09. doi:10.3109/09638288.2010.502586 10.3109/09638288.2010.502586
PubMed
Google Scholar
Grimes DL, Flowers WC, Donath M: Feasibility of an active control scheme for A/K prostheses.
J Biomed Eng 1977, 99:215–21.
Google Scholar
Wang WJ, Li J, Li WD, Sun LN: An echo-based gait phase determination method of lower limb prosthesis.
Adv Mater Res 2013, 706–708:629–34. doi:10.4028/ http://www.scientific.net/AMR.706-708.629
Google Scholar
Sreenath K, Park H-W, Poulakakis I, Grizzle JW: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL.
Int J Robot Res 2011,30(9):1170–93. doi:10.1177/0278364910379882 10.1177/0278364910379882
Google Scholar
Gregg RD, Sensinger JW: Biomimetic virtual constraint control of a transfemoral powered prosthetic leg. In American control conference (ACC), 2013. Piscataway, NJ: IEEE; 2013.
Google Scholar
Gregg RD, Lenzi T, Fey NP, Hargrove LJ, Sensinger JW: Experimental effective shape control of a powered transfemoral prosthesis. In Rehabilitation robotics (ICORR), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650413
Google Scholar
Boehler AW, Hollander KW, Sugar TG, Shin D: Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO). In Robotics and automation, 2008. ICRA 2008. IEEE international conference on. Piscataway, NJ: IEEE; 2008. doi:10.1109/ROBOT.2008.4543504
Google Scholar
Eilenberg MF, Geyer H, Herr H: Control of a powered ankle-foot prosthesis based on a neuromuscular model.
Neural Syst Rehabil Eng IEEE Trans 2010,18(2):164–73. doi:10.1109/TNSRE.2009.2039620
Google Scholar
Fite K, Mitchell J, Sup F, Goldfarb M: Design and control of an electrically powered knee prosthesis.
Rehabilitation robotics, 2007. ICORR 2007. IEEE 10th international conference on 2007. doi:10.1109/ICORR.2007.4428531
Google Scholar
Lambrecht BGA, Kazerooni H: Design of a semi-active knee prosthesis.
Robotics and automation, 2009. ICRA ’09. IEEE international conference on 2009. doi:10.1109/ROBOT.2009.5152828
Google Scholar
Lawson BE, Varol HA, Sup F, Goldfarb M: Stumble detection and classification for an intelligent transfemoral prosthesis. In Engineering in medicine and biology society (EMBC), 2010 annual international conference of the IEEE. Piscataway, NJ: IEEE; 2010. doi:10.1109/IEMBS.2010.5626021
Google Scholar
Lawson BE, Shultz AH, Goldfarb M: Evaluation of a coordinated control system for a pair of powered transfemoral prostheses. In Robotics and automation (ICRA), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICRA.2013.6631124
Google Scholar
Liu M, Zhang F, Datseris P, Huang H: Improving finite state impedance control of active-transfemoral prosthesis using dempster-shafer based state transition rules.
J Intell Robot Syst 2013,76(3–4):1–14. doi:10.1007/s10846–013–9979–3
Google Scholar
Murray S, Goldfarb M: Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits. In Engineering in medicine and biology society (EMBS), 2012 annual international conference of the IEEE. Piscataway, NJ: IEEE; 2012. doi:10.1109/EMBC.2012.6346327
Google Scholar
Shultz AH, Mitchell JE, Truex D, Lawson BE, Goldfarb M: Preliminary evaluation of a walking controller for a powered ankle prosthesis. In Robotics and automation (ICRA), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICRA.2013.6631267
Google Scholar
Sun J, Voglewede PA: Powered transtibial prosthetic device control system design, implementation, and bench testing.
J Med Devices 2013,8(1):011004. doi:10.1115/1.4025851 10.1115/1.4025851
Google Scholar
Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M: Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis.
Mechatronics IEEE/ASME Trans 2009,14(6):667–76. doi:10.1109/TMECH.2009.2032688
Google Scholar
Sup F, Bohara A, Goldfarb M: Design and control of a powered transfemoral prosthesis.
Int J Robot Res 2008,27(2):263–73. doi:10.1177/0278364907084588 10.1177/0278364907084588
Google Scholar
Sup F, Varol HA, Mitchell J, Withrow T, Goldfarb M: Design and control of an active electrical knee and ankle prosthesis. In Biomedical robotics and biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS EMBS international conference on. Piscataway, NJ: IEEE; 2008. doi:10.1109/BIOROB.2008.4762811
Google Scholar
Varol HA, Goldfarb M: Decomposition-based control for a powered knee and ankle transfemoral prosthesis. In Rehabilitation robotics, 2007. ICORR 2007. IEEE 10th international conference on. Piscataway, NJ: IEEE; 2007. doi:10.1109/ICORR.2007.4428514
Google Scholar
Wang Q, Yuan K, Zhu J, Wang L: Finite-state control of a robotic transtibial prosthesis with motor-driven nonlinear damping behaviors for level ground walking. In Advanced motion control (AMC), 2014 IEEE 13th international workshop on. Piscataway, NJ: IEEE; 2014. doi:10.1109/AMC.2014.6823274
Google Scholar
Zlatnik D, Steiner B, Schweitzer G: Finite-state control of a trans-femoral (TF) prosthesis.
Control Syst Technol IEEE Trans 2002,10(3):408–20. doi:10.1109/87.998030 10.1109/87.998030
Google Scholar
Simon AM, Ingraham KA, Fey NP, Finucane SB, Lipschutz RD, Young AJ,: Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes.
PloS one 2014,9(6):99387. doi:10.1371/journal.pone.0099387 10.1371/journal.pone.0099387
Google Scholar
Aghasadeghi N, Zhao H, Hargrove LJ, Ames AD, Perreault EJ, Bretl T: Learning impedance controller parameters for lower-limb prostheses. In Intelligent robots and systems (IROS), 2013 IEEE/RSJ international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/IROS.2013.6696968
Google Scholar
Wang D, Liu M, Zhang F, Huang H: Design of an expert system to automatically calibrate impedance control for powered knee prostheses. In Rehabilitation robotics (ICORR), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650442
Google Scholar
Markowitz J, Krishnaswamy P, Eilenberg MF, Endo K, Barnhart C, Herr H: Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.
Philos Trans R Soc B: Biol Sci 2011,366(1570):1621–31. doi:10.1098/rstb.2010.0347 10.1098/rstb.2010.0347
Google Scholar
Vallery H, van Asseldonk E, Buss M, van der Kooij H: Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
IEEE Trans Neural Syst Rehabil Eng 2009,17(1):23–30.
PubMed
Google Scholar
Pfeifer S, Vallery H, Riener R, List R, Perreault EJ: Finding Best Predictors for the Control of Transfemoral Prostheses. In AUTOMED Fortschritt-Berichte VDI. Zürich, CH: VDI Verlag GmbH; 2010.
Google Scholar
Vallery H, Ekkelenkamp R, van der Kooij H, Buss M: Complementary limb motion estimation based on interjoint coordination: experimental evaluation. In Proceedings of the IEEE international conference on rehabilitation robotics (ICORR). Piscataway, NJ: IEEE; 2007.
Google Scholar
Pfeifer S, Vallery H, Hardegger M, Riener R, Perreault EJ: Model-based estimation of knee stiffness.
Biomed Eng IEEE Trans 2012,59(9):2604–12. doi:10.1109/TBME.2012.2207895
Google Scholar
Pfeifer S: Biomimetic stiffness for transfemoral prostheses. ETH Zurich; 2014.
Google Scholar
Huang GT: Wearable robots.
Technol Rev. 2004, 1:70–3.
Google Scholar
Flowers WC, Mann RW: An electrohydraulic knee-torque controller for a prosthesis simulator.
J Biomech Eng 1977,99(1):3–8. doi:10.1115/1.3426266 10.1115/1.3426266
CAS
PubMed
Google Scholar
Olivier J, Ortlieb A, Bouri M, Bleuler H: Mechanisms for actuated assistive hip orthoses.
Robot Autonomous Syst. 2014, 0:1–9. doi:10.1016/j.robot.2014.10.002
Google Scholar
Martelli D, Vannetti F, Cortese M, Tropea P, Giovacchini F, Micera S,: The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control.
Robotica 2014, 32:1317–30. doi:10.1017/S0263574714001568 10.1017/S0263574714001568
Google Scholar
Colgate JE, Hogan N: Robust control of dynamically interacting systems.
Int J Control 1988,48(1):65–88. doi:10.1080/00207178808906161 10.1080/00207178808906161
Google Scholar
Hogan N: Impedance control: an approach to manipulation: part I - theory.
J Dynamic Syst Meas Control 1985,107(1):1–7. doi:10.1115/1.3140702 10.1115/1.3140702
Google Scholar
Vallery H, Veneman J, van Asseldonk E, Ekkelenkamp R, Buss M, van Der Kooij H: Compliant actuation of rehabilitation robots.
Robot Automation Mag IEEE 2008,15(3):60–9. doi:10.1109/MRA.2008.927689
Google Scholar
Hogan N: Impedance control: an approach to manipulation: part II - implementation.
J Dynamic Syst Meas Control 1985,107(1):8–16. doi:10.1115/1.3140713 10.1115/1.3140713
Google Scholar
Gomi H, Kawato M: Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement.
Science 1996,272(5258):117–20. doi:10.1126/science.272.5258.117 10.1126/science.272.5258.117
CAS
PubMed
Google Scholar
Pfeifer S, Pagel A, Riener R, Vallery H: Actuator with angle-dependent elasticity for biomimetic transfemoral prostheses.
Mechatronics IEEE/ASME Trans 2014, 1–11. doi:10.1109/TMECH.2014.2337514. (preprint)
Google Scholar
Tucker MR, Moser A, Lambercy O, Sulzer J, Gassert R: Design of a wearable perturbator for human knee impedance estimation during gait. In Rehabilitation robotics (ICORR), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650372
Google Scholar
Lee H, Hogan N: Investigation of human ankle mechanical impedance during locomotion using a wearable ankle robot. In Robotics and automation (ICRA), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICRA.2013.6630941
Google Scholar
Rouse EJ, Hargrove LJ, Perreault EJ, Kuiken TA: Estimation of human ankle impedance during the stance phase of walking.
Neural Syst Rehabil Eng IEEE Trans 2014,22(4):870–8. doi:10.1109/TNSRE.2014.2307256
Google Scholar
Shamaei K, Cenciarini M, Adams A, Gregorczyk KN, Schiffman JM, Dollar A: Design and evaluation of a quasi-passive knee exoskeleton for investigation of motor adaptation in lower extremity joints.
Biomed Eng IEEE Trans 2014,61(6):1809–21. doi:10.1109/TBME.2014.2307698
Google Scholar
Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A: Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: Initial experiments.
Neural Syst Rehabil Eng IEEE Trans 2012,20(1):68–77. doi:10.1109/TNSRE.2011.2176960
Google Scholar
Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
Neural Syst Rehabil Eng IEEE Trans 2005,13(3):380–94. doi:10.1109/TNSRE.2005.848628 10.1109/TNSRE.2005.848628
Google Scholar
Caputo JM, Collins SH: An experimental robotic testbed for accelerated development of ankle prostheses. In Robotics and automation (ICRA), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICRA.2013.6630940
Google Scholar
Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D: Ankle-knee prosthesis with powered ankle and energy transfer for CYBERLEGs
α
-prototype. In Rehabilitation robotics (ICORR), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650352
Google Scholar
Kazerooni H, Steger R, Huang L: Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX).
Int J Robot Res 2006,25(5–6):561–73. doi:10.1177/0278364906065505 10.1177/0278364906065505
Google Scholar
Dietz V: Do human bipeds use quadrupedal coordination?
Trends Neurosci 2002,25(9):462–7. doi:10.1016/S0166–2236(02)02229–4 10.1016/S0166-2236(02)02229-4
PubMed
Google Scholar
Chandrapal M, Chen X, Wang W: Preliminary evaluation of a lower-limb exoskeleton - stair climbing. In Advanced intelligent mechatronics (AIM), 2013 IEEE/ASME international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/AIM.2013.6584300
Google Scholar
Olivier J, Bouri M, Ortlieb A, Bleuler H, Clavel R: Development of an assistive motorized hip orthosis: Kinematics analysis and mechanical design.
Rehabilitation robotics (ICORR), 2013 IEEE international conference on 2013. doi:10.1109/ICORR.2013.6650495
Google Scholar
Popovic D, Tomovic R, Schwirtlich L: Hybrid assistive system-the motor neuroprosthesis.
Biomed Eng IEEE Trans 1989,36(7):729–37. doi:10.1109/10.32105 10.1109/10.32105
CAS
Google Scholar
Ha KH, Quintero HA, Farris RJ, Goldfarb M: Enhancing stance phase propulsion during level walking by combinin FES with a powered exoskeleton for persons with Paraplegia. In Engineering in medicine and biology society (EMBC), 2012 annual international conference of the IEEE. Piscataway, NJ: IEEE; 2012. doi:10.1109/EMBC.2012.6345939
Google Scholar
Kazerooni H, Racine J-L, Huang L, Steger R: On the control of the Berkeley lower extremity exoskeleton (BLEEX). In Robotics and automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE international conference on. Piscataway, NJ: IEEE; 2005. doi:10.1109/ROBOT.2005.1570790
Google Scholar
Kazerooni H, Steger R: The Berkeley lower extremity exoskeleton.
J Dynamic Syst Meas Control 2005,128(1):14–25. doi:10.1115/1.2168164
Google Scholar
Bellman RD, Holgate MA, Sugar TG: SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. In Biomedical robotics and biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS EMBS international conference on. Piscataway, NJ: IEEE; 2008. doi:10.1109/BIOROB.2008.4762887
Google Scholar
Vanderborght B, Albu-Schaeffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R,: Variable impedance actuators: a review.
Robot Autonomous Syst 2013,61(12):1601–14. doi:10.1016/j.robot.2013.06.009 10.1016/j.robot.2013.06.009
Google Scholar
Junius K, Cherelle P, Brackx B, Geeroms J, Schepers T, Vanderborght B,: On the use of adaptable compliant actuators in prosthetics, rehabilitation and assistive robotics. In Robot motion and control (RoMoCo), 2013 9th workshop on. Piscataway, NJ: IEEE; 2013. doi:10.1109/RoMoCo.2013.6614575
Google Scholar
Koganezawa K, Fujimoto H, Kato I: Multifunctional above-knee prosthesis for stairs’ walking.
Prosthet Orthot Int 1987,11(3):139–45. doi:10.3109/03093648709078198
CAS
PubMed
Google Scholar
Unal R, Behrens SM, Carloni R, Hekman EEG, Stramigioli S, Koopman HFJM: Prototype design and realization of an innovative energy efficient transfemoral prosthesis. In Biomedical robotics and biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS international conference on. Piscataway, NJ: IEEE; 2010. doi:10.1109/BIOROB.2010.5626778
Google Scholar
Unal R, Klijnstra F, Burkink B, Behrens SM, Hekman EEG, Stramigioli S,: Modeling of WalkMECH: a fully-passive energy-efficient transfemoral prosthesis prototype. In Rehabilitation robotics (ICORR), 2013 IEEE international conference on. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICORR.2013.6650406
Google Scholar
Matthys A, Cherelle P, Damme MV, Vanderborght B, Lefeber D: Concept and design of the HEKTA (Harvest Energy from the Knee and Transfer it to the Ankle) transfemoral prosthesis. In Biomedical robotics and biomechatronics (BioRob), 2012 4th IEEE RAS EMBS international conference on. Piscataway, NJ: IEEE; 2012. doi:10.1109/BioRob.2012.6290833
Google Scholar
Oymagil AM, Hitt JK, Sugar T, Fleeger J: Control of a regenerative braking powered ankle foot orthosis. In Rehabilitation robotics, 2007. ICORR 2007. IEEE 10th international conference on. Piscataway, NJ: IEEE; 2007. doi:10.1109/ICORR.2007.4428402
Google Scholar
Collins SH, Kuo AD: Recycling energy to restore impaired ankle function during human walking.
PLoS ONE 2010,5(2):9307. doi:10.1371/journal.pone.0009307 10.1371/journal.pone.0009307
Google Scholar
Tucker MR, Fite KB: Mechanical damping with electrical regeneration for a powered transfemoral prosthesis. In Advanced intelligent mechatronics (AIM), 2010 IEEE/ASME International Conference on. Piscataway, NJ: IEEE; 2010. doi:10.1109/AIM.2010.5695828
Google Scholar
Collins SH: What do walking humans want from mechatronics? In Mechatronics (ICM), 2013 IEEE International Conference On. Piscataway, NJ: IEEE; 2013. doi:10.1109/ICMECH.2013.6518504
Google Scholar
Ding Y, Galiana I, Asbeck A, Quinlivan B, De Rossi SMM, Walsh C: Multi-joint actuation platform for lower extremity soft exosuits. In Robotics and automation (ICRA), 2014 IEEE international conference on. Piscataway, NJ: IEEE; 2014. doi:10.1109/ICRA.2014.6907024
Google Scholar
Sinnet RW, Zhao H, Ames A: Simulating prosthetic devices with human-inspired hybrid control. In Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on. Piscataway, NJ: IEEE; 2011. doi:10.1109/IROS.2011.6095186
Google Scholar
Zhao H, Kolathaya S, Ames AD: Quadratic programming and impedance control for transfemoral prosthesis. In Robotics and automation (ICRA), 2014 IEEE international conference on. Piscataway, NJ: IEEE; 2014. doi:10.1109/ICRA.2014.6907026
Google Scholar
International Standards Organization: ISO 13482:2014 Robots and Robotic Devices - Safety Requirements for Personal Care Robots. Geneva, CH: International Standards Organization; 2014.
Google Scholar
Roland E, Moriarty B: System safety engineering and management. Chichester: John Wiley & Sons; 1990.
Google Scholar
Kletz T: HAZOP & HAZAN: notes on the identification and assessment of hazards. UK: Institution of Chemical Engineers; 2001.
Google Scholar
Li YD, Hsiao-Wecksler ET: Gait mode recognition and control for a portable-powered ankle-foot orthosis.
Rehabilitation robotics (ICORR), 2013 IEEE international conference on 2013. doi:10.1109/ICORR.2013.6650373
Google Scholar
Shirota C, Simon AM, Kuiken TA: Trip recovery strategies following perturbations of variable duration.
J Biomech 2014,47(11):2679–84. doi:10.1016/j.jbiomech.2014.05.009 10.1016/j.jbiomech.2014.05.009
PubMed
Google Scholar
Össur: Power knee™ reimbursement guide: the step-by-step guide to a successful claim. Online training resource for clinicians. . Accessed 28 June 2014 http://www.ossur.com
Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A: Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study.
J Spinal Cord Med 2012,35(2):101–96. doi:10.1179/2045772312Y.0000000003 10.1179/2045772312Y.0000000003
Google Scholar
Sánchez A, Poignet P, Dombre E, Menciassi A, Dario P: A design framework for surgical robots: Example of the ARAKNES robot controller.
Robot Autonomous Syst 2014,62(9):1342–52. doi:10.1016/j.robot.2014.03.020 10.1016/j.robot.2014.03.020
Google Scholar