McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: a meta-analysis. Brain Stimul. 2017;10:721–34.
Article
PubMed
Google Scholar
Mooney RA, Ackerley SJ, Rajeswaran DK, Cirillo J, Barber PA, Stinear M, Byblow WD. The influence of primary motor cortex inhibition on upper limb impairment and function in chronic stroke: a multimodal study. Neurorehabil Neural Repair. 2019;33:130–40.
Article
PubMed
Google Scholar
Fujiwara T, Honaga K, Kawakami M, Nishimoto A, Abe K, Mizuno K, Kodama M, Masakado Y, Tsuji T, Liu M. Modulation of cortical and spinal inhibition with functional recovery of upper extremity motor function among patients with chronic stroke. Restor Neurol Neurosci. 2015;33:883–94.
CAS
PubMed
Google Scholar
Johnstone A, Levenstein JM, Hinson EL, Stagg CJ. Neurochemical changes underpinning the development of adjunct therapies in recovery after stroke: a role for GABA? J Cereb Blood Flow Metab. 2018;38:1564–83.
Article
CAS
PubMed
Google Scholar
Grefkes C, Ward NS. Cortical reorganization after stroke: How much and how functional? Neuroscientist. 2014;20:56–70.
Article
PubMed
Google Scholar
Tang Q, Li G, Liu T, Wang A, Feng S, Liao X, Jin Y, Guo Z, He B, McClure MA, et al. Modulation of interhemispheric activation balance in motor-related areas of stroke patients with motor recovery: systematic review and meta-analysis of fMRI studies. Neurosci Biobehav Rev. 2015;57:392–400.
Article
PubMed
Google Scholar
Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch of Neurol. 2004;61:1844–8.
Article
Google Scholar
Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, Ranieri F, Tombini M, Ziemann U, Rothwell JC, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10:597–608.
Article
Google Scholar
Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke. 2005;36:2681–6.
Article
PubMed
Google Scholar
Kim Y-H, You SH, Ko M-H, Park J-W, Lee KH, Jang SH, Yoo W-K, Hallett M. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke. 2006;37:1471–6.
Article
PubMed
Google Scholar
Suppa A, Huang Y-Z, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, Ziemann U, Rothwell JC. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016;9:323–35.
Article
CAS
PubMed
Google Scholar
Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.
Article
CAS
PubMed
Google Scholar
Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2016;63:43–64.
Article
PubMed
Google Scholar
Talelli P, Greenwood RJ, Rothwell JC. Exploring theta burst stimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol. 2007;118:333–42.
Article
CAS
PubMed
Google Scholar
Di Lazzaro V, Pilato F, Dileone M, Profice P, Capone F, Ranieri F, Musumeric G, Cianfoni A, Pasqualetti P, Tonali PA. Modulating cortical excitability in acute stroke: a repetitive TMS study. Clin Neurophysiol. 2008;119:715–23.
Article
PubMed
Google Scholar
Ackerley SJ, Stinear CM, Barber PA, Byblow WD. Combining theta burst stimulation with training after subcortical stroke. Stroke. 2010;41:1568–72.
Article
PubMed
Google Scholar
Ackerley SJ, Stinear CM, Barber PA, Byblow WD. Priming sensorimotor cortex to enhance task-specific training after subcortical stroke. Clin Neurophysiol. 2014;125:1451–8.
Article
PubMed
Google Scholar
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunnelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol. 2020;131:474–528.
Article
PubMed
Google Scholar
Zhang L, Xing G, Fan Y, Guo Z, Chen H, Mu Q. Short-and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clin Rehabil. 2017;31:1137–53.
Article
PubMed
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann of Intern Med. 2009;151:264–9.
Article
Google Scholar
Chipchase L, Schabrun S, Cohen L, Hodges P, Ridding M, Rothwell J, Taylor J, Ziemann U. A checklist for assessing the methodological quality of studies using transcranial magnetic stimulation to study the motor system: an international consensus study. Clin Neurophysiol. 2012;123:1698–704.
Article
PubMed
PubMed Central
Google Scholar
Moseley AM, Herbert RD, Sherrington C, Maher CG. Evidence for physiotherapy practice: a survey of the physiotherapy evidence database (PEDro). Aust J Physiother. 2002;48:43–9.
Article
PubMed
Google Scholar
Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1:97–111.
Article
PubMed
Google Scholar
Takeuchi N, Tada T, Toshima M, Chuma T, Matsuo Y, Ikoma K. Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranial magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke. J Rehabil Med. 2008;40:298–303.
Article
PubMed
Google Scholar
Jayaram G, Stinear JW. The effects of transcranial stimulation on paretic lower limb motor excitability during walking. J Clin Neurophysiol. 2009;26:272–9.
Article
PubMed
Google Scholar
Takeuchi N, Tada T, Toshima M, Matsuo Y, Ikoma K. Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. J Rehabil Med. 2009;41:1049–54.
Article
PubMed
Google Scholar
Di Lazzaro V, Profice P, Pilato F, Capone F, Ranieri F, Pasqualetti P, Colosimo C, Pravatà E, Cianfoni A, Dileone M. Motor cortex plasticity predicts recovery in acute stroke. Cereb Cortex. 2010;20:1523–8.
Article
PubMed
Google Scholar
Takeuchi N, Tada T, Matsuo Y, Ikoma K. Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke. Neurorehabil Neural Repair. 2012;26:988–98.
Article
PubMed
Google Scholar
Massie CL, Tracy BL, Malcolm MP. Functional repetitive transcranial magnetic stimulation increases motor cortex excitability in survivors of stroke. Clin Neurophysiol. 2013;124:371–8.
Article
PubMed
Google Scholar
Massie CL, Tracy BL, Paxton RJ, Malcolm MP. Repeated sessions of functional repetitive transcranial magnetic stimulation increases motor cortex excitability and motor control in survivors of stroke. NeuroRehabilitation. 2013;33:185–93.
Article
PubMed
Google Scholar
Vongvaivanichakul P, Tretriluxana J, Bovonsunthonchai S, Pakaprot N, Laksanakorn W. Reach-to-grasp training in individuals with chronic stroke augmented by low-frequency repetitive transcranial magnetic stimulation. J Med Assoc Thai. 2014;97:S45–9.
PubMed
Google Scholar
Cassidy JM, Chu H, Anderson DC, Krach LE, Snow L, Kimberley TJ, Carey JR. A comparison of primed low-frequency repetitive transcranial magnetic stimulation treatments in chronic stroke. Brain Stimul. 2015;8:1074–84.
Article
PubMed
PubMed Central
Google Scholar
Goh HT, Chan HY, Abdul-Latif L. Aftereffects of 2 noninvasive brain stimulation techniques on corticospinal excitability in persons with chronic stroke: a pilot study. J Neurol Phys Ther. 2015;39:15–22.
Article
PubMed
Google Scholar
Tretriluxana J, Kantak S, Tretriluxana S, Wu AD, Fisher BE. Improvement in paretic arm reach-to-grasp following low frequency repetitive transcranial magnetic stimulation depends on object size: a pilot study. Stroke Res Treat. 2015;2015:498169.
PubMed
PubMed Central
Google Scholar
Uhm KE, Kim Y-H, Yoon KJ, Hwang JM, Chang WH. BDNF genotype influence the efficacy of rTMS in stroke patients. Neurosci Lett. 2015;594:117–21.
Article
CAS
PubMed
Google Scholar
Bashir S, Vernet M, Najib U, Perez J, Alonso-Alonso M, Knobel M, Yoo W-K, Edwards D, Pascual-Leone A. Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restor Neurol Neurosci. 2016;34:677–89.
PubMed
PubMed Central
Google Scholar
Di Lazzaro V, Pellegrino G, Di Pino G, Ranieri F, Lotti F, Florio L, Capone F. Human motor cortex functional changes in acute stroke: gender effects. Front Neurosci. 2016;10:10.
Article
PubMed
PubMed Central
Google Scholar
Murdoch K, Buckley JD, McDonnell MN. The effect of aerobic exercise on neuroplasticity within the motor cortex following stroke. PLoS ONE. 2016;11:e0152377.
Article
PubMed
PubMed Central
Google Scholar
Diekhoff-Krebs S, Pool EM, Sarfeld AS, Rehme AK, Eickhoff SB, Fink GR, Grefkes C. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients. Neuroimage Clin. 2017;15:559–71.
Article
PubMed
PubMed Central
Google Scholar
Khan FR. Additive effects of sequential excitatory and inhibitory theta burst stimulation in improving cortical excitability following ischaemic stroke. Brain Inj. 2017;31:649–54.
Article
PubMed
Google Scholar
Hanafi MH, Kassim NK, Ibrahim AH, Adnan MM, Ahmad WMAW, Idris Z, Larif LA. Cortical modulation after two different repetitive transcranial magnetic stimulation protocols in similar ischemic stroke patients. Malays J Med Sci. 2018;25:116–25.
PubMed
PubMed Central
Google Scholar
Tretriluxana J, Thanakamchokchai J, Jalayondeja C, Pakaprot N, Tretriluxana S. The persisted effects of low-frequency repetitive transcranial magnetic stimulation to augment task-specific induced hand recovery following subacute stroke: extended study. Ann Rehabil Med. 2018;42:777–87.
Article
PubMed
PubMed Central
Google Scholar
Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology. 2005;65:466–8.
Article
PubMed
Google Scholar
Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJL, Wagner T, Fecteau S, Rigonatti SP, Riberto M, et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke. 2006;37:2115–22.
Article
PubMed
Google Scholar
Malcolm MP, Triggs WJ, Light KE, Rothi LJG, Wu S, Reid K, Nadeau SE. Repetitive transcranial magnetic stimulation as an adjunct to constraint-induced therapy: an exploratory randomized controlled trial. Am J Phys Med Rehabil. 2007;86:707–15.
Article
PubMed
PubMed Central
Google Scholar
Pomeroy VM, Cloud G, Tallis RC, Donaldson C, Nayak V, Miller S. Transcranial magnetic stimulation and muscle contraction to enhance stroke recovery: a randomized proof-of-principle and feasibility investigation. Neurorehabil Neural Repair. 2007;21:509–17.
Article
PubMed
Google Scholar
Khedr EM, Abdel-Fadeil MR, Farghali A, Qaid M. Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke. Eur J Neurol. 2009;16:1323–30.
Article
CAS
PubMed
Google Scholar
Khedr EM, Etraby AE, Hemeda M, Nasef AM, Razek AA. Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke. Acta Neurol Scand. 2010;121:30–7.
Article
CAS
PubMed
Google Scholar
Theilig S, Podubecka J, Bosl K, Wiederer R, Nowak DA. Functional neuromuscular stimulation to improve severe hand dysfunction after stroke: does inhibitory rTMS enhance therapeutic efficiency? Exp Neurol. 2011;230:149–55.
Article
PubMed
Google Scholar
Avenanti A, Coccia M, Ladavas E, Provinciali L, Ceravolo MG. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology. 2012;78:256–64.
Article
CAS
PubMed
Google Scholar
Wang R-Y, Tseng HY, Liao K-K, Wang C-J, Lai K-L, Yang Y-R. RTMS combined with task-oriented training to improve symmetry of interhemispheric corticomotor excitability and gait performance after stroke: A randomized trial. Neurorehabil Neural Repair. 2012;26:222–30.
Article
PubMed
Google Scholar
Di Lazzaro V, Rothwell JC, Talelli P, Capone F, Ranieri F, Wallace AC, Musumerci G, Dileone M. Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: a proof of principle, sham-controlled study. Neurosci Lett. 2013;553:148–52.
Article
PubMed
Google Scholar
Hsu Y-F, Huang Y-Z, Lin Y-Y, Tang C-W, Liao K-K, Lee P-L Tsai Y-A, Cheng H-L, Cheng H, Chern C-M, et al. Intermittent theta burst stimulation over ipsilesional primary motor cortex of subacute ischemic stroke patients: a pilot study. Brain Stimul. 2013;6:166–174.
Sung W-H, Wang C-P, Chou C-L, Chen Y-C, Chang Y-C, Tsai P-Y. Efficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients. Stroke. 2013;44:1375–82.
Article
PubMed
Google Scholar
Rose DK, Patten C, McGuirk TE, Lu X, Triggs WJ. Does inhibitory repetitive transcranial magnetic stimulation augment functional task practice to improve arm recovery in chronic stroke? Stroke Res Treat. 2014;2014:305236.
PubMed
PubMed Central
Google Scholar
Wang C-C, Wang C-P, Tsai P-Y, Hsieh CY, Chan R-C, Yeh S-C. Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery. Restor Neurol Neurosci. 2014;32:825–35.
CAS
PubMed
Google Scholar
Wang C-P, Tsai P-Y, Yang T-F, Yang K-Y, Wang C-C. Differential effect of conditioning sequences in coupling inhibitory/facilitatory repetitive transcranial magnetic stimulation for poststroke motor recovery. CNS Neurosci Ther. 2014;20:355–63.
Article
PubMed
PubMed Central
Google Scholar
Blesneag AV, Slăvoacă DF, Popa L, Stan AD, Jemna N, Moldovan FI, Muresanu DF. Low-frequency rTMS in patients with subacute ischemic stroke: clinical evaluation of short and long-term outcomes and neurophysiological assessment of cortical excitability. J Med Life. 2015;8:378–87.
CAS
PubMed
PubMed Central
Google Scholar
Ludemann-Podubecka J, Bosl K, Theilig S, Wiederer R, Nowak DA. The effectiveness of 1 Hz rTMS over the primary motor area of the unaffected hemisphere to improve hand function after stroke depends on hemispheric dominance. Brain Stimul. 2015;8:823–30.
Article
PubMed
Google Scholar
Mello EA, Cohen LG, Dos Anjos SM, Conti Juliana, Andrade KNF, Moll FT, Marins T, Fernandes CA, Jr WR, Conforto AB. Increase in short-interval intracortical facilitation of the motor cortex after low-frequency repetitive magnetic stimulation of the unaffected hemisphere in the subacute phase after stroke. Neural Plast. 2015;2015:407320.
Srikumari V, Vengamma B, Parvathi G. Effect of repetitive transcranial magnetic stimulation on cortico motor-excitability and motor function of the afected hand in subjects with stroke. Indian J Physiother Occup Ther. 2015;9:120–6.
Article
Google Scholar
Du J, Tian L, Liu W, Hu J, Xu G, Ma M, Fan X, Ye R, Jiang Y, Yin Q, et al. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial. Eur J Neurol. 2016;23:1666–72.
Article
CAS
PubMed
Google Scholar
Du J, Yang F, Liu L, Hu J, Cai B, Liu W, Xu G, Liu X. Repetitive transcranial magnetic stimulation for rehabilitation of poststroke dysphagia: a randomized, double-blind clinical trial. Clin Neurophysiol. 2016;127:1907–13.
Article
PubMed
Google Scholar
Volz LJ, Rehme AK, Michely J, Nettekoven C, Eickhoff SB, Fink GR, Grefkes C. Shaping early reorganization of neural networks promotes motor function after stroke. Cereb Cortex. 2016;26:2882–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cha HG, Kim MK. Effects of strengthening exercise integrated repetitive transcranial magnetic stimulation on motor function recovery in subacute stroke patients: a randomized controlled trial. Technol Health Care. 2017;25:521–9.
Article
PubMed
Google Scholar
Guan Y-Z, Li J, Zhang X-W, Wu S, Du H, Cui L-Y, Zhang W-H. Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: a one-year longitudinal randomized trial. CNS Neurosci Ther. 2017;23:940–6.
Article
PubMed
PubMed Central
Google Scholar
Huang Y-Z, Lin L-F, Chang K-H, Hu C-J, Liou T-H, Lin Y-N. Priming with 1-Hz repetitive transcranial magnetic stimulation over contralesional leg motor cortex does not increase the rate of regaining ambulation within 3 months of stroke: a randomized controlled trial. Am J Phys Med Rehabil. 2018;97:339–45.
Article
PubMed
Google Scholar
Watanabe K, Kudo Y, Sugawara E, Nakamizo T, Amari K, Takahshi K, Tanaka O, Endo M, Hayakawa Y, Johkura K. Comparative study of ipsilesional and contralesional repetitive transcranial magnetic stimulations for acute infarction. J Neurol Sci. 2018;384:10–4.
Article
PubMed
Google Scholar
Dos Santos RBC, Galvao SCB, Frederico LMP, Amaral NSL, Carnero MIS, de Moura Filho AG, Piscitelli D, Monte-Silva K. Cortical and spinal excitability changes after repetitive transcranial magnetic stimulation combined to physiotherapy in stroke spastic patients. Neurol Sci. 2019;40:1199–207.
Article
PubMed
Google Scholar
Du J, Yang F, Hu J, Hu J, Xu Q, Cong N, Zhang Q, Liu L, Manrini D, Zhang Z, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. Neuroimage Clin. 2019;21:101620.
Article
PubMed
Google Scholar
El-Tamawy MS, Darwish MH, Elkholy SH, Moustafa EBS. Effect of repetitive transcranial magnetic stimulation on cortical and motor outcomes post stroke: a randomized controlled trial. Indian J Public Health Res Dev. 2019;10:1967–73.
Article
Google Scholar
Neva JL, Brown KE, Wadden KP, Mang CS, Borich MR, Meehan SK, Boyd LA. The effects of five sessions of continuous theta burst stimulation over contralesional sensorimotor cortex paired with paretic skilled motor practice in people with chronic stroke. Restor Neurol Neurosci. 2019;37:273–90.
CAS
PubMed
PubMed Central
Google Scholar
Wang RY, Wang FY, Huang SF, Yang YR. High-frequency repetitive transcranial magnetic stimulation enhanced treadmill training effects on gait performance in individuals with chronic stroke: a double-blinded randomized controlled pilot trial. Gait Posture. 2019;68:382–7.
Article
PubMed
Google Scholar
Zhang C, Zheng X, Lu R, Yun W, Yun H, Zhou X. Repetitive transcranial magnetic stimulation in combination with neuromuscular electrical stimulation for treatment of post-stroke dysphagia. J Int Med Res. 2019;47:662–72.
Article
PubMed
Google Scholar
Wang Q, Zhang D, Zhao YY, Hai H, Ma YW. Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: a randomized clinical trial. Brain Stimul. 2020;13:979–86.
Article
PubMed
Google Scholar
Hassan AF, Hanafi MH, Idris Z, Abdullah JM, Nayan SA, Aziz NA. Corticomotor excitability after two different repetitive transcranial magnetic stimulation protocols in haemorrhagic stroke patients. Interdiscip Neurosurg. 2020;20:100670.
Article
Google Scholar
Ke J, Zou X, Huang M, Huang Q, Li H, Zhou X. High-frequency rTMS with two different inter-train intervals improves upper limb motor function at the early stage of stroke. J Int Med Res. 2020;48:0300060520928737.
Article
CAS
PubMed Central
Google Scholar
Gong Y, Long XM, Xu Y, Cai XY, Ye M. Effects of repetitive transcranial magnetic stimulation combined with transcranial direct current stimulation on motor function and cortex excitability in subacute stroke patients: a randomized controlled trial. Clin Rehabil. 2021;35:718–27.
Article
PubMed
Google Scholar
Xu J, Branscheidt M, Schambra H, Schambra H, Steiner L, Widmer M, Diedrichsen J, Goldsmith J, Lindquist M, Kitago T, Luft AR, et al. Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Ann Neurol. 2019;85:502–13.
Article
PubMed
PubMed Central
Google Scholar
Harvey RL, Edwards D, Dunning K, Fregni F, Stein J, Laine J, Rogers LM, Vox F, Durand-Sanchez A, Bockbrader M, et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke. Stroke. 2018;49:2138–46.
Article
PubMed
Google Scholar
Carey JR, Deng H, Gillick BT, Cassidy JM, Anderson DC, Zhang L, Thomas W. Serial treatments of primed low-frequency rTMS in stroke: characteristics of responders vs. nonresponders. Restor Neurol Neurosci. 2014;32:323–35.
PubMed
PubMed Central
Google Scholar
Mohapatra S, Harrington R, Chan E, Dromerick AW, Breceda EY, Harris-Love M. Role of contralesional hemisphere in paretic arm reaching in patients with severe arm paresis due to stroke: A preliminary report. Neurosci Lett. 2016;617:52–8.
Article
CAS
PubMed
Google Scholar
Lin Y-L, Potter-Baker KA, Cunningham DA, Li M, Sankarasubramanian V, Lee J, Jones S, Sakaie K, Wang X, Machado AG, et al. Stratifying chronic stroke patients based on the influence of contralesional motor cortices: an inter-hemispheric inhibition study. Clin Neurophysiol. 2020;131:2516–25.
Article
PubMed
PubMed Central
Google Scholar
Hammerbeck U, Hoad D, Greenwood R, Rothwell JC. The unsolved role of heightened connectivity from the unaffected hemisphere to paretic arm muscles in chronic stroke. Clin Neurophysiol. 2019;130:781–8.
Article
PubMed
Google Scholar
Chen Y-T, Li S, DiTommaso C, Zhou P, Li S. Possible contributions of ipsilateral pathways from the contralesional motor cortex to the voluntary contraction of the spastic elbow flexors in stroke survivors: a TMS study. Am J Phys Med Rehabil. 2019;98:558–65.
Article
PubMed
PubMed Central
Google Scholar
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, et al. Clinical utility and prospective of TMS-EEG. Clin Neurophysiol. 2019;130:802–44.
Article
PubMed
Google Scholar
Bai Z, Zhang J, Fong KNK. Intermittent theta burst stimulation to the primary motor cortex reduces cortical inhibition: A TMS-EEG study. Brain Sci. 2021;11:1114.
Article
PubMed
PubMed Central
Google Scholar
Di Lazzaro V, Dileone M, Pilato F, Capone F, Musumeci G, Ranieri F, Ricci V, Bria P, Di Iorio R, de Waure C, et al. Modulation of motor cortex neuronal networks by rTMS: Comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol. 2011;105:2150–6.
Article
PubMed
Google Scholar
Boddington LJ, Reynolds JNJ. Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimul. 2017;10:214–22.
Article
CAS
PubMed
Google Scholar
Heide G, Witte OW, Ziemann U. Physiology of modulation of motor cortex excitability by low-frequency suprathreshold repetitive transcranial magnetic stimulation. Exp Brain Res. 2006;171:26–34.
Article
CAS
PubMed
Google Scholar
Zafar N, Paulus W, Sommer M. Comparative assessment of best conventional with best theta burst repetitive transcranial magnetic stimulation protocols on human motor cortex excitability. Clin Neurophysiol. 2008;119:1393–9.
Article
PubMed
Google Scholar
Luo J, Zheng H, Zhang L, Zhang Q, Li L, Pei Z, Hu X. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int J Mol Sci. 2017;18:455.
Article
PubMed Central
Google Scholar