Béjot Y, Bailly H, Durier J, Giroud M. Epidemiology of stroke in Europe and trends for the 21st century. Presse Med. 2016;45(12 Pt 2):e391–8. https://doi.org/10.1016/j.lpm.2016.10.003.
Article
PubMed
Google Scholar
Norrving B, Barrick J, Davalos A, Dichgans M, Cordonnier C, Guekht A, Caso V. Action plan for stroke in Europe 2018–2030. Eur Stroke J. 2018;3(4):309–36. https://doi.org/10.1177/2396987318808719.
Article
PubMed
PubMed Central
Google Scholar
Kwakkel G, Kollen BJ, van der Grond J, Prevo AJH. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:2181–6. https://doi.org/10.1161/01.STR.0000087172.16305.CD.
Article
PubMed
Google Scholar
Perrochon A, Borel B, Istrate D, Compagnat M, Daviet JC. Exercise-based games interventions at home in individuals with a neurological disease: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(5):366–78. https://doi.org/10.1016/j.rehab.2019.04.004.
Article
PubMed
Google Scholar
Islam MK, Brunner I. Cost-analysis of virtual reality training based on the virtual reality for upper extremity in subacute stroke (VIRTUES) trial. Int J Technol Assess Health Care. 2019;35(5):373–8. https://doi.org/10.1017/S026646231900059X.
Article
PubMed
Google Scholar
Duret C, Grosmaire AG, Krebs HI. Robot-assisted therapy in upper extremity hemiparesis: overview of an evidence-based approach. Front Neurol. 2019;10:412. https://doi.org/10.3389/fneur.2019.00412.
Article
PubMed
PubMed Central
Google Scholar
Lee SH, Jung H-Y, Yun SJ, Oh B-M, Seo HG. Upper extremity rehabilitation using fully immersive virtual reality games with a head mount display: a feasibility study. J Injury Funct Rehabil. 2020;12:257–62. https://doi.org/10.1002/pmrj.12206.
Article
Google Scholar
Mehrholz J. Is electromechanical and robot-assisted arm training effective for improving arm function in people who have had a stroke: a cochrane review. Am J Phys Med Rehabil. 2019;98(4):339–40. https://doi.org/10.1097/phm.0000000000001133.
Article
PubMed
Google Scholar
Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107–21. https://doi.org/10.1177/1545968316666957.
Article
PubMed
Google Scholar
Laver KE, Adey-Wakeling Z, Crotty M, Lannin NA, George S, Sherrington C. Telerehabilitation services for stroke. Cochrane Database Syst Rev. 2020;1:010255. https://doi.org/10.1002/14651858.CD010255.pub3.
Article
Google Scholar
Maier M, Rubio Ballester B, Duff A, Duarte Oller E, Verschure PFMJ. Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: a systematic meta-analysis. Neurorehabil Neural Repair. 2019;33(2):112–29. https://doi.org/10.1177/1545968318820169.
Article
PubMed
PubMed Central
Google Scholar
Aminov, et al. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J Neuroeng Rehabil. 2018;15(1):29. https://doi.org/10.1186/s12984-018-0370-2.
Article
PubMed
PubMed Central
Google Scholar
Hung JW, Chou CX, Chang YJ, et al. Comparison of Kinect2Scratch game-based training and therapist-based training for the improvement of upper extremity functions of patients with chronic stroke: a randomized controlled single-blinded trial. Eur J Phys Rehabil Med. 2019;55(5):542–50. https://doi.org/10.23736/S1973-9087.19.05598-9.
Article
PubMed
Google Scholar
Dehem S, Montedoro V, Edwards MG, et al. Development of a robotic upper limb assessment to configure a serious game. NeuroRehabilitation. 2019;44(2):263–74. https://doi.org/10.3233/NRE-182525.
Article
PubMed
Google Scholar
Hocine N, Gouaïch A, Cerri SA, et al. Adaptation in serious games for upper-limb rehabilitation: an approach to improve training outcomes. User Model User-Adap Inter. 2015;25:65–98. https://doi.org/10.1007/s11257-015-9154-6.
Article
Google Scholar
Maier M, Ballester BR, Verschure PFMJ. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci. 2019;13:74. https://doi.org/10.3389/fnsys.2019.00074.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh YB, Kim GW, Han KS, et al. Efficacy of virtual reality combined with real instrument training for patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2019;100(8):1400–8. https://doi.org/10.1016/j.apmr.2019.03.013.
Article
PubMed
Google Scholar
Karamians R, Proffitt R, Kline D, Gauthier LV. Effectiveness of virtual reality- and gaming-based interventions for upper extremity rehabilitation poststroke: a meta-analysis. Arch Phys Med Rehabil. 2019. https://doi.org/10.1016/j.apmr.2019.10.195.
Article
PubMed
Google Scholar
World Health Organization. International classification of functioning, disability and health: ICF. World Health Organization. 2001. https://apps.who.int/iris/handle/10665/42407.
Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;2009(339):b2535. https://doi.org/10.1136/bmj.b2535.
Article
Google Scholar
de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33. https://doi.org/10.1016/s0004-9514(09)70043-1.
Article
PubMed
Google Scholar
Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. https://doi.org/10.1136/bmj.d5928.
Article
PubMed
PubMed Central
Google Scholar
Stinear CM, Lang CE, Zeiler S, Byblow WD. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020;19(4):348–60. https://doi.org/10.1016/S1474-4422(19)30415-6.
Article
CAS
PubMed
Google Scholar
Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, Bernhardt J. Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int J Stroke. 2017;12(5):451–61. https://doi.org/10.1177/1747493017711813.
Article
PubMed
Google Scholar
Alt Murphy M, Resteghini C, Feys P, Lamers I. An overview of systematic reviews on upper extremity outcome measures after stroke. BMC Neurol. 2015;15:29. https://doi.org/10.1186/s12883-015-0292-6.
Article
PubMed
PubMed Central
Google Scholar
Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.
CAS
PubMed
Google Scholar
Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehabil Neural Repair. 2008;22(1):78–90. https://doi.org/10.1177/1545968307305353.
Article
PubMed
Google Scholar
Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39(6):386–91. https://doi.org/10.5014/ajot.39.6.386.
Article
CAS
PubMed
Google Scholar
Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke. 2001;32(7):1635–9. https://doi.org/10.1161/01.str.32.7.1635.
Article
CAS
PubMed
Google Scholar
Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version 2..0 Evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30(10):2131–40. https://doi.org/10.1161/01.str.30.10.2131.
Article
CAS
PubMed
Google Scholar
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019). Cochrane, 2019.
Kottink AI, Prange GB, Krabben T, Rietman JS, Buurke JH. Gaming and conventional exercises for improvement of arm function after stroke: a randomized controlled pilot study. Games Health J. 2014;3(3):184–91. https://doi.org/10.1089/g4h.2014.0026.
Article
PubMed
Google Scholar
Park M, Ko MH, Oh SW, Lee JY, Ham Y, Yi H, Shin JH. Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study. J Neuroeng Rehabil. 2019;16(1):122. https://doi.org/10.1186/s12984-019-0595-8.
Article
PubMed
PubMed Central
Google Scholar
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135.
Article
PubMed
PubMed Central
Google Scholar
Armijo-Olivo S, da Costa BR, Cummings GG, Ha C, Fuentes J, Saltaji H, Egger M. PEDro or cochrane to assess the quality of clinical trials? A meta-epidemiological study. PLoS ONE. 2015;10(7):e0132634. https://doi.org/10.1371/journal.pone.0132634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Review Manager Web (RevMan Web). The Cochrane Collaboration, 2019. revman.cochrane.org.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. https://doi.org/10.1016/0197-2456(86)90046-2.
Article
CAS
PubMed
Google Scholar
GRADEpro GDT: GRADEpro guideline development tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). Available from gradepro.org
Norouzi-Gheidari N, Hernandez A, Archambault PS, Higgins J, Poissant L, Kairy D. Feasibility, safety and efficacy of a virtual reality exergame system to supplement upper extremity rehabilitation post-stroke: a pilot randomized clinical trial and proof of principle. Int J Environ Res Public Health. 2019;17(1):113. https://doi.org/10.3390/ijerph17010113.
Article
PubMed Central
Google Scholar
Brunner I, Skouen JS, Hofstad H, et al. Virtual reality training for upper extremity in subacute stroke (VIRTUES): a multicenter RCT. Neurology. 2017;89(24):2413–21. https://doi.org/10.1212/WNL.0000000000004744.
Article
PubMed
Google Scholar
Saposnik G, Levin M, Outcome Research Canada (SORCan) Working Group. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–6. https://doi.org/10.1161/STROKEAHA.110.605451.
Article
PubMed
Google Scholar
Palma GC, Freitas TB, Bonuzzi GM, et al. Effects of virtual reality for stroke individuals based on the international classification of functioning and health: a systematic review. Top Stroke Rehabil. 2017;24(4):269–78. https://doi.org/10.1080/10749357.2016.1250373.
Article
PubMed
Google Scholar
Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HF. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS ONE. 2014;9(3):e93318. https://doi.org/10.1371/journal.pone.0093318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laffont I, Froger J, Jourdan C, et al. Rehabilitation of the upper arm early after stroke: video games versus conventional rehabilitation. A randomized controlled trial. Ann Phys Rehabil Med. 2020;63(3):173–80. https://doi.org/10.1016/j.rehab.2019.10.009.
Article
PubMed
Google Scholar
da Silva CM, Bermúdez I Badia S, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–98. https://doi.org/10.3233/RNN-2011-0599.
Article
Google Scholar
Kiper P, Szczudlik A, Agostini M, et al. Virtual reality for upper limb rehabilitation in subacute and chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2018;99(5):834-842.e4. https://doi.org/10.1016/j.apmr.2018.01.023.
Article
PubMed
Google Scholar
Piron L, Turolla A, Agostini M, et al. Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair. 2010;24(6):501–8. https://doi.org/10.1177/1545968310362672.
Article
PubMed
Google Scholar
Carpinella I, Lencioni T, Bowman T, et al. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. J Neuroeng Rehabil. 2020;17(1):10. https://doi.org/10.1186/s12984-020-0646-1.
Article
PubMed
PubMed Central
Google Scholar
Gottesman RF, Hillis AE. Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke. Lancet Neurol. 2010;9(9):895–905. https://doi.org/10.1016/S1474-4422(10)70164-2.
Article
PubMed
PubMed Central
Google Scholar
Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–702. https://doi.org/10.1016/S0140-6736(11)60325-5.
Article
PubMed
Google Scholar
Adomavičienė A, Daunoravičienė K, Kubilius R, Varžaitytė L, Raistenskis J. Influence of new technologies on post-stroke rehabilitation: a comparison of armeo spring to the kinect system. Medicina (Kaunas). 2019. https://doi.org/10.3390/medicina5504009.
Article
Google Scholar
Ang KK, Guan C, Phua KS, Wang C, Zhou L, Tang KY, Chua KS. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014;7:30. https://doi.org/10.3389/fneng.2014.00030.
Article
PubMed
PubMed Central
Google Scholar
Aprile I, Germanotta M, Cruciani A, Loreti S, Pecchioli C, Cecchi F, Montesano A, Galeri S, Diverio M, Falsini C, Speranza G, Langone E, Papadopoulou D, Padua L, Carrozza MC. FDG robotic rehabilitation group. Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial. J Neurol Phys Ther. 2020;44(1):3-14. https://doi.org/10.1097/NPT.0000000000000295.
Aşkın A, Atar E, Kocyiğit H, Tosun A. Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. Somatosens Mot Res. 2018;35(1):25–32. https://doi.org/10.1080/08990220.2018.1444599.
Article
PubMed
Google Scholar
da Silva Cameirao M, Bermudez I Badia S, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–98. https://doi.org/10.3233/rnn-2011-0599.
Article
PubMed
Google Scholar
Cameirao MS, Badia SB, Duarte E, Frisoli A, Verschure PF. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 2012;43(10):2720–8. https://doi.org/10.1161/STROKEAHA.112.653196.
Article
PubMed
Google Scholar
Cho KH, Song WK. Robot-assisted reach training with an active assistant protocol for long-term upper extremity impairment poststroke: a randomized controlled trial. Arch Phys Med Rehabil. 2019;100(2):213–9. https://doi.org/10.1016/j.apmr.2018.10.002.
Article
PubMed
Google Scholar
Choi YH, Ku J, Lim H, Kim YH, Paik NJ. Mobile gamebased virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke. Restor Neurol Neurosci. 2016;34(3):455–63. https://doi.org/10.3233/rnn-150626.
Article
PubMed
Google Scholar
Crosbie JH, Lennon S, McGoldrick MC, McNeill MD, McDonough SM. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin Rehabil. 2012;26(9):798–806. https://doi.org/10.1177/0269215511434575.
Article
CAS
PubMed
Google Scholar
Duff M, Chen Y, Cheng L, Liu SM, Blake P, Wolf SL, Rikakis T. Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. Neurorehabil Neural Repair. 2013;27(4):306–15. https://doi.org/10.1177/1545968312465195.
Article
PubMed
Google Scholar
Henrique PPB, Colussi EL, De Marchi ACB. Effects of exergame on patients’ balance and upper limb motor function after stroke: a randomized controlled trial. J Stroke Cerebrovasc Dis. 2019;28(8):2351–7. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.05.031.
Article
PubMed
Google Scholar
Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14. https://doi.org/10.1177/1545968308331148.
Article
PubMed
Google Scholar
Jang SH, You SH, Hallett M, Cho YW, Park CM, Cho SH, Kim TH. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter blind preliminary study. Arch Phys Med Rehabil. 2005;86(11):2218–23. https://doi.org/10.1016/j.apmr.2005.04.015.
Article
PubMed
Google Scholar
Jo K, Yu J, Jung J. Effects of virtual reality-based rehabilitation on upper extremity function and visual perception in stroke patients: a randomized control trial. J Phys Ther Sci. 2012;24(11):1205–8.
Article
Google Scholar
Kim WS, Cho S, Park SH, Lee JY, Kwon S, Paik NJ. A low cost kinect-based virtual rehabilitation system for inpatient rehabilitation of the upper limb in patients with subacute stroke: a randomized, doubleblind, sham-controlled pilot trial. Medicine (Baltimore). 2018;97(25):e11173. https://doi.org/10.1097/md.0000000000011173.
Article
Google Scholar
Kiper P, Piron L, Turolla A, Stożek J, Tonin P. The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke. Neurol Neurochir Pol. 2011;45(5):436–44. https://doi.org/10.1016/s0028-3843(14)60311-x.
Article
PubMed
Google Scholar
Kiper P, Agostini M, Luque-Moreno C, Tonin P, Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res Int. 2014;2014:752128. https://doi.org/10.1155/2014/752128.
Article
PubMed
PubMed Central
Google Scholar
Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Riener R. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66. https://doi.org/10.1016/S1474-4422(13)70305-3.
Article
PubMed
Google Scholar
Kwon JS, Park MJ, Yoon IJ, Park SH. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation. 2012;31(4):379–85. https://doi.org/10.3233/nre-2012-00807.
Article
PubMed
Google Scholar
Lee M, Son J, Kim J, Pyun S-B, Eun S-D, Yoon B. Comparison of individualized virtual reality- and group-based rehabilitation in older adults with chronic stroke in community settings: a pilot randomized controlled trial. Eur J Integr Med. 2016;8(5):738–46. https://doi.org/10.1016/j.eujim.2016.08.166.
Article
Google Scholar
Lee S, Kim Y, Lee BH. Effect of virtual reality-based bilateral upper extremity training on upper extremity function after stroke: a randomized controlled clinical trial. Occup Ther Int. 2016;23(4):357–68. https://doi.org/10.1002/oti.1437.
Article
PubMed
Google Scholar
Lee MJ, Lee JH, Lee SM. Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: a single-blinded, randomized, controlled trial. Technol Health Care. 2018;26(4):659–66. https://doi.org/10.3233/THC-181336.
Article
CAS
PubMed
Google Scholar
Levin MF, Snir O, Liebermann DG, Weingarden H, Weiss PL. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. Neurol Ther. 2012;1(1):3. https://doi.org/10.1007/s40120-012-0003-9.
Article
PubMed
PubMed Central
Google Scholar
Liao WW, Wu CY, Hsieh YW, Lin KC, Chang WY. Effects of robot-assisted upper limb rehabilitation on daily function and realworld arm activity in patients with chronic stroke: a randomized controlled trial. Clin Rehabil. 2012;26(2):111–20. https://doi.org/10.1177/0269215511416383.
Article
PubMed
Google Scholar
Mugler EM, Tomic G, Singh A, Hameed S, Lindberg EW, Gaide J, Slutzky MW. Myoelectric computer interface training for reducing co-activation and enhancing arm movement in chronic stroke survivors: a randomized trial. Neurorehabil Neural Repair. 2019;33(4):284–95. https://doi.org/10.1177/1545968319834903.
Article
PubMed
PubMed Central
Google Scholar
Nijenhuis SM, Prange-Lasonder GB, Stienen AH, Rietman JS, Buurke JH. Effects of training with a passive hand orthosis and games at home in chronic stroke: a pilot randomised controlled trial. Clin Rehabil. 2017;31(2):207–16. https://doi.org/10.1177/0269215516629722.
Article
PubMed
Google Scholar
Ogun MN, Kurul R, Yaşar MF, Turkoglu SA, Avci Ş, Yildiz N. Effect of leap motion-based 3D immersive virtual reality usage on upper extremity function in ischemic stroke patients. Arq Neuropsiquiatr. 2019;77(10):681–8. https://doi.org/10.1590/0004-282x20190129.
Article
PubMed
Google Scholar
Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, Zampolini M, Tonin P. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med. 2009;41(12):1016–102. https://doi.org/10.2340/16501977-0459.
Article
PubMed
Google Scholar
Prange GB, Kottink AI, Buurke JH, Eckhardt MM, van Keulen- Rouweler BJ, Ribbers GM, Rietman JS. The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2015;29(2):174–82. https://doi.org/10.1177/1545968314535985.
Article
PubMed
Google Scholar
Rogers JM, Duckworth J, Middleton S, Steenbergen B, Wilson PH. Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study. J Neuroeng Rehabil. 2019;16(1):56. https://doi.org/10.1186/s12984-019-0531-y.
Article
PubMed
PubMed Central
Google Scholar
Schuster-Amft C, Eng K, Suica Z, Thaler I, Signer S, Lehmann I, Kiper D. Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: a multicenter parallel group randomized trial. PLoS ONE. 2018;13(10):e0204455. https://doi.org/10.1371/journal.pone.0204455.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin JH, Ryu H, Jang SH. A task-specific interactive gamebased virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil. 2014;11:32. https://doi.org/10.1186/1743-0003-11-32.
Article
PubMed
PubMed Central
Google Scholar
Shin JH, Bog Park S, Ho Jang S. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: a randomized, controlled study. Comput Biol Med. 2015;63:92–8. https://doi.org/10.1016/j.compbiomed.2015.03.011.
Article
PubMed
Google Scholar
Shin JH, Kim MY, Lee JY, Jeon YJ, Kim S, Lee S, Choi Y. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabil. 2016;13:17. https://doi.org/10.1186/s12984-016-0125-x.
Article
PubMed
PubMed Central
Google Scholar
Subramanian SK, Lourenco CB, Chilingaryan G, Sveistrup H, Levin MF. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. 2013;27(1):13–23. https://doi.org/10.1177/1545968312449695.
Article
PubMed
Google Scholar
Thielbar KO, Lord TJ, Fischer HC, Lazzaro EC, Barth KC, Stoykov ME, Kamper DG. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil. 2014;11:171. https://doi.org/10.1186/1743-0003-11-171.
Article
PubMed
PubMed Central
Google Scholar
Thielbar KO, Triandafilou KM, Barry AJ, Yuan N, Nishimoto A, Johnson J, Kamper DG. Home-based upper extremity stroke therapy using a multiuser virtual reality environment: a randomized trial. Arch Phys Med Rehabil. 2020;101(2):196–203. https://doi.org/10.1016/j.apmr.2019.10.182.
Article
PubMed
Google Scholar
Tomic TJ, Savic AM, Vidakovic AS, Rodic SZ, Isakovic MS, Rodriguez-de-Pablo C, Konstantinovic LM. ArmAssist robotic system versus matched conventional therapy for poststroke upper limb rehabilitation: a randomized clinical trial. Biomed Res Int. 2017;2017:7659893. https://doi.org/10.1155/2017/7659893.
Article
PubMed
PubMed Central
Google Scholar
Wolf SL, Sahu K, Bay RC, Buchanan S, Reiss A, Linder S, Alberts J. The HAAPI (home arm assistance progression initiative) trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair. 2015;29(10):958–68. https://doi.org/10.1177/1545968315575612.
Article
PubMed
PubMed Central
Google Scholar
Yin CW, Sien NY, Ying LA, Chung SF, Tan May Leng D. Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin Rehabil. 2014;28(11):1107–14. https://doi.org/10.1177/0269215514532851.
Article
PubMed
Google Scholar
Zondervan DK, Friedman N, Chang E, Zhao X, Augsburger R, Reinkensmeyer DJ, Cramer SC. Home-based hand rehabilitation after chronic stroke: randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. J Rehabil Res Dev. 2016;53(4):457–72. https://doi.org/10.1682/jrrd.2015.04.0057.
Article
PubMed
Google Scholar