Muslimović D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65(8):1239–45.
Article
Google Scholar
Aarsland D, Brønnick K, Fladby T. Mild cognitive impairment in Parkinson’s disease. Curr Neurol Neurosci Rep. 2011;11(4):371–8.
Article
Google Scholar
Litvan I, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012;27(3):349–56.
Article
Google Scholar
Aarsland D, et al. Mild cognitive impairment in Parkinson disease A multicenter pooled analysis. Neurology. 2010;75(12):1062–9.
Article
CAS
Google Scholar
Weintraub D, Hauser RA, Elm JJ, Pagan F, Davis MD, Choudhry A. Rasagiline for mild cognitive impairment in Parkinson's disease: A placebo-controlled trial. Mov Disord. 2016;31(5):709–14.
Article
CAS
Google Scholar
Petrelli A, et al. Effects of cognitive training in Parkinson's disease: a randomized controlled trial. Parkinsonism Relat Disord. 2014;20(11):1196–202.
Article
Google Scholar
Leung IH, Walton CC, Hallock H, Lewis SJ, Valenzuela M, Lampit A. Cognitive training in Parkinson disease A systematic review and meta-analysis. Neurology. 2015;85(21):1843–51.
Article
Google Scholar
Folkerts A-K, Roheger M, Franklin J, Middelstädt J, Kalbe E. Cognitive interventions in patients with dementia living in long-term care facilities: Systematic review and meta-analysis. Arch Gerontol Geriatr. 2017;73:204–21.
Article
Google Scholar
E. Kalbe and A.-K. Folkerts, "Kognitives Training bei Parkinson-Patienten–eine neue Therapieoption?," Fortschritte der Neurologie· Psychiatrie, vol. 84, no. S 01, pp. S24-S35, 2016.
Hindle JV, Petrelli A, Clare L, Kalbe E. Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Mov Disord. 2013;28(8):1034–49.
Article
Google Scholar
Rahe J, Petrelli A, Kaesberg S, Fink GR, Kessler J, Kalbe E. Effects of cognitive training with additional physical activity compared to pure cognitive training in healthy older adults. Clin Interv Aging. 2015;10:297.
Article
Google Scholar
Walton CC, Shine JM, Mowszowski L, Naismith SL, Lewis SJ. Freezing of gait in Parkinson's disease: current treatments and the potential role for cognitive training. Restor Neurol Neurosci. 2014;32(3):411–22.
PubMed
Google Scholar
Garcia-Agundez A, Folkerts A-K, Konrad R, Caseman P, Göbel S, Kalbe E. "PDDanceCity: An Exergame for Patients with Idiopathic Parkinson’s Disease and Cognitive Impairment," Mensch und Computer 2017-Tagungsband; 2017.
Google Scholar
S. Göbel, S. Hardy, V. Wendel, F. Mehm, and R. Steinmetz, "Serious games for health: personalized exergames," in Proceedings of the 18th ACM international conference on Multimedia, 2010, pp. 1663–1666: ACM.
Koçer A, Oktay AB. Nintendo Wii assessment of Hoehn and Yahr score with Parkinson's disease tremor. Technol Health Care. 2016;24(2):185–91.
Article
Google Scholar
M. Dyshel, D. Arkadir, H. Bergman, and D. Weinshall, "Quantifying Levodopa-Induced Dyskinesia Using Depth Camera," in Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015, pp. 119–126.
Fu AS, Gao KL, Tung AK, Tsang WW, Kwan MM. Effectiveness of exergaming training in reducing risk and incidence of falls in frail older adults with a history of falls. Arch Phys Med Rehabil. 2015;96(12):2096–102.
Article
Google Scholar
J. D. A. Paredes, B. Muñoz, W. Agredo, Y. Ariza-Araújo, J. L. Orozco, and A. Navarro, "A reliability assessment software using Kinect to complement the clinical evaluation of Parkinson's disease," in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, 2015, pp. 6860–6863: IEEE.
O. Ťupa et al., "Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect," Biomedical engineering online, vol. 14, no. 1, p. 97, 2015.
O. Mazumder, K. Chakravarty, D. Chatterjee, A. Sinha, and A. Das, "Posturography stability score generation for stroke patient using Kinect: Fuzzy based approach," in Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE, 2017, pp. 3052–3056: IEEE.
Eltoukhy M, Kuenze C, Andersen MS, Oh J, Signorile J. Prediction of ground reaction forces for Parkinson's disease patients using a kinect-driven musculoskeletal gait analysis model. Med Eng Phys. 2017;50:75–82.
Article
Google Scholar
O. Darbin, C. Gubler, D. Naritoku, D. Dees, A. Martino, and E. Adams, "Parkinsonian Balance Deficits Quantified Using a Game Industry Board and a Specific Battery of Four Paradigms," Frontiers in human neuroscience, vol. 10, 2016.
Procházka A, Vyšata O, Vališ M, Ťupa O, Schätz M, Mařík V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digital Signal Processing. 2015;47:169–77.
Article
Google Scholar
Procházka A, Vyšata O, Vališ M, Ťupa O, Schätz M, Mařík V. Use of the image and depth sensors of the Microsoft Kinect for the detection of gait disorders. Neural Comput & Applic. 2015;26(7):1621–9.
Article
Google Scholar
Cao Y, Li BZ, Li QN, Xie JD, Cao BZ, Yu SY. Kinect-based gait analyses of patients with Parkinson's disease, patients with stroke with hemiplegia, and healthy adults. Cns neuroscience & therapeutics. 2017;23(5):447–9.
Article
Google Scholar
Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease. Med Eng Phys. 2017;44:1–7.
Article
Google Scholar
A. P. Rocha, H. Choupina, J. M. Fernandes, M. J. Rosas, R. Vaz, and J. P. S. Cunha, "Kinect v2 based system for Parkinson's disease assessment," in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, 2015, pp. 1279–1282: IEEE.
A. Procházka, M. Schätz, O. Ťupa, M. Yadollahi, O. Vysata, and M. Walls, "The MS kinect image and depth sensors use for gait features detection," in Image Processing (ICIP), 2014 IEEE International Conference on, 2014, pp. 2271–2274: IEEE.
Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease. Gait & posture. 2014;39(4):1062–8.
Article
Google Scholar
A. P. Rocha, H. Choupina, J. M. Fernandes, M. J. Rosas, R. Vaz, and J. P. S. Cunha, "Parkinson's disease assessment based on gait analysis using an innovative RGB-D camera system," in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 2014, pp. 3126–3129: IEEE.
J. Zhao, F. E. Bunn, J. M. Perron, E. Shen, and R. S. Allison, "Gait assessment using the Kinect RGB-D sensor," in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, 2015, pp. 6679–6683: IEEE.
Amini A, Banitsas K, Young WR. Kinect4FOG: monitoring and improving mobility in people with Parkinson’s using a novel system incorporating the Microsoft Kinect v2. Disabil Rehabil Assist Technol. 2018:1–8.
B. M. Ospina, J. A. V. Chaparro, J. D. A. Paredes, Y. J. C. Pino, A. Navarro, and J. L. Orozco, "Objective Arm Swing Analysis in Early-Stage Parkinson’s Disease Using an RGB-D Camera (Kinect®)," Journal of Parkinson's disease, no. Preprint, pp. 1–8, 2018.
G. Barry, B. Galna, and L. Rochester, "The role of exergaming in Parkinson’s disease rehabilitation: a systematic review of the evidence," Journal of neuroengineering and rehabilitation, vol. 11, no. 1, p. 33, 2014.
Pompeu JE, et al. Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: A randomised clinical trial. Physiotherapy. 2012;98(3):196–204.
Article
Google Scholar
Allen NE, et al. An interactive videogame for arm and hand exercise in people with Parkinson's disease: A randomized controlled trial. Parkinsonism Relat Disord. 2017.
Liao Y-Y, Yang Y-R, Cheng S-J, Wu Y-R, Fuh J-L, Wang R-Y. Virtual reality–based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s disease. Neurorehabil Neural Repair. 2015;29(7):658–67.
Article
Google Scholar
M.-C. Shih, R.-Y. Wang, S.-J. Cheng, and Y.-R. Yang, "Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson’s disease: a single-blinded randomized controlled trial," Journal of neuroengineering and rehabilitation, vol. 13, no. 1, p. 78, 2016.
Ribas CG, da Silva LA, Corrêa MR, Teive HG, Valderramas S. Effectiveness of exergaming in improving functional balance, fatigue and quality of life in Parkinson's disease: A pilot randomized controlled trial. Parkinsonism Relat Disord. 2017.
Zimmermann R, et al. Cognitive training in Parkinson disease Cognition-specific vs nonspecific computer training. Neurology. 2014;82(14):1219–26.
Article
Google Scholar
J. Song et al., "Home-based step training using videogame technology in people with Parkinson’s disease: a single-blinded randomised controlled trial," Clinical rehabilitation, p. 0269215517721593, 2017.
Ferraz DD, Trippo KV, Duarte GP, Neto MG, Santos KOB, Oliveira Filho J. The effects of functional training, bicycle exercise and exergaming on walking capacity of elderly with Parkinson's disease: a pilot randomized controlled single-blinded trial. Arch Phys Med Rehabil. 2018.
Tollár J, Nagy F, Hortobágyi T. Vastly Different Exercise Programs Similarly Improve Parkinsonian Symptoms: A Randomized Clinical Trial. Gerontology. 2018:1–8.
Summa S, Basteris A, Betti E, Sanguineti V. A feasibility study on using kinect™ for the rehabilitation in persons with Parkinson's disease. Gait & Posture. 2013;37:S15.
Article
Google Scholar
G. Palacios-Navarro, I. García-Magariño, and P. Ramos-Lorente, "A Kinect-based system for lower limb rehabilitation in Parkinson’s disease patients: a pilot study," Journal of medical systems, vol. 39, no. 9, p. 103, 2015.
S. Summa, A. Basteris, E. Betti, and V. Sanguineti, "Adaptive training with full-body movements to reduce bradykinesia in persons with Parkinson’s disease: a pilot study," Journal of neuroengineering and rehabilitation, vol. 12, no. 1, p. 16, 2015.
G. B. Gonçalves, M. A. A. Leite, M. Orsini, and J. S. Pereira, "Effects of using the nintendo wii fit plus platform in the sensorimotor training of gait disorders in Parkinson’s disease," Neurology international, vol. 6, no. 1, 2014.
J. E. Pompeu, C. Torriani-Pasin, F. Doná, F. F. Ganança, K. G. da Silva, and H. B. Ferraz, "Effect of Kinect games on postural control of patients with Parkinson's disease," in Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques, 2015, pp. 54–57: ACM.
Pompeu J, et al. Feasibility, safety and outcomes of playing Kinect Adventures!™ for people with Parkinson's disease: a pilot study. Physiotherapy. 2014;100(2):162–8.
Article
CAS
Google Scholar
Negrini S, Bissolotti L, Ferraris A, Noro F, Bishop MD, Villafañe JH. Nintendo Wii Fit for balance rehabilitation in patients with Parkinson's disease: A comparative study. J Bodyw Mov Ther. 2017;21(1):117–23.
Article
Google Scholar
D. Nuic, M. Vinti, C. Karachi, P. Foulon, A. Van Hamme, and M.-L. Welter, "The feasibility and positive effects of a customised videogame rehabilitation programme for freezing of gait and falls in Parkinson’s disease patients: a pilot study," Journal of neuroengineering and rehabilitation, vol. 15, no. 1, p. 31, 2018.
I. Cikajlo et al., "Can telerehabilitation games lead to functional improvement of upper extremities in individuals with Parkinson’s disease?," International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation, vol. 41, no. 3, p. 230, 2018.
Pradhan S. The use of commercially available games for a combined physical and cognitive challenge during exercise for individuals with Parkinson’s disease–a case series report. Physiother Theory Pract. 2018:1–8.
Alves ML, Mesquita BS, Morais WS, Leal JC, Satler CE, dos Santos Mendes FA. Nintendo Wii™ Versus Xbox Kinect™ for Assisting People With Parkinson's Disease. Percept Mot Skills. 2018;125(3):546–65.
PubMed
Google Scholar
B. Galna et al., "Retraining function in people with Parkinson’s disease using the Microsoft kinect: game design and pilot testing," Journal of neuroengineering and rehabilitation, vol. 11, no. 1, p. 60, 2014.
Spasojević S, Ilić TV, Milanović S, Potkonjak V, Rodić A, Santos-Victor J. Combined vision and wearable sensors-based system for movement analysis in rehabilitation. Methods Inf Med. 2017;56(2):95–111.
Article
Google Scholar
Buated W, Lolekha P, Hidaka S, Fujinami T. Impact of Cognitive Loading on Postural Control in Parkinson’s Disease With Freezing of Gait. Gerontol Geriat Med. 2016;2:2333721416673751.
Article
Google Scholar
Esculier J-F, Vaudrin J, Tremblay LE. Corticomotor excitability in parkinson's disease during observation, imagery and imitation of action: effects of rehabilitation using wii fit and comparison to healthy controls. J Park Dis. 2014;4(1):67–75.
Google Scholar
J. Cancela, M. T. Arredondo, and O. Hurtado, "Proposal of a Kinect TM-based system for gait assessment and rehabilitation in Parkinson's disease," in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 2014, pp. 4519–4522: IEEE.
I. Pachoulakis, N. Xilourgos, N. Papadopoulos, and A. Analyti, "A Kinect-Based Physiotherapy and Assessment Platform for Parkinson’s Disease Patients," J Med Eng, vol 2016, 2016.
I. Pachoulakis and N. Papadopoulos, "Exergames for Parkinson's Disease patients: The balloon goon game," in Telecommunications and Multimedia (TEMU), 2016 International Conference on, 2016, pp. 1–6: IEEE.
A. Bandini et al., "Markerless analysis of articulatory movements in patients with Parkinson's disease," Journal of Voice, vol. 30, no. 6, pp. 766. e1–766. e11, 2016.
E. Stack et al., "Could in-home sensors surpass human observation of people with Parkinson’s at high risk of falling? An ethnographic study," BioMed research international, vol 2016, 2016.
Vallabhajosula S, McMillion AK, Freund JE. The effects of exergaming and treadmill training on gait, balance, and cognition in a person with Parkinson’s disease: A case study. Physiother Theory Pract. 2017;33(12):920–31.
Article
Google Scholar
E. D. Oña, C. Balaguer, R. Cano-de la Cuerda, S. Collado-Vázquez, and A. Jardón, "Effectiveness of Serious Games for Leap Motion on the Functionality of the Upper Limb in Parkinson’s Disease: A Feasibility Study," Computational intelligence and neuroscience, vol 2018, 2018.
Mousavi Hondori H, Khademi M. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J Med Eng. 2014;2014.
E. Knippenberg, J. Verbrugghe, I. Lamers, S. Palmaers, A. Timmermans, and A. Spooren, "Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy," J Neuroeng Rehabil, vol. 14, no. 1, p. 61, 2017.
Abbruzzese G, Marchese R, Avanzino L, Pelosin E. Rehabilitation for Parkinson's disease: Current outlook and future challenges. Parkinsonism Relat Disord. 2016;22:S60–4.
Article
Google Scholar
Gordt K, Gerhardy T, Najafi B, Schwenk M. Effects of wearable sensor-based balance and gait training on balance, gait, and functional performance in healthy and patient populations: a systematic review and meta-analysis of randomized controlled trials. Gerontology. 2018;64(1):74–89.
Article
Google Scholar
Ekker MS, Janssen S, Nonnekes J, Bloem BR, de Vries NM. Neurorehabilitation for Parkinson's disease: Future perspectives for behavioural adaptation. Parkinsonism Relat Disord. 2016;22:S73–7.
Article
Google Scholar
Van de Weijer S, Hommel A, Bloem B, Nonnekes J, De Vries N. Promising non-pharmacological therapies in PD: Targeting late stage disease and the role of computer based cognitive training. Parkinsonism Relat Disord. 2018;46:S42–6.
Article
Google Scholar
N. E. Fritz, F. M. Cheek, and D. S. Nichols-Larsen, "Motor-cognitive dual-task training in neurologic disorders: a systematic review," Journal of neurologic physical therapy: JNPT, vol. 39, no. 3, p. 142, 2015.
G. d. P. Vieira, D. F. G. H. d. Araujo, M. A. A. Leite, M. Orsini, and C. L. Correa, "Virtual reality in physical rehabilitation of patients with Parkinson's disease," J Human Growth Dev, vol. 24, no. 1, pp. 31–41, 2014.
Bonnechère B, Jansen B, Omelina L, Van Sint J. The use of commercial video games in rehabilitation: a systematic review. Int J Rehabil Res. 2016;39(4):277–90.
Article
Google Scholar
Harris DM, Rantalainen T, Muthalib M, Johnson L, Teo W-P. Exergaming as a viable therapeutic tool to improve static and dynamic balance among older adults and people with idiopathic Parkinson’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2015;7:167.
PubMed
PubMed Central
Google Scholar
Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2017.
Mura G, Carta M, Sancassiani F, Machado S, Prosperini L. Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis. Eur J Phys Rehabil Med. 2017.
Tahmosybayat R, Baker K, Godfrey A, Caplan N, Barry G. A systematic review and meta-analysis of outcome measures to assess postural control in older adults who undertake exergaming. Maturitas. 2017;98:35–45.
Article
Google Scholar
Pope Z, Zeng N, Gao Z. The effects of active video games on patients' rehabilitative outcomes: A meta-analysis. Prev Med. 2016.
Godinho C, et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. Journal of neuroengineering and rehabilitation. 2016;13(1):24.
Article
Google Scholar
K. Dockx et al., "Virtual reality for rehabilitation in Parkinson’s disease," Cochrane Database Syst Rev, vol. 10, 2013.
Giuffrida JP, Riley DE, Maddux BN, Heldman DA. Clinically deployable Kinesia™ technology for automated tremor assessment. Mov Disord. 2009;24(5):723–30.
Article
Google Scholar
Tsanas A, Little MA, McSharry PE, Ramig LO. Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson's disease symptom severity. J R Soc Interface. 2011;8(59):842–55.
Article
Google Scholar
Garcia-Agundez A, Dutz T, Goebel S. Adapting smartphone-based photoplethysmograpy to suboptimal scenarios. Physiological measurement. 2017;38(2):219.
Article
Google Scholar