Zajaczkowska R, Kocot-Kepska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci. 2019;20(6):1451.
Article
CAS
PubMed Central
Google Scholar
Housley SN, Nardelli P, Powers RK, Rich MM, Cope TC. Chronic defects in intraspinal mechanisms of spike encoding by spinal motoneurons following chemotherapy. Exp Neurol. 2020;331:113354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sioka C, Kyritsis AP. Central and peripheral nervous system toxicity of common chemotherapeutic agents. Cancer Chemother Pharmacol. 2009;63(5):761–7.
Article
CAS
PubMed
Google Scholar
Banach M, Juranek JK, Zygulska AL. Chemotherapy-induced neuropathies—a growing problem for patients and health care providers. Brain Behav. 2017;7(1):e00558.
Article
PubMed
Google Scholar
Argyriou AA, Bruna J, Marmiroli P, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol. 2012;82(1):51–77.
Article
PubMed
Google Scholar
Kerckhove N, Collin A, Conde S, Chaleteix C, Pezet D, Balayssac D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front Pharmacol. 2017;8:86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bao T, Basal C, Seluzicki C, Li SQ, Seidman AD, Mao JJ. Long-term chemotherapy-induced peripheral neuropathy among breast cancer survivors: prevalence, risk factors, and fall risk. Breast Cancer Res Treat. 2016;159(2):327–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mols F, Beijers T, Lemmens V, van den Hurk CJ, Vreugdenhil G, van de Poll-Franse LV. Chemotherapy-induced neuropathy and its association with quality of life among 2- to 11-year colorectal cancer survivors: results from the population-based PROFILES registry. J Clin Oncol. 2013;31(21):2699–707.
Article
PubMed
Google Scholar
Shah A, Hoffman EM, Mauermann ML, Loprinzi CL, Windebank AJ, Klein CJ, Staff NP. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort. J Neurol Neurosurg Psychiatry. 2018;89(6):636–41.
Article
PubMed
Google Scholar
Tofthagen C, Overcash J, Kip K. Falls in persons with chemotherapy-induced peripheral neuropathy. Support Care Cancer. 2012;20(3):583–9.
Article
PubMed
Google Scholar
Knoerl R, Gilchrist L, Kanzawa-Lee GA, Donohoe C, Bridges C, Smith EML. Proactive rehabilitation for chemotherapy-induced peripheral neuropathy. Semin Oncol Nurs. 2020;36(1):150983.
Article
PubMed
Google Scholar
Komatsu H, Yagasaki K, Komatsu Y, Yamauchi H, Yamauchi T, Shimokawa T, Doorenbos AZ. Falls and functional impairments in breast cancer patients with chemotherapy-induced peripheral neuropathy. Asia Pac J Oncol Nurs. 2019;6(3):253–60.
Article
PubMed
PubMed Central
Google Scholar
Park SB, Alberti P, Kolb NA, Gewandter JS, Schenone A, Argyriou AA. Overview and critical revision of clinical assessment tools in chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst. 2019;24(Suppl 2):S13–25.
PubMed
Google Scholar
Black N. Patient reported outcome measures could help transform healthcare. BMJ. 2013;346:f167.
Article
PubMed
Google Scholar
Knoerl R, Smith EML, Han A, Doe A, Scott K, Berry DL. Characterizing patient-clinician chemotherapy-induced peripheral neuropathy assessment and management communication approaches. Patient Educ Couns. 2019;102(9):1636–43.
Article
PubMed
PubMed Central
Google Scholar
McCrary JM, Goldstein D, Sandler CX, Barry BK, Marthick M, Timmins HC, Li T, Horvath L, Grimison P, Park SB. Exercise-based rehabilitation for cancer survivors with chemotherapy-induced peripheral neuropathy. Support Care Cancer. 2019;27(10):3849–57.
Article
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.
Article
PubMed
Google Scholar
Das S, Trutoiu L, Murai A, Alcindor D, Oh M, De la Torre F, Hodgins J. Quantitative measurement of motor symptoms in Parkinson’s disease: a study with full-body motion capture data. IEEE Eng Med Biol Soc. 2011;2011:6789–92.
Google Scholar
Mustapa A, Justine M, Mustafah NM, Jamil N, Manaf H. Postural control and gait performance in the diabetic peripheral neuropathy: a systematic review. Biomed Res Int. 2016. https://doi.org/10.1155/2016/9305025.
Article
PubMed
PubMed Central
Google Scholar
Schwarz A, Kanzler CM, Lambercy O, Luft AR, Veerbeek JM. Systematic review on kinematic assessments of upper limb movements after stroke. Stroke. 2019;50(3):718–27.
Article
PubMed
Google Scholar
Kneis S, Wehrle A, Freyler K, Lehmann K, Rudolphi B, Hildenbrand B, Bartsch HH, Bertz H, Gollhofer A, Ritzmann R. Balance impairments and neuromuscular changes in breast cancer patients with chemotherapy-induced peripheral neuropathy. Clin Neurophysiol. 2016;127(2):1481–90.
Article
PubMed
Google Scholar
Massion J. Postural control system. Curr Opin Neurobiol. 1994;4(6):877–87.
Article
CAS
PubMed
Google Scholar
Maurer C, Peterka RJ. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol. 2005;93(1):189–200.
Article
PubMed
Google Scholar
Wampler MA, Topp KS, Miaskowski C, Byl NN, Rugo HS, Hamel K. Quantitative and clinical description of postural instability in women with breast cancer treated with taxane chemotherapy. Arch Phys Med Rehabil. 2007;88(8):1002–8.
Article
PubMed
Google Scholar
Schmitt AC, Repka CP, Heise GD, Challis JH, Smith JD. Comparison of posture and balance in cancer survivors and age-matched controls. Clin Biomech. 2017;50:1–6.
Article
Google Scholar
Morishita S, Mitobe Y, Tsubaki A, Aoki O, Fu JB, Onishi H, Tsuji T. Differences in balance function between cancer survivors and healthy subjects: a pilot study. Integr Cancer Ther. 2018;17(4):1144–9.
Article
PubMed
PubMed Central
Google Scholar
Fino PC, Horak FB, El-Gohary M, Guidarelli C, Medysky ME, Nagle SJ, Winters-Stone KM. Postural sway, falls, and self-reported neuropathy in aging female cancer survivors. Gait Posture. 2019;69:136–42.
Article
PubMed
PubMed Central
Google Scholar
Monfort SM, Pan X, Loprinzi CL, Lustberg MB, Chaudhari AMW. Impaired postural control and altered sensory organization during quiet stance following neurotoxic chemotherapy: a preliminary study. Integr Cancer Ther. 2019a;18:1534735419828823.
Article
PubMed
PubMed Central
Google Scholar
Zahiri M, Chen KM, Zhou H, Nguyen H, Workeneh BT, Yellapragada SV, Sada YH, Schwenk M, Najafi B. Using wearables to screen motor performance deterioration because of cancer and chemotherapy-induced peripheral neuropathy (CIPN) in adults—toward an early diagnosis of CIPN. J Geriatr Oncol. 2019;10(6):960–7.
Article
PubMed
PubMed Central
Google Scholar
Kneis S, Wehrle A, Dalin D, Wiesmeier IK, Lambeck J, Gollhofer A, Bertz H, Maurer C. A new approach to characterize postural deficits in chemotherapy-induced peripheral neuropathy and to analyze postural adaptions after an exercise intervention. BMC Neurol. 2020;20(1):23.
Article
PubMed
PubMed Central
Google Scholar
Monfort SM, Pan X, Patrick R, Singaravelu J, Loprinzi CL, Lustberg MB, Chaudhari AMW. Natural history of postural instability in breast cancer patients treated with taxane-based chemotherapy: a pilot study. Gait Posture. 2016;48:237–42.
Article
PubMed
PubMed Central
Google Scholar
Monfort SM, Pan X, Patrick R, Ramaswamy B, Wesolowski R, Naughton MJ, Loprinzi CL, Chaudhari AMW, Lustberg MB. Gait, balance, and patient-reported outcomes during taxane-based chemotherapy in early-stage breast cancer patients. Breast Cancer Res Treat. 2017;164(1):69–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller J, Ringhof S, Vollmer M, Jager LB, Stein T, Weiler M, Wiskemann J. Out of balance—postural control in cancer patients before and after neurotoxic chemotherapy. Gait Posture. 2020;77:156–63.
Article
PubMed
Google Scholar
Maki BE, Holliday PJ, Topper AK. A prospective-study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol. 1994;49(2):M72–84.
Article
CAS
PubMed
Google Scholar
Lord SR, Rogers MW, Howland A, Fitzpatrick R. Lateral stability, sensorimotor function and falls in older people. J Am Geriatr Soc. 1999;47(9):1077–81.
Article
CAS
PubMed
Google Scholar
Melzer I, Benjuya N, Kaplanski J. Postural stability in the elderly: a comparison between fallers and non-fallers. Age Ageing. 2004;33(6):602–7.
Article
CAS
PubMed
Google Scholar
Bonnet CT, Lepeut M. Proximal postural control mechanisms may be exaggeratedly adopted by individuals with peripheral deficiencies: a review. J Motor Behav. 2011;43(4):319–28.
Article
Google Scholar
Termoz N, Halliday SE, Winter DA, Frank JS, Patla AE, Prince F. The control of upright stance in young, elderly and persons with Parkinson’s disease. Gait Posture. 2008;27(3):463–70.
Article
PubMed
Google Scholar
Simoneau GG, Ulbrecht JS, Derr JA, Cavanagh PR. Role of somatosensory input in the control of human posture. Gait Posture. 1995;3(3):115–22.
Article
Google Scholar
McCrary JM, Goldstein D, Trinh T, Timmins HC, Li T, Menant J, Friedlander M, Lewis CR, Hertzberg M, O’Neill S, et al. Balance deficits and functional disability in cancer survivors exposed to neurotoxic cancer treatments. J Natl Compr Canc Netw. 2019;17(8):949–55.
Article
PubMed
Google Scholar
Varedi M, Lu L, Howell CR, Partin RE, Hudson MM, Pui CH, Krull KR, Robison LL, Ness KK, McKenna RF. Peripheral neuropathy, sensory processing, and balance in survivors of acute lymphoblastic leukemia. J Clin Oncol. 2018;36(22):2315–22.
Article
PubMed
PubMed Central
Google Scholar
Gewandter JS, Fan L, Magnuson A, Mustian K, Peppone L, Heckler C, Hopkins J, Tejani M, Morrow GR, Mohile SG. Falls and functional impairments in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study. Support Care Cancer. 2013;21(7):2059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ness KK, Jones KE, Smith WA, Spunt SL, Wilson CL, Armstrong GT, Srivastava DK, Robison LL, Hudson MM, Gurney JG. Chemotherapy-related neuropathic symptoms and functional impairment in adult survivors of extracranial solid tumors of childhood: results from the St. Jude Lifetime Cohort Study. Arch Phys Med Rehabil. 2013;94(8):1451–7.
Article
PubMed
PubMed Central
Google Scholar
Jáuregui-Renaud K. Postural balance and peripheral neuropathy. In: Souayah N, editor. Peripheral neuropathy—a new insight into the mechanism, evaluation and management of a complex disorder. Rijeka: IntechOpen; 2013.
Google Scholar
Prayuenyong P, Taylor JA, Pearson SE, Gomez R, Patel PM, Hall DA, Kasbekar AV, Baguley DM. Vestibulotoxicity associated with platinum-based chemotherapy in survivors of cancer: a scoping review. Front Oncol. 2018;8:363.
Article
PubMed
PubMed Central
Google Scholar
Winters-Stone KM, Torgrimson B, Horak F, Eisner A, Nail L, Leo MC, Chui S, Luoh SW. Identifying factors associated with falls in postmenopausal breast cancer survivors: a multi-disciplinary approach. Arch Phys Med Rehabil. 2011;92(4):646–52.
Article
PubMed
PubMed Central
Google Scholar
Housley SN, Nardelli P, Carrasco D, Rotterman TM, Pfahl E, Matyunina LV, McDonald JF, Cope TC. Cancer exacerbates chemotherapy-induced sensory neuropathy. Cancer Res. 2020;6:657.
Google Scholar
Stone CA, Lawlor PG, Kenny RA. How to identify patients with cancer at risk of falling: a review of the evidence. J Palliat Med. 2011;14(2):221–30.
Article
PubMed
Google Scholar
Winters-Stone KM, Horak F, Jacobs PG, Trubowitz P, Dieckmann NF, Stoyles S, Faithfull S. Falls, functioning, and disability among women with persistent symptoms of chemotherapy-induced peripheral neuropathy. J Clin Oncol. 2017;35(23):2604–12.
Article
PubMed
PubMed Central
Google Scholar
Reimann H, Fettrow T, Thompson ED, Jeka JJ. Neural control of balance during walking. Front Physiol. 2018;9:1271.
Article
PubMed
PubMed Central
Google Scholar
Gilchrist L, Tanner L. Gait patterns in children with cancer and vincristine neuropathy. Pediatr Phys Ther. 2016;28(1):16–22.
Article
PubMed
Google Scholar
Marshall TF, Zipp GP, Battaglia F, Moss R, Bryan S. Chemotherapy-induced-peripheral neuropathy, gait and fall risk in older adults following cancer treatment. J Cancer Res Pract. 2017;4(4):134–8.
Article
Google Scholar
Hsieh KL, Trinh L, Sosnoff JJ. Gait variability is altered in cancer survivors with self-reported neuropathy. Gait Posture. 2019;72:206–10.
Article
PubMed
Google Scholar
Vallabhajosula S, Deaterly CD, Madzima TA. Comparison of forward and backward gait characteristics between those with and without a history of breast cancer. Gait Posture. 2019;74:162–8.
Article
PubMed
Google Scholar
Beulertz J, Bloch W, Prokop A, Rustler V, Fitzen C, Herich L, Streckmann F, Baumann FT. Limitations in ankle dorsiflexion range of motion, gait, and walking efficiency in childhood cancer survivors. Cancer Nurs. 2016;39(2):117–24.
Article
PubMed
Google Scholar
Menz HB, Lord SR, Fitzpatrick RC. Age-related differences in walking stability. Age Ageing. 2003;32(2):137–42.
Article
PubMed
Google Scholar
Pamoukdjian F, Paillaud E, Zelek L, Laurent M, Levy V, Landre T, Sebbane G. Measurement of gait speed in older adults to identify complications associated with frailty: a systematic review. J Geriatr Oncol. 2015;6(6):484–96.
Article
PubMed
Google Scholar
Thaler-Kall K, Peters A, Thorand B, Grill E, Autenrieth CS, Horsch A, Meisinger C. Description of spatio-temporal gait parameters in elderly people and their association with history of falls: results of the population-based cross-sectional KORA-Age study. BMC Geriatr. 2015;15:32.
Article
PubMed
PubMed Central
Google Scholar
Wuehr M, Schniepp R, Schlick C, Huth S, Pradhan C, Dieterich M, Brandt T, Jahn K. Sensory loss and walking speed related factors for gait alterations in patients with peripheral neuropathy. Gait Posture. 2014;39(3):852–8.
Article
PubMed
Google Scholar
Nashner LM. Balance adjustments of humans perturbed while walking. J Neurophysiol. 1980;44(4):650–64.
Article
CAS
PubMed
Google Scholar
Gandevia SC, Burke D. Does the nervous system depend on kinesthetic information to control natural limb movements? In: Cordo P, Harnad S, editors. Movement control. Cambridge: Cambridge University Press; 1994. p. 12–30.
Chapter
Google Scholar
Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1–17.
Article
PubMed
PubMed Central
Google Scholar
Wright MJ, Twose DM, Gorter JW. Gait characteristics of children and youth with chemotherapy induced peripheral neuropathy following treatment for acute lymphoblastic leukemia. Gait Posture. 2017;58:139–45.
Article
PubMed
Google Scholar
Monfort SM, Pan X, Loprinzi CL, Lustberg MB, Chaudhari AMW. Exploring the roles of central and peripheral nervous system function in gait stability: preliminary insights from cancer survivors. Gait Posture. 2019b;71:62–8.
Article
PubMed
PubMed Central
Google Scholar
Bennett BK, Park SB, Lin CS, Friedlander ML, Kiernan MC, Goldstein D. Impact of oxaliplatin-induced neuropathy: a patient perspective. Support Care Cancer. 2012;20(11):2959–67.
Article
PubMed
Google Scholar
Driessen CM, de Kleine-Bolt KM, Vingerhoets AJ, Mols F, Vreugdenhil G. Assessing the impact of chemotherapy-induced peripheral neurotoxicity on the quality of life of cancer patients: the introduction of a new measure. Support Care Cancer. 2012;20(4):877–81.
Article
CAS
PubMed
Google Scholar
Speck RM, DeMichele A, Farrar JT, Hennessy S, Mao JJ, Stineman MG, Barg FK. Scope of symptoms and self-management strategies for chemotherapy-induced peripheral neuropathy in breast cancer patients. Support Care Cancer. 2012;20(10):2433–9.
Article
PubMed
Google Scholar
Wang M, Cheng HL, Lopez V, Sundar R, Yorke J, Molassiotis A. Redefining chemotherapy-induced peripheral neuropathy through symptom cluster analysis and patient-reported outcome data over time. BMC Cancer. 2019;19(1):1151.
Article
PubMed
PubMed Central
Google Scholar
Osumi M, Sumitani M, Abe H, Otake Y, Kumagaya SI, Morioka S. Kinematic evaluation for impairment of skilled hand function in chemotherapy-induced peripheral neuropathy. J Hand Ther. 2019;32(1):41–7.
Article
PubMed
Google Scholar
Reinders-Messelink HA, Schoemaker MM, Snijders TA, Göeken LN, Bökkerink JP, Kamps WA. Analysis of handwriting of children during treatment for acute lymphoblastic leukemia. Med Pediatr Oncol. 2001;37(4):393–9.
Article
CAS
PubMed
Google Scholar
Ryan JL, Carroll JK, Ryan EP, Mustian KM, Fiscella K, Morrow GR. Mechanisms of cancer-related fatigue. Oncologist. 2007;12(Suppl 1):22–34.
Article
CAS
PubMed
Google Scholar
Pendergrass JC, Targum SD, Harrison JE. Cognitive impairment associated with cancer: a brief review. Innov Clin Neurosci. 2018;15(1–2):36–44.
PubMed
PubMed Central
Google Scholar
Paul L, Ellis BM, Leese GP, McFadyen AK, McMurray B. The effect of a cognitive or motor task on gait parameters of diabetic patients, with and without neuropathy. Diabet Med. 2009;26(3):234–9.
Article
CAS
PubMed
Google Scholar
Hodges PW, Tucker K. Moving differently in pain: a new theory to explain the adaptation to pain. Pain. 2011;152(3):S90–8.
Article
PubMed
Google Scholar
Wolf SL, Barton DL, Qin R, Wos EJ, Sloan JA, Liu H, Aaronson NK, Satele DV, Mattar BI, Green NB, et al. The relationship between numbness, tingling, and shooting/burning pain in patients with chemotherapy-induced peripheral neuropathy (CIPN) as measured by the EORTC QLQ-CIPN20 instrument, N06CA. Support Care Cancer. 2012;20(3):625–32.
Article
PubMed
Google Scholar
Swarm RA, Paice JA, Anghelescu DL, Are M, Bruce JY, Buga S, Chwistek M, Cleeland C, Craig D, Gafford E, et al. Adult cancer pain, version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17(8):977–1007.
Article
CAS
PubMed
Google Scholar
Padman S, Lee J, Kumar R, Slee M, Hakendorf P, Richards A, Koczwara B, Kichenadasse G, Sukumaran S, Roy A, et al. Late effects of oxaliplatin-induced peripheral neuropathy (LEON)–cross-sectional cohort study of patients with colorectal cancer surviving at least 2 years. Support Care Cancer. 2015;23(3):861–9.
Article
PubMed
Google Scholar
Duregon F, Vendramin B, Bullo V, Gobbo S, Cugusi L, Di Blasio A, Neunhaeuserer D, Zaccaria M, Bergamin M, Ermolao A. Effects of exercise on cancer patients suffering chemotherapy-induced peripheral neuropathy undergoing treatment: a systematic review. Crit Rev Oncol Hematol. 2018;121:90–100.
Article
PubMed
Google Scholar
Kanzawa-Lee GA, Larson JL, Resnicow K, Smith EML. Exercise effects on chemotherapy-induced peripheral neuropathy: a comprehensive integrative review. Cancer Nurs. 2020;43(3):E172–85.
Article
PubMed
Google Scholar