Agnew WF, McCreery DB. Considerations for safety with chronically implanted nerve electrodes. Epilepsia. 1990;31:S27–32.
Article
PubMed
Google Scholar
Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98.
Article
PubMed
Google Scholar
Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.
Article
CAS
PubMed
Google Scholar
Cogan SF, Ludwig KA, Welle CG, Takmakov P. Tissue damage thresholds during therapeutic electrical stimulation. J Neural Eng. 2016;13:021001.
Article
PubMed
PubMed Central
Google Scholar
Elefteriades JA, Quin JA, Hogan JF, Holcomb WG, Letsou GV, Chlosta WF, et al. Long-term follow-up of pacing of the conditioned diaphragm in quadriplegia. Pacing Clin Electrophysiol. 2002;25:897–906.
Article
PubMed
Google Scholar
Waters RL, McNeal DR, Faloon W, Clifford B. Functional electrical stimulation of the peroneal nerve for hemiplegia. Long-term clinical follow-up. J Bone Jt Surg. 1985;67:792–3.
Article
CAS
Google Scholar
Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13:468–72.
Article
PubMed
Google Scholar
Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am. 2004;29:605–15.
Article
PubMed
Google Scholar
Dhillon GS, Krüger TB, Sandhu JS, Horch KW. Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J Neurophysiol Am Physiological Soc. 2005;93:2625–33.
Article
CAS
Google Scholar
Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121:777–83.
Article
PubMed
Google Scholar
Horch KW, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng. IEEE. 2011;19:483–9.
Article
Google Scholar
Clark GA, Wendelken S, Page DM, Davis T, Wark HAC, Normann RA, et al. Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand. 36th Annu Int Conf Proc IEEE Eng Med Biol Soc. 2014:1977–80. https://ieeexplore.ieee.org/document/6944001.
Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci Transl Med. 2014;6:222ra19.
Article
PubMed
Google Scholar
Davis TS, Wark HAC, Hutchinson DT, Warren DJ, O’Neill K, Scheinblum T, et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13:03600.
Article
Google Scholar
Oddo CM, Raspopovic S, Artoni F, Mazzoni A, Spigler G, Petrini FM, et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. elife. 2016;5:1–27.
Article
Google Scholar
Wendelken S, Page DM, Davis T, Wark HAC, Kluger DT, Duncan C, et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah slanted electrode arrays (USEAs) implanted in residual peripheral arm nerves. J Neuroeng Rehabil. 2017;14:121.
Article
PubMed
PubMed Central
Google Scholar
Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6:257ra138.
Article
PubMed
PubMed Central
Google Scholar
Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med. 2014;6:257re6.
Article
PubMed
Google Scholar
Graczyk EL, Schiefer MA, Saal HP, Delhaye BP, Bensmaia SJ, Tyler DJ. The neural basis of perceived intensity in natural and artificial touch. Sci Transl Med. 2016;8:362ra142.
Article
PubMed
PubMed Central
Google Scholar
Mastinu E, Doguet P, Botquin Y, Håkansson B, Ortiz-Catalan M. Embedded system for prosthetic control using implanted neuromuscular interfaces accessed via an Osseointegrated implant. IEEE Trans Biomed Circuits Syst. 2017;11:867–77.
Article
PubMed
Google Scholar
Schiefer MA, Tan DW, Sidek SM, Tyler DJ. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng. 2016;13:016001.
Article
PubMed
Google Scholar
Ortiz-Catalan M, Mastinu E, Brånemark R, Håkansson B. Direct Neural Sensory Feedback and Control via Osseointegration. Cape Town: XVI World Congr Int Soc Prosthetics Orthot (ISPO); 2017.
Google Scholar
Hartline DK, Colman DR. Rapid conduction and the evolution of Giant axons and myelinated fibers. Curr Biol. 2007;17:29–35.
Article
CAS
Google Scholar
Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci. 2009;10:345–59.
Article
CAS
PubMed
Google Scholar
Kim Y, Romero-Ortega MI. Material considerations for peripheral nerve interfacing. MRS Bull. 2012;37:573–80.
Article
CAS
Google Scholar
Christie BP, Freeberg M, Memberg WD, Pinault GJC, Hoyen HA, Tyler DJ, et al. Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves. J Neuroeng Rehabil. 2017;14:70.
Article
PubMed
PubMed Central
Google Scholar
Tyler DJ, Durand DM. Functionally selective peripheral nerve stimulation with a flat Interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng. 2002;10:294–303.
Article
PubMed
Google Scholar
Nielsen TN, Sevcencu C, Struijk JJ. Comparison of mono-, bi-, and Tripolar configurations for stimulation and recording with an Interfascicular Interface. IEEE Trans Neural Syst Rehabil Eng. 2014;22:88–95.
Article
PubMed
Google Scholar
Badi AN, Hillman T, Shelton C, Normann RA. A technique for implantation of a 3-dimensional penetrating electrode array in the modiolar nerve of cats and humans. Arch Otolaryngol - Head Neck Surg. 2002;128:1019–25.
Article
PubMed
Google Scholar
Bowman BR, Erickson RC. Acute and chronic implantation of coiled wire intraneural electrodes during cyclical electrical stimulation. Ann Biomed Eng. 1985;13:75–93.
Article
CAS
PubMed
Google Scholar
Lacour SP, Fitzgerald JJ, Lago N, Tarte E, Mcmahon S, Fawcett J. Long Micro-Channel electrode arrays: a novel type of regenerative peripheral nerve Interface. IEEE Trans Neural Syst Rehabil Eng. 2009;17:454–60.
Article
PubMed
Google Scholar
Stieglitz T, Beutel H, Meyer J-U. A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensors Actuators. 1997;60:240–3.
Article
CAS
Google Scholar
Garde K, Keefer E, Botterman B, Galvan P, Romero-Ortega MI. Early interfaced neural activity from chronic amputated nerves. Front Neuroeng. 2009;2:1–11.
Article
Google Scholar
Mannard A, Stein RB, Charles D. Regeneration electrode Units : implants for recording from single peripheral nerve fibers in freely moving animals. Science. 2018;183:547–9.
Article
Google Scholar
Lacour SP, Atta R, FitzGerald JJ, Blamire M, Tarte E, Fawcett J. Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sensors Actuators A Phys. 2008;147:456–63.
Article
CAS
Google Scholar
Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst. 2005;10:229–58.
Article
PubMed
Google Scholar
Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J. On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online. 2012;11:33.
Article
PubMed
PubMed Central
Google Scholar
Brummer SB, Turner MJ. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng. 1977;24:59–63.
Article
CAS
PubMed
Google Scholar
Nashold BS Jr, Goldner JL, Mullen JB, Bright DS. Long-term pain control by direct peripheral-nerve stimulation. J Bone Jt Surg. 1982;64:1–10.
Article
Google Scholar
Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31:81–110.
Article
CAS
Google Scholar
Rickett T, Connell S, Bastijanic J, Hegde S, Shi R. Functional and mechanical evaluation of nerve stretch injury. J Med Syst. 2011;35:787–93.
Article
PubMed
Google Scholar
Olsson Y. Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol. 1990;5:265–311.
CAS
PubMed
Google Scholar
Kim JH, Manuelidis EE, Glenn WWL, Fukuda Y, Cole DS, Hogan JF. Light and electron microscopic studies of phrenic nerves after long-term electrical stimulation. J Neurosurg. 1983;58:84–91.
Article
CAS
PubMed
Google Scholar
Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann Biomed Eng. 1989;17:39–60.
Article
CAS
PubMed
Google Scholar
McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Damage in peripheral nerve from continuous electrical stimulation: comparison of two stimulus waveforms. Med Biol Eng Comput. 1992;30:109–14.
Article
CAS
PubMed
Google Scholar
Naples GG, Mortimer JT, Scheiner A, Sweeney JD. A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng. 1988;35:905–16.
Article
CAS
PubMed
Google Scholar
Mortimer JT, Agnew WF, Horch KW, Citron P, Creasey G, Kantor C. Perspectives on new electrode Technology for Stimulating Peripheral Nerves with implantable motor prostheses. IEEE Trans Rehabil Eng. 1995;3:145–54.
Article
Google Scholar
Loeb GE, Peck RA. Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J Neurosci Methods Elsevier. 1996;64:95–103.
Article
CAS
Google Scholar
Prodanov D, Delbeke J. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front Neurosci. 2016;10:11.
Article
PubMed
PubMed Central
Google Scholar
Kilgore KL, Peckham PH, Keith MW, Montague FW, Hart RL, Gazdik MM, et al. Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J Rehabil Res Dev. 2003;40:457–68.
Article
PubMed
Google Scholar
Grill WM, Mortimer JT. Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes. IEEE Trans Rehabil Eng. 1998;6:364–73.
Article
CAS
PubMed
Google Scholar
Grill WM, Mortimer JT. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J Biomed Mater Res. 2000;50:215–26.
Article
CAS
PubMed
Google Scholar
Girsch W, Koller R, Gruber H, Holle J, Liegl C, Losert U, et al. Histological assessment of nerve lesions caused by epineurial electrode application in rat sciatic nerve. J Neurosurg. 1991;74:636–42.
Article
CAS
PubMed
Google Scholar
Larsen JO, Thomsen M, Haugland M, Sinkjær T. Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathol. 1998;96:365–78.
Article
CAS
PubMed
Google Scholar
Christensen MB, Pearce SM, Ledbetter NM, Warren DJ, Clark GA, Tresco PA. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater. 2014;10:4650–60 Acta Materialia Inc.
Article
CAS
PubMed
Google Scholar
Lago N, Yoshida K, Koch KP, Navarro X. Assessment of biocompatibility of chronically implanted polyimide and platinum Intrafascicular electrodes. IEEE Trans Biomed Eng. 2007;54:281–90.
Article
PubMed
Google Scholar
Clippinger FW, Avery R, Titus BR. A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res. 1974;10–22:247–58.
Lapicque L. Has the muscular substance a longer chronaxie than the nervous substance? J Physiol. 1931;73:189–214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss G. Sur la possibilité de rendre comparables entre eux les appareils servant a l’excitation électrique. Arch Ital Biol. 1901;35:413–46.
Google Scholar
Lapicque L. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J Physiol Pathol générale. 1907;9:620–35.
Google Scholar
Robblee LS, Rose TL. The electrochemistry of electrical stimulation. Annu Intemational Conf IEEE Eng Med Biol Soc. 1990;12:1479–80.
Google Scholar
McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng. 1988;16:463–81.
Article
CAS
PubMed
Google Scholar
Agnew WF, Yuen TGH, McCreery DB. Morphologic changes after prolonged electrical stimulation of the cat’s cortex at defined charge densities. Exp Neurol. 1983;79:397–411.
Article
CAS
PubMed
Google Scholar
McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng. 1990;37:996–1001.
Article
CAS
PubMed
Google Scholar
Shannon RV. A model of save levels for electrical stimulation. IEEE Trans Biomed Eng. 1992;39:424–6.
Article
CAS
PubMed
Google Scholar
Behrend MR, Ahuja AK, Weiland JD. Dynamic Curent Density of the Disk Electrode Double-Layer. IEEE Trans Biomed Eng. 2008;55:1056–62.
Article
PubMed
Google Scholar
Cantrell DR, Inayat S, Taflove A, Ruoff RS, Troy JB. Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes. J Neural Eng. 2008;5:54–67.
Article
PubMed
Google Scholar
Hudak EM, Mortimer JT, Martin HB. Platinum for neural stimulation: voltammetry considerations. J Neural Eng. 2010;7:026005.
Krasteva VT, Papazov SP. Estimation of current density distribution under electrodes for external defibrillation. Biomed Eng Online. 2002;1:1–13.
Article
Google Scholar
Ksienski DA. A minimum profile uniform current density electrode. IEEE Trans Biomed Eng. 1992;39:682–92.
Article
CAS
PubMed
Google Scholar
Rubinstein JT, Spelman FA, Soma M, Suesserman MF. Current density profiles of surface mounted and recessed electrodes for neural prostheses. IEEE Trans Biomed Eng. 1987;34:864–75.
Article
CAS
PubMed
Google Scholar
Suesserman MF, Spelman FA, Rubinstein JT. In vitro measurement and characterization of current density profiles produced by nonrecessed, simple recessed, and radially varying recessed stimulating electrodes. IEEE Trans Biomed Eng. 1991;38:401–8.
Article
CAS
PubMed
Google Scholar
Wei XF, Grill WM. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. J Neural Eng. 2005;2:139–47.
Article
PubMed
Google Scholar
Wei XF, Grill WM. Analysis of high-perimeter planar electrodes for efficient neural stimulation. Front Neuroeng. 2009;2:1–10.
Article
Google Scholar
Gorman PH, Mortimer JT. The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng. 1983;30:407–14.
Article
CAS
PubMed
Google Scholar
DeGiorgio CM, Schachter SC, Handforth A, Salinsky M, Thompson J, Uthman B, et al. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia. 2000;41:1195–200.
Article
CAS
PubMed
Google Scholar
Mortimer JT, Kaufman D, Roessmann U. Intramuscular electrical stimulation: tissue damage. Ann Biomed Eng. 1980;8:235–44.
Article
CAS
PubMed
Google Scholar
Lilly JC. Injury and excitation by electric currents. In: Sheer DE, editor. Electr Stimul brain. Austin: University of Texas Press; 1961. p. 60–4.
Crago PE, Peckham PH, Mortimer JT, Van Der Meulen JP. The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes. Ann Biomed Eng. 1974;2:252–64.
Article
CAS
PubMed
Google Scholar
Butterwick A, Vankov A, Huie P, Freyvert Y, Palanker D. Tissue damage by pulsed electrical stimulation. IEEE Trans Biomed Eng IEEE. 2007;54:2261–7.
Article
CAS
Google Scholar
Prado-Guitierrez P, Fewster LM, Heasman JM, McKay CM, Shepherd RK. Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival. Hear Res. 2006;215:47–55.
Article
PubMed
PubMed Central
Google Scholar
Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 1986;33:974–7.
Article
CAS
PubMed
Google Scholar
Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia. 1994;35:616–26.
Article
CAS
PubMed
Google Scholar
Pasluosta C, Kiele P, Stieglitz T. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin Neurophysiol. 2018;129:851–62.
Article
PubMed
Google Scholar
Lilly JC, Hughes JR, Alvord EC, Galkin TW. Brief, noninjurious electric waveform for stimulation of the brain. Adv Sci. 1955;121:468–9.
CAS
Google Scholar
Scheiner A, Mortimer JT, Roessmann U. Imbalanced biphasic electrical stimulation: muscle tissue damage. Ann Biomed Eng. 1990;18:407–25.
Article
CAS
PubMed
Google Scholar
Wessale JL, Geddes LA, Ayers GM, Foster KS. Comparison of rectangular and exponential current pulses for evoking sensation. Ann Biomed Eng. 1992;20:237–44.
Article
CAS
PubMed
Google Scholar
Sahin M, Tie Y. Non-rectangular waveforms for neural stimulation with practical electrodes. J Neural Eng. 2007;4:227–33.
Article
PubMed
PubMed Central
Google Scholar
Wongsarnpigoon A, Woock JP, Grill WM. Efficiency analysis of waveform shape for electrical excitation of nerve fibers. IEEE Trans Neural Syst Rehabil Eng. 2010;18:319–28.
Article
PubMed
PubMed Central
Google Scholar
Qing KY, Ward MP, Irazoqui PP. Burst-modulated waveforms optimize electrical stimuli for charge efficiency and Fiber selectivity. IEEE Trans Neural Syst Rehabil Eng. 2015;23:936–45.
Article
PubMed
Google Scholar
Van den Honert C, Mortimer JT. The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann Biomed Eng. 1979;7:117–25.
Article
PubMed
Google Scholar
McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat. Med Biol Eng Comput. 1995;33:426–9.
Article
CAS
PubMed
Google Scholar
Fisher LE, Miller ME, Bailey SN, Davis JA, Anderson JS, Rhode L, et al. Standing after spinal cord injury with four-contact nerve-cuff electrodes for quadriceps stimulation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:473–8.
Article
PubMed
PubMed Central
Google Scholar
McCreery DB, Yuen TGH, Agnew WF, Bullara LA. A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes. IEEE Trans Biomed Eng. 1997;44:931–9.
Article
CAS
PubMed
Google Scholar
Ochoa J, Torebjörk E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol. 1983;342:633–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tykocinski M, Shepherd RK, Clark GM. Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. Hear Res. 1995;88:124–42.
Article
CAS
PubMed
Google Scholar
Anani AB, Ikeda K, Körner LM. Human ability to discriminate various parameters in afferent electrical nerve stimulation with particular reference to prostheses sensory feedback. Med Biol Eng Comput. 1977;15:363–73.
Article
CAS
PubMed
Google Scholar
Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203–13.
Article
PubMed
PubMed Central
Google Scholar
Yuen TGH, Agnew WF, Bullara LA, Jacques S, McCreery DB. Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery. 1981;9:292–9.
CAS
PubMed
Google Scholar
Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Local anaesthetic block protects against electrically-induced damage in peripheral nerve. J Biomed Eng. 1990;12:301–8.
Article
CAS
PubMed
Google Scholar
Weber DJ, Friesen R, Miller LE. Interfacing the somatosensory system to restore touch and proprioception: essential considerations. J Mot Behav. 2012;44:403–18.
Article
PubMed
Google Scholar
Maffiuletti NA, Roig M, Karatzanos E, Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Med. 2013;11:137.
Article
PubMed
PubMed Central
Google Scholar
Ranck JBJ. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–40.
Article
PubMed
Google Scholar
Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo Å. The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev. 2010;34:185–91.
Article
PubMed
Google Scholar
Griffin JW, George R, Ho T. Macrophage Systems in Peripheral Nerves. A Review J Neuropathol Exp Neurol. 1993;52:553–60.
Article
CAS
PubMed
Google Scholar
Frostick SP, Yin Q, Kemp GJ. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery. 1998;18:397–405.
Article
CAS
PubMed
Google Scholar
Al-majed AA, Tam SL, Gordon T. Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral Motoneurons. Cell Mol Neurobiol. 2004;24:379–402.
Article
CAS
PubMed
Google Scholar
Tam SL, Gordon T. Mechanisms controlling axonal sprouting at the neuromuscular junction. J Neurocytol. 2003;32:961–74.
Article
CAS
PubMed
Google Scholar
Tam SL, Gordon T. Neuromuscular activity impairs axonal sprouting in partially Denervated muscles by inhibiting bridge formation of Perisynaptic Schwann cells. J Neurobiol. 2003;57:221–34.
Article
CAS
PubMed
Google Scholar
Geremia NM, Gordon T, Brushart TM, Al-majed AA, VMK V. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp. Neurol. 2007;205:347–59.
Rockland KS. Axon collaterals and brain states. Front Syst Neurosci. 2018;12:32.
Article
PubMed
PubMed Central
Google Scholar
Varon SS, Bunge RP. Trophic mechanisms in the peripheral nervous system. Annu Rev Neurosci. 1978;1:327–61.
Article
CAS
PubMed
Google Scholar
Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Evolution and resolution of stimulation-induced axonal injury in peripheral nerve. Muscle Nerve. 1999;22:1393–402.
Article
CAS
PubMed
Google Scholar
Graczyk EL, Delhaye B, Schiefer MA, Bensmaia SJ, Tyler DJ. Sensory adaptation to electrical stimulation of the somatosensory nerves. J Neural Eng. 2018;15:046002.
Article
PubMed
PubMed Central
Google Scholar
Walker CF, Lockhead GR, Markle DR, McElhaney JH. Parameters of stimulation and perception in an artificial sensory feedback system. J Bioeng. 1977;1:251–6.
CAS
PubMed
Google Scholar
Anani AB, Körner LM. Afferent electrical nerve stimulation: human tracking performance relevant to prosthesis sensory feedback. Med Biol Eng Comput. 1979;36:1–4.
Google Scholar
Vandoninck V, Van Balken MR, Agrò EF, Petta F, Caltagirone C, Heesakkers JPFA, et al. Posterior tibial nerve stimulation in the treatment of urge incontinence. Neurourol Urodyn. 2003;22:17–23.
Article
PubMed
Google Scholar
Abdellaoui A, Préfaut C, Gouzi F, Couillard A, Coisy-Quivy M, Hugon G, et al. Skeletal muscle effects of electrostimulation after COPD exacerbation: a pilot study. Eur Respir J. 2011;38:781–8.
Article
CAS
PubMed
Google Scholar